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Abstract: The presence of pharmaceuticals in surface water and wastewater poses a threat to public
health and has significant effects on the ecosystem. Since most wastewater treatment plants are
ineffective at removing molecules efficiently, some pharmaceuticals enter aquatic ecosystems, thus
creating issues such as antibiotic resistance and toxicity. This review summarizes the methods used
for the removal of ceftriaxone antibiotics from aquatic environments. Ceftriaxone is one of the
most commonly prescribed antibiotics in many countries, including Tanzania. Ceftriaxone has been
reported to be less or not degraded in traditional wastewater treatment of domestic sewage. This
has piqued the interest of researchers in the monitoring and removal of ceftriaxone from wastewater.
Its removal from aqueous systems has been studied using a variety of methods which include
physical, biological, and chemical processes. As a result, information about ceftriaxone has been
gathered from many sources with the searched themes being ceftriaxone in wastewater, ceftriaxone
analysis, and ceftriaxone removal or degradation. The methods studied have been highlighted and
the opportunities for future research have been described.
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1. Introduction

Pharmaceutical traces, and their metabolites and degradation products have been
found in both surface and ground water across the globe [1]. Antibiotics contribute a higher
proportion to this in pharmaceutical wastewater [2] due to their significant use [3]. They
are used to treat different diseases and bacterial infections in human beings and other ani-
mals [4–6]. Wastewater containing such complex components becomes difficult to treat [7,8].
Their high solubility in aqueous systems, longer half-life [9], and low biodegradability [10]
makes them accumulate over time. Ceftriaxone (refer Figure 1) is a type of antibiotic
used to treat a variety of bacterial illnesses. It is a 3rd generation cephalosporin that in-
hibits the formation of mucopeptide in bacterial cell walls [11]. Its systematic chemical
name is [6R-[6a,7b,(Z)]]-5-thia-1-azabicclo-[4.2.0]-oct-2-ene-2-carboxylicacid,7-[[(2-amino-4-
thiazolyl)(methoxyimino)-acetyl]amino]-8-oxo-3-[[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1-
2,4–triazin-3-yl)-thio]methyl]]-, disodium salt [12]. It is widely used in clinical settings due
to its strong antibacterial effect, good lactamase tolerance, good clinical effect, low toxicity,
and low allergic reaction [13].

Like other 3rd generation cephalosporins, this antibiotic is less effective against Gram-
positive bacteria compared to first-generation medicines, but it has a far larger spectrum of
activity against Gram-negative bacteria [14]. Ceftriaxone has been useful for the treatment
of infections caused by susceptible organisms in the lower respiratory tract, abdomen, skin
and soft tissue, pelvic area, bone and joint, meninges, and urinary tract [15]. Based on
intramuscular injections, ceftriaxone is 100% bioavailable and it is removed by biliary and
renal excretion [16].
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[15]. Based on intramuscular injections, ceftriaxone is 100% bioavailable and it is removed 
by biliary and renal excretion [16]. 

 
Figure 1. Chemical structure of ceftriaxone [17]. 
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mize contamination of the environment [18]. It is believed that around 40–90% of the pre-
scribed antibiotic dose (depending on the class of pharmaceutical) is excreted as a parent 
compound in the active form in the feces and urine, and when it finally reaches the envi-
ronment it causes soil, water, and plant contamination [19–21]. The use of excessive doses 
of antibiotics in livestock farming can pollute agro-ecosystems through either the appli-
cation of contaminated manure as fertilizer in agriculture, or the irrigation of farms with 
wastewater [22,23]. Another source of concern comprises the improper disposal of lefto-
ver, expired, or unused pharmaceuticals which are released into sewage systems [24]. Due 
to the incomplete removal of pharmaceutical compounds and their metabolites by con-
ventional treatment technologies, several pharmaceutical residues have been detected in 
wastewater effluents. This makes antibiotics present in wastewater treatment plants 
sludge and, finally, effluent [25–27]. Hospital effluents also comprise a significant source 
of antibiotics and antibiotic-resistant microorganisms in the environment [28]. 

Although antibiotic residue quantities in aquatic environments range from ng/L to 
µg/L, their continual discharge and persistence may have unexpected consequences for 
non-target aquatic organisms [11]. Antibiotics in water resources can generate a wide 
range of issues, including toxicity on aquatic organisms such as bacteria, algae, crabs, and 
fish, and increased antibiotic resistance in bacteria [5,29]. According to the WHO [23], an-
tibiotic resistance is one of the three biggest dangers to human health. As a result, devel-
oping effective and environmentally friendly methods to break down those antibiotics in 
the aquatic environment is critical [2,4,30]. Being an antibiotic, ceftriaxone has similar ef-
fects. Due to its widespread usage in medicine and veterinary medicine, ceftriaxone con-
tributes significantly to environmental pollution [9]. 

Several studies show that ceftriaxone aqueous solution is unstable, with a stability 
that is pH and temperature-dependent. The ideal pH for ceftriaxone stability in aqueous 
solution is 7.5, and when maintaining this pH for more than 6 h at 37 °C, only around 10% 
of ceftriaxone can be degraded. However, degradation occurs more quickly at lower or 
higher pH levels. The aqueous solution of ceftriaxone is stable for 4 days at room temper-
ature in the presence and absence of light, and that ceftriaxone is stable for a longer 
amount of time at lower temperatures, but it decomposes after a specific period of time 
[31]. More characteristics of ceftriaxone are presented in Table 1. 

  

Figure 1. Chemical structure of ceftriaxone [17].

The antibiotics used for animals and humans’ treatment enter the environment via
urine and feces, thus optimizing and/or limiting antibiotic use, which is essential to
minimize contamination of the environment [18]. It is believed that around 40–90% of
the prescribed antibiotic dose (depending on the class of pharmaceutical) is excreted as a
parent compound in the active form in the feces and urine, and when it finally reaches the
environment it causes soil, water, and plant contamination [19–21]. The use of excessive
doses of antibiotics in livestock farming can pollute agro-ecosystems through either the
application of contaminated manure as fertilizer in agriculture, or the irrigation of farms
with wastewater [22,23]. Another source of concern comprises the improper disposal of
leftover, expired, or unused pharmaceuticals which are released into sewage systems [24].
Due to the incomplete removal of pharmaceutical compounds and their metabolites by
conventional treatment technologies, several pharmaceutical residues have been detected
in wastewater effluents. This makes antibiotics present in wastewater treatment plants
sludge and, finally, effluent [25–27]. Hospital effluents also comprise a significant source of
antibiotics and antibiotic-resistant microorganisms in the environment [28].

Although antibiotic residue quantities in aquatic environments range from ng/L to
µg/L, their continual discharge and persistence may have unexpected consequences for
non-target aquatic organisms [11]. Antibiotics in water resources can generate a wide range
of issues, including toxicity on aquatic organisms such as bacteria, algae, crabs, and fish,
and increased antibiotic resistance in bacteria [5,29]. According to the WHO [23], antibiotic
resistance is one of the three biggest dangers to human health. As a result, developing
effective and environmentally friendly methods to break down those antibiotics in the
aquatic environment is critical [2,4,30]. Being an antibiotic, ceftriaxone has similar effects.
Due to its widespread usage in medicine and veterinary medicine, ceftriaxone contributes
significantly to environmental pollution [9].

Several studies show that ceftriaxone aqueous solution is unstable, with a stability
that is pH and temperature-dependent. The ideal pH for ceftriaxone stability in aqueous
solution is 7.5, and when maintaining this pH for more than 6 h at 37 ◦C, only around
10% of ceftriaxone can be degraded. However, degradation occurs more quickly at lower
or higher pH levels. The aqueous solution of ceftriaxone is stable for 4 days at room
temperature in the presence and absence of light, and that ceftriaxone is stable for a longer
amount of time at lower temperatures, but it decomposes after a specific period of time [31].
More characteristics of ceftriaxone are presented in Table 1.

Table 1. Characteristics of ceftriaxone sodium [16].

Characteristics Value

Physical properties Crystalline white powder
Solubility Soluble in water (app. 40 g/100 mL at 25 ◦C)

Ionization constants (pKa) 4.1 (enolic OH), 3.2 (NH3
+) and 3 (COOH)

Route of elimination By glomerular filtration, ceftriaxone is eliminated unaltered in the
urine. Bile excretes around 35–45% of a given dosage of ceftriaxone.
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Ceftriaxone in wastewater has been reported by various researchers. For instance, re-
search was conducted in India to examine the effluent of selected health care establishments
and municipal wastewater treatment plants. The study findings indicated that the results
for ceftriaxone ranged from 1.25–29.15 µg/mL [32]. The antibiotics have been proven in
several publications as emergent contaminants in the aquatic environments around the
world. However, the majority of the findings are from outside Africa [33]. Therefore, the
purpose of this literature review was to analyze the information available in relation to the
techniques for the removal of ceftriaxone from wastewater systems. The reviewed literature
employed electronic databases, manual searches of reference lists from chosen electronic
publications, and internet search engines to find relevant literature on the occurrence,
concentrations, and techniques used to examine ceftriaxone in wastewater. The expressions
ceftriaxone in wastewater, ceftriaxone analysis, and ceftriaxone removal or degradation
were searched in Google Scholar, PubMed, Science Direct, Scopus, Taylor & Francis online,
Web of Science, and Wiley Online Library. The search was limited to articles written in the
English language.

2. Methods Used to Analyze Antibiotics

Various methods have been developed to detect and quantify antibiotics in various
types of samples. The referred methods include chromatographic, spectrophotometric, and
electrochemical methods [34]. High performance liquid chromatography (HPLC) is, by far,
the most extensively utilized instrumental method in pharmaceuticals analysis [35].

2.1. Chromatographic Methods

Pharmaceuticals and their metabolites have been analyzed using a variety of chromato-
graphic methods. Such methods can be used alone or hyphenated with mass spectrometry.
Mass spectrometry-based approaches, particularly liquid chromatography, coupled with
tandem mass spectrometry (LC/MS/MS) can reach extraordinarily high degrees of speci-
ficity compared with immunoassay or even chromatographic detection utilizing detectors
such as UV or fluorescence. The specificity and sensitivity of a chromatographic method
are controlled by chromatographic conditions such as choice of mobile phase and analyti-
cal column, detector, and sample preparation [36]. For antibiotic analysis, the analytical
method is selected based on the characteristics of the analyzed antibiotic, which includes
solubility in water and organic solvents or acid-base properties [37].

Thin-layer chromatography (TLC) is one of the most important analytical methods
used to determine the qualitative and semiquantitative levels of pharmaceuticals in various
types of samples [34]. TLC is usually applied as the quick, easy, and straightforward
procedure. The effective separation is determined by the sample’s properties as well as
the properties of the stationary and mobile phases [38]. TLC can successfully be used
for preliminary screening of the pharmaceutical compounds. It is commonly employed
in contemporary analysis as a separation method to determine the presence or absence
of antibiotics over a predetermined concentration level [38,39]. It can also be used to
evaluate and categorize pure and impure antibiotic preparations as well as assay antibiotics
quantitatively in bulk or pharmaceutical preparations [40,41].

Gas chromatography (GC) is a commonly used analytical technique that combines
separation chromatographic stage with measurement capacity. GC employs the gas as
the mobile phase and coating inside the long capillary column or, less typically, the tiny
particles of a solid material packed in a column as the stationary phase. The sample in GC
should be able to evaporate so that it flows with the gaseous mobile phase. The temperature
gradient to which the chromatographic column is subjected is frequently utilized to speed
up the elution of less volatile substances that would otherwise take a long time to elute.
The detector signals for the sample’s eluting components are used for quantitative and
qualitative analysis [42]. GC is a useful technique for evaluating pharmaceutically relevant
substances [43] and impurities [44]. Many pharmaceutical chemicals, however, cannot be
gas chromatographed in their natural state and must be transformed into stable and volatile
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derivatives in order to accomplish successful GC elution and separation. The derivatives
are sometimes created in order to attain the appropriate sensitivity, selectivity, or specificity
for a given separation [44,45].

High-performance liquid chromatography (HPLC) is a chromatographic technique that
can separate a mixture of substances, and it is used in biochemistry and analytical chemistry
to identify, quantify, and purify different components of the mixture [46]. HPLC employs
various types of the stationary phases, and the pump that drives the mobile phase(s) and
analyte through the column and detector to provide a characteristic retention time for the
analyte. The retention period of an analyte varies according to the strength of its interactions
with the stationary phase, solvent(s) ratio/composition utilized, and flow rate of the mobile
phase [47]. HPLC has a number of advantages, including low organic solvent utilization,
minimal sample volume, quick analysis, and high chromatographic resolution [48]. Apart
from conventional HPLC, other sophisticated HPLC-based techniques have been widely
applied for the determination of pharmaceuticals, including antibiotics in various samples.
The referred methods include liquid chromatography—mass spectrometry (LC-MS) [49,50],
ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) [51–53], and
liquid chromatography linked to tandem mass spectrometry (LC-MS/MS) [54,55].

2.2. Spectrophotometric Methods

Spectrophotometric methods are based on the creation of the complex between the
pharmaceutical and the reagent [12]. The intensity of the color is used to calculate phar-
maceutical concentration. The complex generated by the pharmaceutical and reagent can
either be charge transfer or ion-pair in nature. The charge transfer complex, also known
as the electron donor-acceptor complex, transfers a fraction of electrical charge between
molecules. Coulomb attraction holds oppositely charged ions together in solution in the
ion-pair complex [56]. Some antibiotics have been analyzed using spectrophotometric meth-
ods including amoxicillin [40], azithromycin [41,57], tetracycline, doxycycline [58], and
cefixime trihydrate [59]. They have also been used to analyze gentamicin sulfate [60], ce-
fadroxil, ceftazidime, cefazolin sodium, cefoperazone sodium, cefaclor, cephaprin sodium,
cefotaxime sodium, and cefuroxime sodium [61].

2.3. Electrochemical Methods

The measurement of the current, charge, and potential is utilized in electrochemical
techniques to characterize an analyte’s chemical reactivity and detect the concentration.
The basic electrochemical signals that serve as analytical signals constitute current, charge,
and potential [62]. These techniques include cyclic voltammetry, chronoamperometry,
electro-chemical impedance spectroscopy, and potentiometry [63]. In comparison to sep-
aration and spectral methods, electrochemical methods offer practical advantages such
as operation simplicity, satisfactory sensitivity, a wide linear concentration range, low
instrument cost, miniaturization capability, suitability for real-time detection, and less
sensitivity to matrix effects [34,64]. Due to advances in electronics and computer sci-
ences, the electroanalysis of pharmaceutically active substances is actively involved in
new study fields of various methodologies. Due to their great sensitivity and selectivity,
many innovative electroanalytical techniques have been effectively employed for trace
analyses of essential pharmaceutically active substances [65]. The electrochemical analysis
of active pharmaceuticals is based on redox processes that occur via electron transfer chan-
nels [66]. Electrochemical methods have been used for the analysis of antibiotics such as
clarithromycin and azithromycin [67], diclofenac [68], and cefixime [69].

2.4. Methods Studied for Analysis of Ceftriaxone in Aquatic and Biological Samples

Ceftriaxone levels have been estimated using a variety of techniques including HPLC,
high performance thin layer chromatography, capillary electrophoresis, and spectrophotom-
etry [37,70]. Literature shows a higher proportion of the usage of HPLC in the analysis of
ceftriaxone in the aqueous and biological samples [14]. The methods studied for the analysis
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of ceftriaxone include high-performance liquid chromatography coupled with mass spec-
trometry detection (HPLC-MS) [14,71,72], high-performance liquid chromatography with
detection by ultraviolet (HPLC-UV) [14,73–76], and high-performance liquid chromatogra-
phy coupled with sequential mass spectrometry (HPLC-MS/MS) [14,77–81]. The referred
methods studied for the analysis of ceftriaxone also include ultra-performance liquid chro-
matography with detection by ultraviolet (UPLC-UV) [14,82] and ultra-performance liquid
chromatography coupled with sequential mass spectrometry (UPLC-MS/MS) [49,83,84].
The linear range, limit of detection, and recovery of these methods are given in Table 2.

Table 2. Comparison of chromatographic methods used for determination of ceftriaxone [85].

Type of Technique Sample Used Limit of Detection
(µgL−1)

Range of Linearity
(µgL−1) % Recovery

HPLC-UV Hospital wastewater 2.0 5.0–600 152.38
HPLC-MS/MS Human plasma 3.0–300 87.35

HPLC Sterile powder for injection 20–150 99.42
HPLC Human urine 0.05 0.24–250 97.73–100.7

RP-HPLC Pharmaceutical formulation 0.51–1.54 2.5–25 >98.1

Absorption spectroscopy methods such as ultraviolet (UV) [14,86–90], infrared spec-
troscopy [14,88,90–92], spectrofluorimetry [14,93], microbiological methods [14,94,95], and
capillary zone electrophoresis [96] have also been used for the analysis of ceftriaxone. When
used as an identification technique, UV has limited selectivity because multiple compounds
may have the same or similar spectra. As a result, this technique is typically supplemented
with additional spectroscopic techniques such as IR for positive analyte confirmation [35].

3. Methods Used for Removal of Antibiotics from Wastewater

The selection of the method for wastewater treatment depends on the characteristics
of the wastewater and features such as costs, feasibility, efficiency, practicability, depend-
ability, impact on the environment, sludge production, difficulty in operation, pretreatment
demands, and the formation of potentially dangerous by-products which characterize
the relevant method [97]. The potential of various techniques to remove antibiotics from
wastewater systems has been investigated. Among those techniques are constructed
wetlands, biological treatment, advanced oxidation processes (AOPs), and membrane
technology [23].

3.1. Constructed Wetland

A constructed wetland (CW) wastewater treatment system utilizes the combined
influence of microbes, plants, and soil to remove the pollutants from wastewater. The
wastewater is treated through microbial decomposition, adsorption, plant uptake, ion
exchange, co-precipitation, and filtration [98]. The suitability of CWs for the elimination of
some pharmaceuticals and personal care products (PPCPs) has recently been studied [26].

Diclofenac, ibuprofen, naproxen, ketoprofen, salicylic acid, triclosan, sulfamethoxazole,
carbamazepine, clofibric acid, atenolol, and caffeine are some of the pharmaceuticals that
have been investigated in constructed wetlands [99,100]. The average removing efficiencies
of constructed wetlands are 93% (monensin), 89% (ofloxacin), 87% (oxytetracycline), 83%
(sulfapyridine), 80% (caffeine), 79% (salicylic acid), 72% (atenolol), 72% (furosemide), 69%
(doxycycline), 68% (codeine), 67% (diltiazem), 64% (acetaminophen), 62% (naproxen), 57%
(ibuprofen), 56% (metoprolol), and 51% (sulfadiazine) to some studied pharmaceuticals [101].
Several studies have shown that physico-chemical decomposition, photodegradation, ad-
sorption by wetland soil and plants, and biodegradation (microbial activity) comprise the
mechanisms used to remove antibiotics from wastewater in CWs [67,68]. Antibiotics can
accumulate in plants by water transport and passive absorption and high quantities of
antibiotics in water or soil can be harmful to plant development and metabolic activity [102].
Since there are very few informative publications on the decontamination of antibiotics
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using CWs, this area of research could benefit from combined support from other disciplines,
primarily soil science, botany, environmental chemistry, and chemical engineering [103].

3.2. Biological Treatment

The microorganisms utilize organic compounds and nutrients to gain energy and
build the blocks for their growth in biological treatment methods. Despite the presence of
high density and diverse consortium of microorganisms in activated sludge, antibiotics
cannot be completely removed in biological treatment methods [104]. Some reasons for
the incomplete removal of antibiotics in biological methods include relatively low concen-
tration of antibiotics in the wastewater, which leads to a lack of enzymes responsible for
antibiotic biodegradation and inhibitory or toxic properties of antibiotics that can stop the
microorganism activity responsible for antibiotic biodegradation, antibiotic properties, and
operation conditions [18]. Different biological treatment methods have been investigated in
relation to the removal of antibiotics from wastewater. For instance, using a biological aer-
ated filter system (BAF), 89–91% of nine antibiotics were removed from swine wastewater.
Those antibiotics include oxytetracycline, leucomycin, lincomycin, ofloxacin, trimethoprim,
norfloxacin, sulfamonomethoxine, sulfamethazine, and sulfachloropyridazine [105]. Using
anaerobic digestion, 65% tetracyclines and 85% of quinolones were removed from swine
wastewater after 16d hydraulic retention time (HRT) [106].

Another study indicated that the lab-scale intermittently aerated sequencing batch
reactor (IASBR) was applied to treat anaerobically digested swine wastewater. The results
from the referred study show that 87.9% tetracyclines were removed, and 96.2% sulfon-
amides were removed at about 3–5 d HRT [107]. The elimination of antibiotics using
the sequencing-batch membrane bioreactor (SMBR) was investigated for the treatment of
swine wastewater. Nine antibiotics, which were divided into sulfonamides, tetracyclines,
and fluoroquinolones, and three categories of frequently used veterinary antibiotics were
investigated. The results demonstrated that SMBR effectively removed sulfonamides and
tetracyclines (90%), whereas fluoroquinolones were removed less effectively (70%) [108].
Many antibiotics have been identified in the literature as being resistant to biodegradation.
While some antibiotics can be partially decomposed, the majority of antibiotics including
ciprofloxacin, metronidazole, ceftriaxone, ofloxacin, and trimethoprim are not biodegrad-
able [73,74]. More research is needed to understand the factors affecting the process and
possibility of improving the degradation of pharmaceuticals.

3.3. Advanced Oxidation Processes (AOP)

AOPs comprise water and wastewater treatment technologies that use powerful
oxidizing agents such as hydroxyl radical (OH•), ozone (O3), chloride (Cl−), and superoxide
radical (O2

−) [109]. The generated species react with the medium’s organic molecules [110]
to start a series of oxidation reactions until all of the components have been mineralized
to CO2 and H2O [111]. AOP methods can be divided according to the source of OH•
production with UV–hydrogen peroxide processes, with Fenton and photo-Fenton, ozone-
based processes, photocatalysis, and sonolysis being the most common [112]. Such methods
have proven to be effective at removing a wide range of contaminants in general and
antibiotics in particular [110]. Electrochemical oxidation was used to study the removal of
tetracycline (TC) antibiotics from the livestock wastewater. The electrochemical treatment
of the TC in aqueous solutions for 6 h with a Ti/IrO2 anode and Na2SO4 electrolyte resulted
in concentrations decreasing from 100 mgL−1 to less than 0.6 mgL−1 [113].

With sinusoidal alternating electro-Fenton (SAEF), the removal efficiency and the
mechanism of TC degradation were studied. According to the findings, the removal rates
of TC were 94.87% in optimal conditions [114]. A study was done to examine the efficacy
of three AOPs for removing antibiotics from wastewater: ozonation, photo-Fenton process,
and heterogeneous photocatalytic process with a TiO2 semiconductor. The ozonation
process was discovered to be effective at removing all types of antibiotics [115]. The majority
of the literature to date, however, has been devoted to bench- or pilot-scale experiments.
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The use of AOPs on a large scale is still a work in progress. The high operational cost
of AOPs, especially when compared to the conventional methods that are routinely used
today, is likely to be the greatest challenge for the development of AOPs on an industrial
scale [110]. Further research is needed to address the challenges associated with AOPs in
attempt to make the processes affordable and useful in the real wastewater treatments.

3.4. Membrane Technology

A membrane is described as a thin layer, film, or sheet that serves as a specific barrier
between two phases which may be vapor, gas, or liquid. To put it in another way, a
membrane is the boundary between two adjacent phases that function as a selective
barrier to control the movement of species between the two compartments. Membrane
technology includes the associated engineering and scientific techniques for transporting
or excluding the parts, species, or substances from membranes [116]. Ultrafiltration (UF),
electrodialysis (ED), membrane distillation (MD), microfiltration (MF), nanofiltration (NF),
particle filtration (PF), pervaporation (PV), reverse osmosis (RO), and membrane bioreactor
(MBR) are just a few of the membrane-based technologies that have been developed based
on the impurities that need to be removed and the method of application [117,118].

Various membrane technologies have been evaluated for pharmaceutical removal at
both the pilot and full-scale levels [119]. The membrane technology is preferred due to
significant reductions in equipment size, energy requirements, and low capital costs. It
has the potential to close the economic and sustainability gap with low or no chemical
usage, environmental friendliness, and ease of access for many [120]. A few studies have
investigated the removal of antibiotics from wastewater using membrane technology. For
instance, one study on wastewater treatment indicate that the rate of antibiotic removal was
87% when UV/ozone and nanofiltration were used [121]. The combination of nanofiltration
and reverse osmosis technologies was utilized to treat swine wastewater and efficiently
removed various antibiotic resistant genes [122]. As a conclusion, additional research on
the use of membrane technology to remove antibiotics from wastewater should be done.

4. Methods Studied for Removal of Ceftriaxone from Water and Wastewater

The techniques studied regarding the removal of ceftriaxone from aqueous systems
include photochemical degradation, ion ex-change, chemical oxidation, biological treat-
ment, and adsorption [123]. Table 3 summarizes some of the studies on the methods for the
removal of ceftriaxone from wastewater.

Table 3. Methods for removal of ceftriaxone from aqueous solution.

Method Results Reference

Chemical oxidation Degradation occurs through Type I and Type II mechanisms. [124]

UVC/H2O2 and UVC At a solution pH of 5 and an H2O2 concentration of 10 mg/L, the most ceftriaxone degradation
was observed. Pseudo-first- and second-order kinetics models with reaction rate constants of
0.0165 and 0.0012 min−1, respectively, better represent UVC/H2O2 and UVC processes.

[11]

O3/UV/Fe3O4@TiO2 Maximum ceftriaxone removal 92.40%
Organic carbon reduction 72.5%
Optimal conditions, time: 30 min, photocatalyst dosage: 2 g/L, pH: 9, initial ceftriaxone
concentration: 10 mg/L, and ozone dosage: 0.2 g/h)

[125]

Immobilized TiO2 and ZnO Results revealed that photodegradation using UV/TiO2 process was more effective than
photodegradation using the UV/ZnO process. Ceftriaxone photodegradation followed
pseudo-first-order kinetics in both systems.

[126]

Electrochemical in aqueous
solutions containing sodium
halides

Ceftriaxone gradually decomposes, but not fully, in the presence of fluoride ions in about 60 min
without yielding a reaction product. The electro (degradation/transformation) of ceftriaxone is
practically complete in 10 and 5 min with completion of the electro-transformation reaction,
which take 60 and 30 min, respectively. Ceftriaxone and the iodide ions formed instantaneous
interactions.

[127]

Heterogeneous catalytic AOP
γ-Fe2O3 encapsulated NaY
zeolites solid adsorbent

initial concentration of 20 mg/L, catalyst 1.17 g/L, H2O2 30 mM, and UV light, ceftriaxone may
be effectively removed within 90 min at pH 4.0. The adsorption mechanism was investigated
using the kinetic and isotherm model, and the results demonstrate that the model and data are in
good agreement.

[128]
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5. Conclusions

Despite the fact that ceftriaxone is one of the most commonly prescribed antibiotics in
health facilities, this review demonstrates that there is little information on its occurrence
in the environmental samples. Due to potential consequences of their presence in the
environment, it is necessary to examine and monitor their presence. The majority of studies
on the strategies for the degradation or removal of ceftriaxone from various samples
are based on AOPs. The most significant disadvantage of the AOP methods is their
expense, which comprise the operating and maintenance costs associated with the system’s
needs for energy and chemical reagents. Despite the evidence that some approaches
such as biological procedures cannot remove ceftriaxone, further research is needed to
study the possibilities of other alternatives such as constructed wetland systems. The
majority of the reviewed studies were conducted on a small scale in the laboratory under
controlled environments. Alternative research is required to determine the feasibility and
effectiveness of the techniques for degrading ceftriaxone in wastewater by involving the
complex mixtures of contaminants and variations in weather conditions.
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