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Hypoxia and ischemia are the main underlying pathogenesis of stroke and other

neurological disorders. Cerebral hypoxia and/or ischemia (e.g., stroke) can lead to

neuronal injury/death and eventually cause serious neurological disorders or even

death in the patients. Despite knowing these serious consequences, there are limited

neuroprotective strategies against hypoxic and ischemic insults in clinical settings.

Recent studies indicate that microRNAs (miRNAs) are of great importance in regulating

cerebral responses to hypoxic/ischemic stress in addition to the neuroprotective

effect of the δ-opioid receptor (DOR). Moreover, new discovery shows that DOR can

regulate miRNA expression and inhibit inflammatory responses to hypoxia/ischemia. We,

therefore, summarize available data in current literature regarding the role of DOR and

miRNAs in regulating the neuroinflammatory responses in this article. In particular, we

focus on microglia activation, cytokine production, and the relevant signaling pathways

triggered by cerebral hypoxia/ischemia. The intent of this review article is to provide a

novel clue for developing new strategies against neuroinflammatory injury resulting from

cerebral hypoxia/ischemia.

Keywords: brain injury, hypoxia, ischemia, microRNAs, δ-opioid receptor (DOR), neuroinflammatory response

INTRODUCTION

Neurons in the mammalian central nervous system are extremely vulnerable to deprivation of
oxygen and blood supply. Once the neurons are deprived of oxygen or blood supply, many
pathological events are triggered including inflammatory changes in the brain. In addition, local
accumulation of metabolic wastes also leads to local/regional tissue dysfunction and/or damage
(1). Moreover, the reestablishment of blood flow and/or oxygen supply further enlarges the area of
cell death and/or tissue damage secondary due to the activation of immune responses and cell death
programs (2). Although the past studies have identified numerous events/molecules that are critical
determinants of neural survival/death under hypoxic/ischemic conditions, there is still a paucity of
neuroprotective strategies against hypoxic/ischemic insults in the clinical settings. Therefore, there
is an urgent need to advance our understanding of hypoxic/ischemic process and explore various
novel therapies against the cerebral injury caused by hypoxia/ischemia.

Thus far, microRNAs (miRNAs) and DOR have been identified as key factors in regulating
neuroinflammatory and other biological processes under cerebral hypoxia and ischemia.
MicroRNAs are short RNA molecules (a class of ∼21- to 25-ribonucleotide single-strand non-
coding RNA molecules) and can be found in all eukaryote cells (3). They bind to target messenger
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RNAs (mRNAs) through base pairing with the 3′ untranslated
regions (3′-UTRs), modulating direct cleavage and/or
translational repression of target mRNAs (4). Up to now,
more than 2,000 human miRNAs have been identified (5). These
miRNAs are found to play important roles in a wide spectrum of
processes under both physiological and pathological conditions,
for example, hypoxia and ischemia. The spatiotemporal
properties of miRNA expression provide complex regulatory
networks in the mammalian cells. Thus, a better understanding
of miRNAs and their roles in repression of target mRNA and
gene silencing is warranted to unveil the potential therapeutics
against hypoxic/ischemic injury by targeting specific miRNA
molecules in the brain.

Opioid receptors belong to the large family of seven
transmembrane G protein–coupled receptors. There are three
major types of opioid receptors, the µ-, κ-, and δ-opioid
receptors (known as MOR, KOR, and DOR) (6). Although there
exists only one DOR gene, two DOR subtypes, namely, DOR1
and DOR2, are identified according to their pharmacological
attributes (7). High levels of endogenous DOR mRNA are
expressed in the brain (especially in cortex and striatum) and
dorsal root ganglion (6, 8–10). Our previous studies have
shown that DOR activation and/or overexpression induce a
protective effect against neuronal injury in hypoxic/ischemic
conditions (11, 12). Such observations were made through
serial studies on primary cultured neurons under hypoxia (13–
15), brain slices in oxygen–glucose deprivation (OGD) (16–
20), and in vivo brain exposed to cerebral hypoxia/ischemia
(21–24). Our observations on DOR neuroprotective effect
have been confirmed by other independent laboratories (25–
32). δ-opioid receptor neuroprotection is mediated by several
important pathways, including an increase in cellular antioxidant
activity and inhibition of cell death signaling. Moreover, there
is growing evidence suggesting that the DOR neuroprotection
against hypoxic/ischemic injury may be achieved by modulating
miRNAs because DOR regulates miRNA expression in different
organs such as brain, kidney, heart, and liver in hypoxia
(33–36). Therefore, it is possible to protect organs against
hypoxic/ischemic injury by targeting specific miRNA molecules
directly or indirectly through DOR signaling.

In this article, we reviewed the effects of DOR activation on
miRNAs and neuroinflammatory responses to hypoxic/ischemic
insults. First, we discussed the effect of hypoxia/ischemia on the
expression of cerebral miRNAs. Second, we summarized
the miRNA-mediated neuroinflammatory events under
hypoxic/ischemic conditions. Third, we indicated various
miRNAs involved in microglia activation, cytokine production,

Abbreviations: 3′-UTRs, 3′ untranslated regions; AD, Alzheimer disease; BBB,

Blood–brain barrier; ChIP, chromatin immunoprecipitation; DGCR8, DiGeorge

syndrome critical region 8; DOR, δ-opioid receptors; GPD1L, glycerol-3-

dehydrogenase-like 1; HIF-1, hypoxia inducible-factor 1; HRE, hypoxia-response-

element; IR, Ischemia–reperfusion; IRAK1, interleukin-1 receptor-associated

kinase 1; KOR, kappa-opioid receptor; MCAO, middle cerebral artery occlusion;

miRNAs, microRNAs; MOR, mu-opioid receptor; mRNA, messenger RNA;

OGD, oxygen–glucose deprivation; PD, Parkinson disease; pre-miRNAs, precursor

miRNAs; pri-miRNAs, primary miRNAs; RISC, RNA-induced silencing complex;

TLR4, Toll-like receptor 4; TRAF6, TNF receptor associated factor 6.

and cell signaling under hypoxia and ischemia. Fourth, we
discussed the effect of DOR activation on the miRNA expression.
Finally, we briefly commented on the potential use of circulating
miRNAs as biomarkers and possible targets for clinical treatment
against hypoxic/ischemic injury.

EFFECTS OF HYPOXIA/ISCHEMIA ON
CEREBRAL miRNA EXPRESSION

The biogenesis of miRNA in mammalian cells required multistep
process that begins with transcription of the primary miRNAs
(pri-miRNAs) by RNA polymerase II in the nucleus. MicroRNA
genes are transcribed either from introns of protein-coding
genes or by intergenic miRNAs under the control of their own
promoters (37). Primary miRNAs are cleaved bymicroprocessors
including DROSHA and DiGeorge syndrome critical region
8 (DGCR8), to produce the ∼60- to 70-nucleotide stem-
loop precursor miRNAs (pre-miRNAs). The pre-miRNAs are
then exported to the cytoplasm via exportin-5 and further
processed by Dicer. One strand of the mature miRNA is loaded
into the RNA-induced silencing complex (RISC), whereas the
remaining strand is released and degraded. Mature miRNA
guides RISC to target transcripts by sequence complementary
binding and mediates gene suppression (38). Current literature
suggests that hypoxia/ischemia can regulate miRNA expression
at various steps throughout its biogenesis pathway. For
instance, transcriptional activities of miRNA genes can be
affected by epigenetic modifications (e.g., DNA methylation and
histone modification) and/or binding of different transcriptional
factors [e.g., HIF, nuclear factor (NF-κB), and p53] that are
involved in various biological and inflammatory responses.
Hypoxia/ischemic condition also affects the expression of some
enzymes, e.g., Drosha, Dicer, and AGO2, which participate in
the regulation of pri-miRNA processing and the maturation of
various miRNAs. Finally, miRNA–RISC complex configurations
are modulated under hypoxic/ischemic conditions (39, 40).

Current research has shown that miRNAs play an important
role in response to the hypoxic/ischemic insults to the
brain, a hypoxia/ischemia–sensitive organ (34, 39–42). Indeed,
cerebral hypoxic/ischemic stress regulates miRNA expression
and significantly affects neuronal functions and survival
(Table 1). In addition, clinical studies also showed that stroke
patients had a dysregulation in global miRNA profiles several
months after the original hypoxic/ischemic insults (76, 77). It is
reported that mild/moderate hypoxic/ischemic stress may induce
cell proliferation, migration, and angiogenesis (78, 79), whereas
a severe/prolonged hypoxia/ischemic stress causes apoptosis and
necrosis. The differential cellular signaling is partially mediated
by the miRNA-induced repression of gene expression (62, 80).

Hypoxia-inducible factor 1 (HIF-1) lies at the epicenter of the
complex regulatory network that involves hundreds of protein-
coding genes and directly regulates the expression of certain
miRNAs via its transcriptional factor activity in the brain. It
is a key transcriptional factor for cerebral hypoxic/ischemic
responses (81, 82). MiR-210 was one of the first hypoxia-sensitive
miRNAs discovered as a direct transcriptional target of HIF (83).
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TABLE 1 | Hypoxia/ischemia–induced miRNA changes in the brain with defined targets.

Hypoxia/ischemia

regulated miRNAs

Species Target genes Function References

UP-REGULATED BY HYPOXIA/ISCHEMIA

miR-1 Mouse HSP70 Induce DNA fragmentation and neuronal cell apoptosis (43)

miR-27a Rat LAMP2 Influence lysosomal clearance and autophagy (44)

miR-29a Rat PUMA Maintain mitochondrial function (45)

miR-106b-5p Human, rat MCL1 Promote apoptosis and oxidative stress (46)

miR-130a Rat HOXA5 Regulate cerebral ischemia–induced blood–brain barrier permeability (47)

miR-200b Rat KLF4 Regulate microglial M1/M2 polarization (48)

miR-200c Mouse RELN Induce oxidative injury and neuronal death (49)

miR-210 Rat GR Promote hypoxia/ischemia–induced neuronal death (50)

Mouse NP1 Glutamate-mediated excitotoxicity to cortical neurons (51)

Mouse ISCU1/2 Control mitochondrial metabolism (52)

miR-215 Human KDM1B Angiogenesis, glucose metabolism, and chondroitin sulfate modification (53)

miR-365 Rat PAX6 Modulate astrocyte-to-neuron conversion (54)

miR-497 Mouse BCL2 Proapoptosis and ischemic neuronal death (55)

miR-3473b Mouse SOCS3 Promote neuroinflammation (56)

DOWN-REGULATED BY HYPOXIA/ISCHEMIA

miR-7 Mouse HERP2 Modulate astrocytic inflammatory responses (57)

Rat SNCA Improve motor and cognitive function (58)

miR-9 Mouse BCL2L11 Antineuronal apoptosis (59)

miR-21 Mouse PDCD4 Modulate oxygen–glucose deprivation and apoptotic cell death (60)

Rat FasL Modulate neuronal apoptosis and microglia activation (61)

miR-23b/27b Mouse APAF1 Antineuronal apoptosis (62)

miR-29b Human, mouse AQP4 Edema and blood–brain barrier disruption (63)

miR-122 Human G6PC3, ALDOA, CS Regulate glucose and energy metabolism (64)

miR-124 Human TEAD1, MAPK14, SERP1 Counteract prosurvival stress responses in glioblastoma (65)

miR-125b Rat TP53INP1 Inhibit neuroinflammation and apoptosis (66)

miR-135a/199a-5p Human FLAP Increase leukotriene formation (67)

miR-139-5p Rat HGTD-P Inhibit neuronal apoptosis (68)

miR-181c Rat TLR4 Modulate NF-κB activation and neuroinflammation (69)

miR-374a Human ACVR2B Modulate immune response (70)

miR-377 Rat VEGF, EGR2 Modulate cerebral inflammation (71)

miR-424 Human, mouse CDC25A, CCND1, CDK6 Neuronal apoptosis and microglia activation (72)

miR-592 Mouse NTR Antiapoptotic cell death (73)

let-7c-5p Human, mouse Caspase 3 Inhibit microglia activation (74)

let-7i Human CD86, CXCL8, HMGB1 Regulate leukocyte activation, recruitment, and proliferation (75)

These changes are summarized from the existing literature. As we indicated in the text, their changes in response to hypoxia and/or ischemia may vary, depending on the duration and

severity of stress, types of tissues, experimental objects, and so on.

HSP70, heat shock protein-70; LAMP2, lysosomal associated membrane protein 2; PUMA, BCL2 binding component 3; MCL1, myeloid cell leukemia-1; HOXA5, homeobox A5; KLF4,

Krüppel-like factor 4; RELN, reelin; GR, glucocorticoid receptor; NP1, neuronal pentraxin 1; ISCU1/2, iron–sulfur cluster assembly enzyme 1/2; KDM1B, lysine demethylase 1B; PAX6,

paired box 6; BCL2, BCL2 apoptosis regulator; SOCS3, suppressor of cytokine signaling 3; HERP2, HERPUD family member 2; SNCA, α-synuclein; BCL2L11, BCL2 like 11; PDCD4,

programmed cell death 4; FasL, Fas ligand; APAF1, apoptotic protease activating factor-1; AQP4, aquaporin-4; G6PC3, glucose-6-phosphatase catalytic subunit 3; ALDOA, aldolase,

fructose–bisphosphate A; CS, citrate synthase; TEAD1, TEA domain 1; MAPK14, MAP kinase 14; SERP1, stress-associated endoplasmic reticulum protein; TP53INP1, tumor protein

p53 inducible nuclear protein 1; FLAP, 5-lipoxygenase activating protein; HGTD-P, human growth transformation dependent protein; TLR4, Toll-like receptor 4; ACVR2B, activin-A

receptor type IIb; VEGF, vascular endothelial growth factor; EGR2, early growth response gene 2; CDC25A, cell division cycle 25A; CCND1, cyclin D1; CDK6, cyclin dependent kinase

6; NTR, neurotrophin receptor p75; CXCL8, C-X-C motif chemokine ligand 8; HMGB1, high-mobility group box 1.

Upon hypoxic exposure, miR-210 transcription is dynamically
induced through HIF-1α interaction with the hypoxia-response
element (HRE) located within its promoter region (40, 52).
Evidence indicates that HIF-1 may also contribute to the
transcriptional activation of other hypoxia-sensitive miRNAs
(e.g., miR-26, miR-181, and miR-26) through direct binding
to HREs in their respective promoter regions (83, 84). The

regulation has been confirmed by experiments including
luciferase-based promoter-reporter assays and chromatin
immunoprecipitation (ChIP) assays (83).

Several studies have attempted to summarize the complex
hypoxia/ischemia–induced miRNA alternations in the brain and
found that the hypoxic/ischemic miRNA changes are highly
variable following the different durations of hypoxia/ischemia,

Frontiers in Immunology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 421

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chen et al. DOR, microRNAs, and Neuroinflammation

the level of oxygen concentration, and the types of cell/animal
models. Different miRNAs exhibit diverse responses to different
durations of hypoxic/ischemic insults in the same brain region.
Our previous study examined the effects of hypoxia on
miRNA expression in the rat cortex. The expression of miR-
29b, miR-101b, miR-298, miR-324-3p, miR-347, and miR-466b
were significantly down-regulated following 1-day exposure to
hypoxia. However, some other miRNAs were more tolerant to
hypoxic insult. For instance, a down-regulated expression of
miR-31 and miR-186 was observed only following a continuous
5-day hypoxia exposure. The expression of miR-29a, let-7f, and
miR-511 remain unchanged until a continuous 10-day exposure
of hypoxia (34). These findings suggest that cortical miRNAs
respond differently to hypoxic stress, depending on the durations
of exposure.

Thus, the combinatorial and coordinated regulation of

miRNAs forms a complex network to regulate target genes in
response to hypoxic/ischemic insult. As illustrated in Figure 1,

many miRNAs regulate neuroinflammation events such

as microglia activation, cytokine production, and immune
cell development, as well as other biological processes
such as apoptosis, oxidative/mitochondrial reaction, and
energy balance in responding to cerebral hypoxia/ischemia
(Figure 1). For instance, the hypoxia-sensitive miR-210
is potently induced by hypoxia via an HIF-1–dependent
manner and in turn stabilizes HIF-1 by targeting glycerol-3-
dehydrogenase-like 1, forming a positive feedback regulatory
loop (85). Table 1 summarizes miRNA changes in cerebral
hypoxia/ischemia with defined target genes based on both
animal and clinical studies.

THE miRNA-MEDIATED
NEUROINFLAMMATORY EVENTS UNDER
HYPOXIA/ISCHEMIA

Hypoxic and/or ischemic injuries are well-documented entities in
the pathogenesis of cerebrovascular diseases such as stroke, and
neurodegenerative diseases, including Alzheimer’s disease (AD)
and Parkinson’s disease (PD). The effects of hypoxia/ischemia on
miRNA expression in the brain have been widely investigated in
different animal models and clinical settings. Khoshnam et al.
(86) reviewed the interplay of miRNAs in the inflammatory
processes following ischemic stroke.

Cerebral hypoxia/ischemia greatly affects key inflammatory
transcription factors including NF-κB (87). It also induces
the synthesis and release of inflammatory mediators, enzymes,
and cytokines (87, 88). On the other side, hypoxia/ischemia
can greatly alter miRNA expression. A brief summary of
hypoxia/ischemia–sensitive miRNAs and their targeting genes
involved in neuronal inflammatory and immune responses is
shown in Table 1.

MicroRNAs regulate inflammatory response by affecting
microglia activation in cerebral hypoxia/ischemia. A significant
reduction of miR-424 expression was discovered in circulating
lymphocytes of patients with ischemic stroke (72). Similar
findings are also observed inmouse plasma and brain tissues after
ischemia. In contrast, miR-424 overexpression caused G1 phase
cell-cycle arrest by translational suppression of key activators
of G1/S transition (e.g., CDC25A, cyclin D1, and CDK6)
in microglia cells, thus attenuating ischemic brain injury by
inhibiting neuronal apoptosis andmicroglia activation (72). In an

FIGURE 1 | The diverse functions of the miRNAs involved in hypoxic/ischemic responses.
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animal model of middle cerebral artery occlusion (MCAO), there
is an elevation of miR-200b expression after brain ischemia. MiR-
200b up-regulation was able to induce proneuroinflammatory
cytokine production and microglia M1 polarization via directly
targeting KLF4 (48). Similarly, let-7c-5p was significantly altered
in the plasma of patients with ischemic stroke and inMCAOmice
(74). The ischemic induction of proinflammatory mediators [e.g.,
inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-
2), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6)]
in the ischemic cortex were attenuated by the overexpression of
let-7c-5p (74). The neuroprotective effect is likely achieved by
the direct regulation of let-7c-5p on caspase 3 levels, which is
an important regulator of microglia M1/M2 polarization (89–
91). MiR-377 plays a proinflammatory role following ischemic
stroke by modulating the anti-inflammation effect of EGR2 and
the proangiogenesis effect of vascular endothelial growth factor
(VEGF) (71). Fan et al. (71) found that the level of miR-377
decreased in the rat brain after MCAO and cultured microglia
cells exposed to OGD. Furthermore, they found that miR-377
knockdown could attenuate microglia activation and the release
of proinflammatory cytokines after OGD. In addition, miR-21
can induce neuronal protection via suppression of FasL and
inhibition of microglia activation (61), whereas OGD down-
regulates miR-21 expression in rat primary microglial cells,
suggesting an up-regulation of miR-21 may induce a protective
effect against ischemic injury.

Hypoxia/ischemia–sensitive miRNAs can alter the production
of inflammatory cytokines through direct or indirect pathways.
For instance, miRNA-181c suppresses the expression of TNF-
α, a key inflammatory cytokine, by binding to the 3′-
UTR (92). Toll-like receptor 4 (TLR4) was confirmed to be
another direct target of miR-181c. Down-regulation of miR-181c
expression in primary microglia under hypoxia promoted TLR4
expression and NF-κB activation, increasing the downstream
production of proinflammatory mediators (69). MiR-125b was
also found to activate the NF-κB signals by targeting a
negative NF-κB regulator, for example, the TNF-α-induced
protein 3. On the other hand, miR-125b is a direct NF-κB
transcriptional target. Thus, there is a positive self-regulatory
loop of miR-125–NF-κB for strengthening and prolonging NF-
κB activity (93).

Ischemia–reperfusion injury resulted in a reduction of miR-
125b in rat brain and increase in protein levels of TP53INP1,
p53, cytokines IL-1β, and TNF-α (66). Two hypoxia-related
miRNAs, miR-146a and miR-155, are found to play an
important role in NF-κB–mediated inflammatory responses
following hypoxia (40, 42). Tumor necrosis factor receptor–
associated factor 6, IL-1 receptor–associated kinase 1, and TLR4
are direct target genes of miR-146a/b (94–96). Hypoxia can
promote miR-146a expression, thus down-regulating expression
of proinflammation targets (97). In rat ischemic model,
the brain and circulation miR-155 was down-regulated (98).
Reducing miR-155 facilitates the downstream proinflammatory
signaling via multiple targets including inositol phosphatase
SHIP1, MyD88, and SOCS1 required for TLR/IL-1R signaling
(99–102). In the endotoxin mouse model, Alexander et al.
(103) further confirmed the importance of exosome-delivered

miR-155 and miR-146a in regulating the immune responses;
for example, miR-146a reduced, whereas miR-155 enhanced
the inflammatory responses. There are several examples for
the miRNA-modulated production of inflammatory cytokines,
including the miR-3473b-SOCS3-iNOS/COX-2/TNF-α/IL-6 axis
in stroke pathology (56), miR-374a-ACVR2B-IL-6/IL-8 axis in
the infants with hypoxic/ischemic encephalopathy (70), and
endoplasmic reticulum stress-related miR-7-HERP2-TNF-α/IL-
1β axis in mouse astrocytes exposed to OGD insult (57).

Various studies have demonstrated that miR-210 serves
as a key mediator of hypoxia/ischemia–dependent responses.
Thus far, a complex spectrum of target genes for miR-210
has been identified. These genes are involved in angiogenesis,
cell proliferation, mitochondrial metabolism, inflammatory
response, and so on (52, 104–107). MiR-210, through HIF-
1α-dependent pathway, can modulate T-cell differentiation
in hypoxia, limit inflammatory cytokine production, and
decrease the severity of disease (108). MiR-210 also mediates
immunosuppression and immune escape under hypoxic
conditions in cancer cells (109, 110). Elevated miR-210 in
oxygen-deprived regions of tumors decreases cell susceptibility
to lysis by antigen-specific cytotoxic T lymphocytes (109). In
addition, miR-210 was shown to enhance myeloid-derived
suppressor cell–mediated T-cell suppression by targeting Arg1,
CXCL12, and IL-16 expression, thus facilitating tumor growth
by increasing arginase activity and nitric oxide production (110).
Interestingly, germline deletion of miR-210 in mice resulted
in the development of autoantibodies, whereas overexpressing
miR-210 exhibited impaired class-switched antibody responses,
expanding the immune regulatory function of miR-210 to B cell
activation and autoantibody production (111). Taken together,
these findings underscored a key regulatory role for hypoxia-
induced miR-210 in immune cell development. Apart from
well-studied miR-210, decreased expression of let-7i and miR-
17-5p were discovered in patients with acute ischemic stroke
and in animal post–hypoxia/ischemia models. Let-7i regulates
several signals involved in leukocyte activation, recruitment,
and proliferation involving of CD86 signaling in T helper cells,
high-mobility group box 1 (HMGB1) signaling, and CXCL8
signaling (75). MiR-17-5p regulates NLRP3 inflammasome
activation, caspase 1 cleavage, and IL-1β production in the rat
model of brain damage (112).

The NF-κB signaling is a key factor in inflammatory responses
and functions to modulate several hypoxic/ischemic–sensitive
miRNAs. This phenomenon has been observed in both acute
and chronic hypoxic conditions (113, 114). Systematic screening
approach was applied in identifying several NF-κB–regulated
miRNAs, including miR-146a, miR-155, miR-21, miR-130, miR-
210, and so on (94, 115–117). Researchers have discovered the
NF-κB binding sites located at the promoter regions of miR-
21, miR-130, and miR-210. Using ChIP and luciferase reporter
assays, direct interactions between NF-κB and promoters of
miR-21, miR-130, and miR-210 have been confirmed (116, 117).

In conclusion, multiple miRNAs and transcriptional
factors form positive or negative feedback regulatory
loops that actively participate in hypoxia/ischemia–induced
neuroinflammatory responses.
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δ-OPIOID RECEPTOR–INDUCED
ALTERATIONS IN miRNA EXPRESSION IN
THE BRAIN UNDER HYPOXIC CONDITION

Our recent studies and those of others have provided a strong
evidence supporting DOR-mediated neuroprotection in the
brain, especially in the cortex (7). An important aspect of the
DOR-mediated neuroprotection is its ability in maintaining
cellular ionic homeostasis. Specially, DOR activation attenuates
Na+ influx through the membrane, reduces the increase in
intracellular Ca2+, and decreases the excessive leakage of
intracellular K+ (12, 16–20). δ-opioid receptor activation reduces
hypoxic/ischemic disruption of ionic homeostasis by inhibiting
the Na+ channels and N-methyl-D-aspartate receptors (19) and
activating a PKC-dependent signaling pathway (16, 20). Another
aspect of DOR-mediated neuroprotection is the reduction of
glutamate-induced excitotoxic neuronal injury by enhancing
antioxidant ability and inhibiting caspase signaling (15, 21,
118, 119). δ-opioid receptor activation can also inhibit the
production of inflammatory cytokines in hypoxic/ischemic
conditions. In a rat model, DOR activation improved rat
survival, which is associated with a significant decrease in
release of proinflammatory molecules (e.g., TNF-α, IL-1β, and
HMGB1) (120). δ-opioid receptor activation suppressed TNF-
α expression and retinal ischemia-induced cell death (121).
Our studies discovered that DOR activation has an inhibitory
effect on hypoxia-induced increase in TNF-α in cultured rat
astrocytes (122). Moreover, DOR plays an important role in
neuroprotection against hypoxic/ischemic stress by regulating
the expression of inflammatory and anti-inflammatory cytokines
in the neonatal brain (123). The underlying mechanism is
partially mediated by Nrf-2/HO-1/NQO-1 signaling (123) and,
at least partially, involved in DOR-mediated miRNA regulation.

Recent studies demonstrated that DOR activation modulates
the expression of miRNAs in multiple organs in response
to hypoxic stress. Our serial studies demonstrated that DOR
activation has a positive or negative impact on different miRNAs
in the brain, kidney, heart, and liver in hypoxia. Usingmicroarray
and quantitative real-time polymerase chain reaction (PCR)
analysis to measure miRNA expression and applying UFP-
512, a potent and specific DOR agonist, to activate DOR in
Sprague–Dawley rats (33–36), we found that some miRNAs
significantly change their expression upon DOR activation in the
brain under normoxic condition, and such modulation becomes
more profound in hypoxic/ischemic conditions, especially after
a prolonged period. For instance, DOR activation did not alter
the brain miR-31 expression under normoxic condition, but
it led to a 50% increase in miR-31 levels after 1-day hypoxic
exposure, suggesting that DOR activation up-regulates miR-
31 in hypoxia (34), thus inhibiting proinflammatory TH1 cells
and cell glucose metabolism (124, 125). In the same animal
model, DOR activation reduced the levels of miR-347 and miR-
466b in the cortex after prolonged hypoxia as compared to
DOR activation in normoxic animals (34). Moreover, 5-day
hypoxia had no significant effect on cortical miR-21 and miR-
370 expression. However, the combination of hypoxia and DOR
activation produced a dramatic 70% suppression in both miR-21

and miR-370 levels. Moreover, cortical miR-21 and miR-370
expression remained unchanged when DOR agonist was applied
under normoxic conditions, and the regulatory effect of DOR
was shown when the animals were exposed to prolonged hypoxia
(34). Similarly, many other cortical miRNAs had a sensitive
response to DOR activation and changed their expression in
hypoxic condition, including miR-20-5p, miR-29a, miR-29b,
miR-101b, miR-186, miR-212, miR-298, miR-351, and miR-363∗

(34). The effects of DOR activation on miRNA expression after
pronged hypoxia are summarized in Figure 2.

Therefore, DOR activation can affect miRNA-mediated
neuroinflammatory responses under hypoxic/ischemic
conditions through direct or indirect pathways. The expression
of miR-21, miR-29a, and miR-29b are directly regulated
upon DOR activation and thus affecting cellular events
mediated by target genes. On the other side, DOR activation
modulates some key molecules and transcriptional factors and
affects miRNA biogenesis or cellular inflammatory responses,
eventually affecting neuronal survival/death. We have found
that DOR activation up-regulates extracellular-signal-regulated
kinase (ERK) activity, and ERK signaling mediates DOR
neuroprotection (14). ERK is found to suppress pre-miRNA
export from the nucleus to cytoplasm through phosphorylation
of exportin-5, resulting in a global reduction of pre-miRNA
loading and miRNA synthesis in cancer cells (126, 127).
The similar regulatory mechanism may exist in the brain
tissue. Besides ERK signaling, DOR activation also reduces
caspase 3 expression (21). Mounting evidence suggests that
caspase 3 is an important regulator of microglia activation
and inflammation-mediated neurotoxicity independently
from its apoptotic activity. Indeed, activated caspase 3 in
microglia was found in several neurodegenerative disease
models including PD and AD (91), partially accounting for
neuroinflammation in the neurodegenerative brains. Caspase
inhibitors can hinder microglia activation and consequently
reduce neuroinflammation (91, 128, 129). Interestingly, caspase
3 is a direct target of let-7c-5p (74), suggesting a potential
regulatory network among DOR, let-7c-5p, caspase signaling,
and microglia-mediated neuroinflammation.

POTENTIAL CLINICAL APPLICATIONS
AND THERAPEUTIC TARGETS

MicroRNAs have been implicated as an important player
in response to brain hypoxia/ischemia. Emerging evidence
shows that multiple hypoxia/ischemia–sensitive miRNAs may
serve as potential clinical biomarkers for brain injury and
the progression of neurological disorders (130). In addition,
certain circulatory miRNAs are proved to correlate with their
changes in the brain with pathological alterations (131). These
specific circulatory miRNA(s) may serve as a biomarker(s) for
neuropathological changes and the prognosis. For example, a
positive correlation between blood and brain levels of miR-
210, a master and pleiotropic miRNA sensitive to hypoxia,
was reported in patients with ischemic stroke and ischemic
mouse models. Moreover, the levels of miR-210 in stroke
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FIGURE 2 | Influences of DOR activation on miRNA expression in prolonged hypoxia.

patients with good outcomes were significantly higher than
those in patients with poor outcomes (132). Tiedt et al. (133)
identified circulating miR-125a-5p, miR-125b-5p, and miR-
143-3p as potential biomarkers for acute ischemic stroke by
RNA sequencing followed by real-time PCR validation. Liu
et al. (98) also performed brain and whole-blood miRNA
expression profiles in rat models with different neurological
disorders and identified a set of blood miRNAs (e.g., miR-298,
miR-155, and miR-362-3p) that are correlated with different
disease statuses. All these studies strongly suggest that certain
blood miRNAs can serve as biomarkers for hypoxia/ischemia–
relevant neurological diseases. Further studies on miRNAs that
respond to hypoxia/ischemia and their regulatory mechanisms
may lead to major improvements in diagnostic medicine and
disease prognosis.

A large number of mediators and intracellular signaling
are actively participating in neuroinflammatory responses to
hypoxia/ischemia. Targeting selected miRNAs that have the
capacity tomodulate these inflammatorymediators and signaling
may be potentially used to develop new therapies. For instance,
IL-10 is an anti-inflammatory molecule participating in tissue
repair and cytoprotective effects in ischemic brain tissue
(134). Interleukin 10 can be directly regulated by several
miRNAs, for example, miR-106a, miR-4661, miR-98, miR-27,
let-7, and miR-1423 post-transcriptionally (135). Moreover,
miR-21 can indirectly regulate IL-10 via down-regulation of
the IL-10 inhibitor PDCD4 [Table 1; (136)]. An interaction
between miRNAs and IL-10 has been implicated to play a
vital role in inflammatory and autoimmune diseases (137, 138).
Moreover, inhibition of miR-155 can trigger IL-10–mediated
anti-inflammatory responses, resulting in improved post-stroke
recovery (139). Furthermore, modulating miR-210 and miR-107

can result in VEGF-associated post-stroke angiogenesis and
neurogenesis, suggesting that miR-210 and miR-107 may serve
as a potential strategy for stroke treatment (140, 141).

Because DOR is neuroprotective and has a broad influence
on miRNA expression in hypoxia, it is likely to develop
new protective strategies against hypoxic/ischemic brain injury
by directly or indirectly targeting certain miRNAs. There is
a high level of endogenous DOR expression in the cortex,
striatum, temporal lobe, putamen, and caudate nucleus (6,
8–10, 142). All these brain regions are commonly attacked
by stroke and other neurodegenerative diseases. A short-term
attack, for example, acute hypoxia, may up-regulate DOR
expression (7), but prolonged hypoxia largely reduced the level
of DOR in the brain (7, 11, 14). An increase in the DOR
expression and/or activity may greatly render these brain regions
more tolerant to hypoxic/ischemic insults. Unfortunately, this
is a difficult, if not impossible, strategy for the patients at
present. Alternatively, applying specific DOR agonist, through
miRNA- and non–miRNA-mediated neuroprotection, may be
a more reliable clinical approach. However, there are still
some limitations in the clinical application of DOR agonists
because of opioid addiction/tolerance and other issues such
as low specificity of opioid ligands (6, 143). Also, chronic
opioid administration has an inhibitory effect on immune
ability, for example, immunosuppression, including antibody
production, natural killer cell activity, cytokine expression,
and phagocytic activity (144). More in-depth research on the
molecular mechanisms of DOR-mediated miRNA regulation,
including the effects of DOR on miRNA splicing and maturation
process, may lead to an alternative and reliable way for the DOR-
miRNA–mediated neuroprotection against hypoxic/ischemic
brain injury.
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