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Systemic lupus erythematosus (SLE) is a refractory autoimmune disease. Zhibai Dihuang Wan (ZDW) has frequently been used
for treating SLE in China and been proved to have a prominent role in decreasing SLE patients’ morality rate. However, the active
substances in ZDW and themolecular mechanisms of ZDW in SLE remain unclear..is study identified the bioactive compounds
and delineated the molecular targets and potential pathways of ZDW by using a network biology approach. First, we collected
putative targets of ZDW based on TCMSP, GeneCards, and STITCH databases and built a network containing the interactions
between the putative targets of ZDW and known therapeutic targets of SLE. .en, the key hubs were imported to DAVID
Bioinformatics Resources 6.7 to perform gene ontology biological process (GOBP) and pathway enrichment analysis. A total of 95
nodes including 73 putative targets of ZDW were determined as major hubs in terms of their node degree. .e results of GOBP
and pathway enrichment analysis indicated that putative targets of ZDW mostly were involved in various pathways associated
with inflammatory response and apoptosis. More importantly, eleven putative targets of ZDW (CASP3, BCL2, BAX, CYCS,
NFKB1, NFKBIA, IL-6, IL-1β, PTGS2, CCL2, and TNF-α) were recognized as active factors involved in the main biological
functions of treatment, implying the underlying mechanisms of ZDW acting on SLE. .is study provides novel insights into the
mechanisms of ZDW in SLE, from the molecular level to the pathway level.

1. Introduction

Systemic lupus erythematosus (SLE) is a prototype auto-
immune disease with a strong genetic component, charac-
terized by hyperactive T and B cells, autoantibody
production, immune complex deposition, and multiorgan
damage [1]. Given the disease’s potential to cause severe and
widespread organ damage, patients with SLE have to take on
a big financial burden and cope with intangible loss [2].
Currently, therapeutic agents for SLE patients include
hydroxychloroquine, glucocorticoids, immunosuppressive
drugs, and biological agents [3]. While the remission of the
disease’s symptoms and signs is the main goal of SLE patient
management, the minimization of drug side effects, which
include, for instance, bone marrow, hepatic and pulmonary

disorders, Cushing’s syndrome, and oculopathy, is an im-
portant aspect as well [4, 5]. Consequently, traditional
Chinese medicine (TCM), with clinical application for
thousands of years, is an attractive alternative to improve
SLE patients’ survival quality with fewer side effects [6].
Zhibai Dihuang Wan (ZDW, or Anemarrhena, Phelloden-
dron, and Rehmannia Pill) has frequently been used for
treating SLE in China and been proved to have a prominent
role in decreasing SLE patients’ morality rate [6–8]. ZDW is
composed of eight Chinese herbs, namely, Anemarrhenae
Rhizoma (AR, zh�i mŭ), Phellodendri Chinensis Cortex
(PCC, huáng băi), Rehmanniae Radix Praeparata (RRP, shú
dı̀ huáng), Rhizoma Dioscoreae (RD, sh�an yào), Cornus
officinalis (CO, sh�an zh�u yú), poria cocos (PC, fú ĺıng),
Alisma orientale (AO, zé xiè), and Cortex Moutan (CM, mŭ
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d�an pı́). ZDW exerts many effects, such as enriching yin,
subduing fire, and returning fire to its source. Meanwhile,
patterns of yin deficiency and fire exuberant are the most
typical in TCM’s view on SLE [9]. Due to its remarkable
therapeutic effects, ZDW has been made into patent pills,
which are approved by the China Food and Drug Admin-
istration (approval number Z41021904) and are widely
available in China. However, the active compounds and the
molecular mechanisms of ZDW in the treatment of SLE
remain to be elucidated. Network biology can help clarify
targets and mechanisms of TCM and translate an experi-
ence-based theory into an evidence-based one [10].

In the present study, we, respectively, collected the in-
formation of targets from active ingredients in ZDW and
related targets of SLE from several databases for the first
time. Network construction and topological structural
analysis were established, which may provide a basis for a
more comprehensive understanding of the action mecha-
nisms of ZDW in the treatment of SLE.

2. Materials and Methods

2.1. Active Compound Screening. .e entire compound data
of ZDW were retrieved from the TCM Systems Pharma-
cology Database and Analysis Platform (TCMSP, http://ibts.
hkbu.edu.hk/LSP/tcmsp.php) [11]. .e active compounds
from ZDW were first filtered by integrating oral bioavail-
ability (OB) and drug likeness (DL). Based on literature and
suggestions in TCMSP, we selected OB≥ 30% and DL≥ 0.18
as a screening threshold. .e compounds conforming to
both standards mentioned above will be preserved for
further analysis.

2.2.PutativeTargetPredictionof theCompoundswithinZDW.
.e integrative efficacy of the compounds in ZDW was
determined by analyzing the compounds and target inter-
actions obtained from the GeneCards database (https://
www.genecards.org, v4.10.0) and the STITCH database
(http://stitch.embl.de/, ver. 5.0) with the species limited as
“Homo sapiens” and the condition of high confidence (0.700)
[12, 13]. GeneCards Database is a human gene database that
provides comprehensive information on all annotated and
predicted human genes with a collection of gene-centric data
from approximately 150 web sources. .e target genes with
relevance score≥ 1 were selected for further study. STITCH
is a database to explore known and predicted interactions
between chemicals and proteins, covering 9,643,763 proteins
from 2,031 organisms. Duplications and unified names were
removed from the targets obtained from the two tools.

2.3. SLE-Associated Targets. .ere are 3 sources used for
predicting SLE-associated targets. .e first batch of genes
associated with SLE were collected from the Online Men-
delian Inheritance in Man (OMIM) database (http://www.
omim.org/, updated in May, 2019), which provides over
1,500 relevant genes assigned to the known diseases [14]..e
second source was the GeneCards database. .e targets that
belonged to the protein coding category with relevance

score≥ 1 in the GeneCards database were selected for further
study. Lastly, we collected the target genes of known drugs
for SLE from the Drugbank. Duplicate names were removed
from the targets obtained from these three tools.

2.4. Network Construction. To comprehensively understand
the molecular mechanisms of the herbs in ZDW, the
compound-target network was constructed by linking the
active compounds with their potential targets by Cytoscape
3.7.1 [15]. Given that the main function in a TCM formula is
mostly determined by the chief herbs, we focused on
studying the hub nodes in the network. A node would be
defined as a hub when the degree of the node was more than
twice the median degree of all the nodes in the same network
[16]. Hub targets and central compounds were obtained for
further analysis.

2.5. Gene Ontology Enrichment Analysis. .e gene ontology
(GO) biological process (BP) was analyzed with the limi-
tation of “Homo sapiens” to further validate whether the hub
targets are indeed a match for SLE. .e GO enrichment
analysis was performed using the functional annotation tool
of DAVID Bioinformatics Resources 6.7(https://david-d.
ncifcrf.gov/) [17]. .e terms with Expression Analysis
Systematic Explorer scores of ≤0.05 were selected for
functional annotation clustering.

2.6. Pathway Enrichment Analysis. To comprehensively
understand the molecular mechanisms of ZDW, the dom-
inating target-pathway network was constructed using
Cytoscape 3.7.1. .e significant pathways were identified by
performing enrichment analysis of the proteins by using
DAVID Bioinformatics Resources 6.7 and were extracted
from KEGG (Kyoto Encyclopaedia of Genes and Genomes,
http://www.kegg.jp). .en, we analyzed the top 10 signifi-
cant pathways and their related targets to elucidate the
molecular mechanisms.

3. Results

3.1. Identification of Active Compounds in ZDW. A total of
729 compounds in ZDW were retrieved from TCMSP,
namely, 81 in AR, 140 in PCC, 71 in RD, 226 in CO, 76 in
RRP, 34 in PC, 46 in AO, and 55 in CM. 126 compounds met
the criteria of OB≥ 30% and DL≥ 0.18 simultaneously, ac-
counting for 17% in ZDW (Table 1).

3.2. Target Prediction. Putative targets of active compounds
in ZDW were merged after they had been collected from the
GeneCards and STITCH databases. .ere were 207 putative
targets for AR, 547 for PCC, 64 for RRP, 260 for RD, 472 for
CO, 92 for PC, 71 for AO, and 546 for CM. After eliminating
the overlapping targets in the eight herbs, we considered
1,075 targets, which pertained to the herbs in ZDW as
putative targets. 41 corresponding compounds in ZDWwere
active compounds. Detailed information about active
compounds is provided in supplementary detail. 2,758 gene
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symbols were collected by the GeneCards, OMIM, and
Drugbank databases as SLE-associated targets. 466 over-
lapped targets of ZDW and SLE were obtained as potential
intersections, which corresponds with 39 active compounds.
Detailed information about overlapped targets with Uniprot
ID [18] is provided in supplementary data 2.

3.3. Compound-Target Network and Analysis. To determine
the relationship between the 39 active compounds of ZDW
with their putative targets, a compound-target (CT) network
was built (Figure 1) first. .e CT network was constructed
using the 466 drug targets, which revealed 505 nodes and
1,200 edges. In such a network, nodes with a degree greater
than twice the median are considered key nodes; accord-
ingly, 73 hub targets and 22 central compounds were ob-
tained for further study.

Among 73 hub targets, ZDW exhibited great action on
CASP3 (degree� 16), which has been identified as the ex-
ecutioner of apoptosis and the key enzyme of the apoptosis
cascade. Similarly, ZDW also strongly affected CASP9
(degree� 11) and CASP8 (degree� 10), suggestive of its
contribution to apoptosis. Beyond that ZDW could influ-
ence BCL2 (degree� 12) and BAX (degree� 12) to regulate
apoptosis. Meanwhile, ZDW also has the potential to act on
the MAP kinase family, which participates in the cellular
processes like proliferation, differentiation, and develop-
ment, such asMAPK1 (degree� 12), MAPK14 (degree� 11),
and MAPK8 (degree� 9).

.e top 5 of the 22 central compounds in ZDW are
quercetin (degree� 228), ethyl oleate (degree� 134),
(+)-catechin (degree� 129), berberine (degree� 96), and
kaempferol (degree� 76).

3.4. GO Enrichment Analysis for Targets. A GO enrichment
analysis was performed using DAVID Bioinformatics Re-
sources 6.7 to clarify the mechanism of ZDW’s main action
in SLE. 73 hub targets obtained from the CT network were
included in the GO enrichment analysis. Figure 2 lists the 10
most significantly enriched GOBP terms (p≤ 0.05). .e

results revealed that numerous targets are involved in the
regulation of apoptotic process, lipopolysaccharide (LPS),
and inflammation.

3.5. Target-Pathway Network and Analysis. .e KEGG
pathway enrichment analysis was performed with the 73 hub
targets by using the functional annotation tool of DAVID
Bioinformatics Resources 6.7. .e pathways with P val-
ue≤ 0.05 are presented in Table 2.We found ZDWacts on 16
pathways in signal transduction, such as the tumor necrosis
factor (TNF) signaling pathway. ZDW could affect the
endocrine system, immune system, nervous system, and
digestive system in SLE patients. Furthermore, ZDW also
regulates other pathways in cellular processes, development,
metabolism, and genetic information processing.

Modularity is a critical measurement for analyzing a
network. Nodes highly interconnected within a network
usually participate in the same biological modules. In terms
of functional distribution, the interaction network of the top
10 significant signaling pathways and corresponding targets
was divided into 3 modules. .e groups of the main
pathways andmodules are shown in Figure 3..emaximum
module mostly focused on inflammatory response, includ-
ing the NOD-like receptor signaling pathway, the toll-like
receptor (TLR) signaling pathway, the T-cell receptor sig-
naling pathway, the NF-κB pathway, the hypoxia inducible
factor (HIF)-1 signaling pathway, and the mitogen-activated
protein kinase (MAPK) signaling pathway. .e medium
module is related to apoptosis, including the TNF signaling
pathway, apoptosis, and the Forkhead Box O (FoxO) sig-
naling pathway. .e minimum module concerned prolactin
(PRL).

According to Table 2, the toll-like receptor signaling
pathway, the NOD-like receptor signaling pathway, and the
T-cell receptor signaling pathway are categorized in the
immune system. Immune response can be considered the
most critical mechanism of SLE. .e pathogenesis of SLE
could be characterized by a complex network of alterations
affecting both adaptive and innate immunity [19]. In the
present study, the shared targets of ZDW and SLE focused
more on the inflammation aspect of immune response, such
as the targets related to the NF-κB and MAPK signaling
pathway. Suppression of the NF-κB and MAPK signaling
pathway in SLE could reduce proinflammatory cytokine
production [20, 21]. Hypoxia is closely related to inflam-
mation as well. Extensive crosstalk exists between the HIF
pathway and the NF-κB pathway..e HIF pathway has been
identified as a possible therapeutic target for diseases in-
cluding chronic inflammation, infection, and autoimmunity
[22].

TNF signaling pathway, which has a leading position
among the 10 pathways, plays a crucial role in SLE
immunopathogenesis, as it can activate the prosurvival NF-
κB and MAPK signaling pathway and induce apoptosis and
necroptosis [23]. Apoptosis, as the core pathway in this
module, comprises both the intrinsic and extrinsic caspase
pathways with the involvement of the shared targets of SLE
and ZDW. FoxO proteins also exert great influence on the

Table 1: Compounds in ZDW that satisfied the criteria of
OB≥ 30%, DL≥ 0.18, and both.

Herbs Total OB≥ 30% DL≥ 0.18 OB≥ 30% and DL≥ 0.18
AR 81 28(35%) 48(59%) 15(19%)
PCC 140 86(61%) 70(50%) 37(26%)
RD 71 41(58%) 37(52%) 16(23%)
CO 226 102(45%) 57(25%) 20(9%)
RRP 76 25(33%) 41(54%) 2(3%)
PC 34 18(53%) 25(74%) 15(44%)
AO 46 23(50%) 26(57%) 10(22%)
CM 55 26(47%) 36(65%) 11(20%)
ZDW 729 349(48%) 340(47%) 126(17%)
AR, Anemarrhenae Rhizoma; PCC, Phellodendri Chinensis Cortex; RRP,
Rehmanniae Radix Praeparata; RD, Rhizoma Dioscoreae; CO, Cornus
officinalis; PC, poria cocos; AO, Alisma orientale; CM, Cortex Moutan;
ZDW, Anemarrhena, Phellodendron, and Rehmannia Pill; OB, oral bio-
availability; DL, drug likeness.

Evidence-Based Complementary and Alternative Medicine 3



relationship between the regulation of immune system ac-
tivity and the induction of apoptotic pathways [24].

.e minimum module is centered on the PRL signaling
pathway. PRL has an antiapoptotic effect, enhances prolif-
erative response to antigens and mitogens, and enhances the
production of immunoglobulins and autoantibodies [25]. It
has been demonstrated that hyperprolactinemia is associ-
ated with the Systemic Lupus Erythematosus Disease Ac-
tivity Index (SLEDAI) and stimulates the production of

autoantibodies..is proves that PRL plays an important role
in SLE [26].

4. Discussion

SLE is an autoimmune disease mediated by pathogenic
autoantibodies directed against nucleoprotein complexes
[27]. .erapeutic agents for SLE, including hydroxy-
chloroquine, glucocorticoids, and immunosuppressive
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Figure 1: CTnetwork. .e multicolored circles represent compounds of different herbs (purple for AR, yellow for PCC, dark blue for RRP,
cyan for CO, red for RD, pink for CM, grey for PC, and green for AO) and orange squares represent the targets of each compound. One
target can have multiple compounds and vice versa. AR, Anemarrhenae Rhizoma; PCC, Phellodendri Chinensis Cortex; RRP, Rehmanniae
Radix Praeparata; RD, Rhizoma Dioscoreae; CO, Cornus officinalis; PC, poria cocos; AO, Alisma orientale; CM, Cortex Moutan.
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Table 2: Signal pathway of ZDW’s targets.

Pathway class Pathway name ZDW’s targets on pathway

Signal transduction

TNF signaling pathway
PIK3CG, ICAM1, CFLAR, IL-6, TNF, CCL2, PTGS2, MMP9, NFKBIA,
NFKB1, MAPK10, MMP3, AKT1, VCAM1, MAPK1, FOS, CASP3, JUN,

MAPK14, CASP8, IL1B, MAPK8, FAS, CHUK

NF-kappa B signaling pathway VCAM1, ICAM1, CFLAR, TNF, PTGS2, BCL2, CXCL8, NFKBIA, IL1B,
NFKB1, TLR4, BCL2L1, CHUK

FoxO signaling pathway PIK3CG, IL-6, MAPK10, SIRT1, IL10, STAT3, AKT1, MAPK1, TNFSF10,
MAPK14, MAPK8, CAT, EGF, CHUK

HIF-1 signaling pathway PIK3CG, AKT1, MAPK1, IL-6, BCL2, VEGFA, NFKB1, TLR4, NOS3,
NOS2, EGF, STAT3

MAPK signaling pathway TNF, TP53, NFKB1, MAPK10, AKT1, MAPK1, FOS, CASP3, JUN,
MAPK14, IL1B, MAPK8, FAS, EGF, MYC, CHUK

Sphingolipid signaling pathway PIK3CG, AKT1, MAPK1, TNF, MAPK14, BAX, BCL2, TP53, NFKB1,
MAPK8, NOS3, MAPK10

VEGF signaling pathway PIK3CG, AKT1, MAPK1, CASP9, PTGS2, MAPK14, VEGFA, NOS3, SRC

PI3K-Akt signaling pathway PIK3CG, IL-6, TP53, NFKB1, TLR4, BCL2L1, CDK4, AKT1, MAPK1,
CASP9, BCL2, VEGFA, NOS3, EGF, MYC, CHUK, IL2

ErbB signaling pathway PIK3CG, AKT1, MAPK1, JUN, MAPK8, MAPK10, EGF, MYC, SRC

Ras signaling pathway PIK3CG, AKT1, MAPK1, VEGFA, NFKB1, MAPK8, BCL2L1, MAPK10,
EGF, CHUK

Jak-STAT signaling pathway PIK3CG, AKT1, IL-6, BCL2L1, MYC, IL10, STAT3, IL2

cAMP signaling pathway PIK3CG, AKT1, MAPK1, FOS, JUN, NFKBIA, NFKB1, MAPK8,
MAPK10

Rap1 signaling pathway PIK3CG, AKT1, MAPK1, MAPK14, VEGFA, EGF, SRC
mTOR signaling pathway PIK3CG, AKT1, MAPK1, TNF
AMPK signaling pathway PIK3CG, AKT1, HMGCR, PPARG, SIRT1
Wnt signaling pathway JUN, TP53, MAPK8, MAPK10, MYC

Endocrine system

Prolactin signaling pathway PIK3CG, AKT1, MAPK1, FOS, MAPK14, NFKB1, MAPK8, ESR2,
MAPK10, SRC, STAT3

Estrogen signaling pathway PIK3CG, AKT1, MAPK1, FOS, JUN, MMP9, NOS3, ESR2, MMP2, SRC

Insulin resistance PIK3CG, AKT1, IL-6, TNF, NFKBIA, NFKB1, MAPK8, NOS3, MAPK10,
STAT3

Adipocytokine signaling pathway AKT1, TNF, NFKBIA, NFKB1, MAPK8, MAPK10, CHUK, STAT3
GnRH signaling pathway MAPK1, PTK2B, MAPK14, JUN, MAPK8, MAPK10, MMP2, SRC

Progesterone-mediated oocyte
maturation PIK3CG, AKT1, MAPK1, CDK1, MAPK14, MAPK8, MAPK10

.yroid hormone signaling pathway PIK3CG, AKT1, MAPK1, CASP9, TP53, MYC, SRC
Oxytocin signaling pathway MAPK1, FOS, PTGS2, JUN, NOS3, SRC
Insulin signaling pathway PIK3CG, AKT1, MAPK1, MAPK8, MAPK10

Evidence-Based Complementary and Alternative Medicine 5



drugs, are limited due to their adverse effects [28]. ZDW has
been clinically proved effective in treating SLE and been
approved by the China Food and Drug Administration.
However, the compounds in ZDW are complicated and the
action mechanisms in SLE patients remain unclear. In the
present study, we managed to determine 22 central com-
pounds in ZDW which may exert great influence on SLE
treatment. Quercetin could ameliorate the lupus nephritis
(LN) symptoms and has renoprotective effects in the LN
mice model [29, 30]. (+)-Catechin is recognized as one of the
main compounds in green tea polyphenols, whichmight be a
new approach to manage the skin manifestation of SLE [31].
Kaempferol could prevent the progress of autoimmune
diseases like SLE by enhancing the Treg cell-suppressive
function [32]. .e hub targets of ZDW associated with SLE
are closely related to apoptosis and inflammatory response,
according to the results. Moreover, the literature presents
eleven hub targets with a definite relationship with extracts
of ZDW’s components, including CASP3 (caspase 3), BCL2
(B-cell CLL/lymphoma 2), BAX (BCL2-associated X), CYCS

(cytochrome C somatic), NF-κB, NFKBIA (NF-kappa-B
inhibitor alpha), IL(interleukin)-6, TLR4, IL-1β, PTGS2
(prostaglandin-endoperoxide synthase 2), CCL2(C-C motif
chemokine ligand 2), and TNF-α (tumor necrosis factor-
alpha). .e main biological processes related with certain
ZDW regulation are shown in Figure 4.

Patients with SLE often display a deficiency in clearing
apoptotic cells..e accumulation of postapoptotic remnants
and fragments derived from secondary necrotic cells in the
presence of autoantibodies against apoptotic cells or adaptor
molecules obliges their pathological elimination and
maintains autoinflammation, which is responsible for the
initiation of SLE [33]. .us, apoptosis is essential for the
development of SLE. Results of hub targets’ analysis found
that SLE and ZDW shared a total of 38 targets related to
apoptosis, accounting for a substantial part of the entire hub
targets. Leukocyte apoptosis is significantly higher in pa-
tients with SLE and correlates well with the levels of several
autoantibodies [34]. Caspase activation is critical in the
entire process of apoptosis, and CASP3 appears to be the

Table 2: Continued.

Pathway class Pathway name ZDW’s targets on pathway

Immune system

Toll-like receptor signaling pathway PIK3CG, IL-6, TNF, CXCL8, NFKBIA, NFKB1, TLR4, MAPK10, AKT1,
MAPK1, FOS, JUN, MAPK14, CASP8, IL1B, MAPK8, CHUK

NOD-like receptor signaling pathway IL-6, TNF, CCL2, NFKBIA, CXCL8, NFKB1, MAPK10, MAPK1,
MAPK14, CASP8, IL1B, MAPK8, CHUK

T-cell receptor signaling pathway PIK3CG, AKT1, MAPK1, FOS, TNF, MAPK14, JUN, NFKBIA, NFKB1,
CDK4, IL10, CHUK, IL2

RIG-I-like receptor signaling pathway TNF, MAPK14, CASP8, CXCL8, NFKBIA, NFKB1, MAPK8, MAPK10,
CHUK

B-cell receptor signaling pathway PIK3CG, AKT1, MAPK1, FOS, JUN, NFKBIA, NFKB1, CHUK

Chemokine signaling pathway PIK3CG, AKT1, MAPK1, CCL2, PTK2B, CXCL8, NFKBIA, NFKB1, SRC,
CHUK, STAT3

Fc epsilon RI signaling pathway PIK3CG, AKT1, MAPK1, TNF, MAPK14, MAPK8, MAPK10
Natural killer cell-mediated

cytotoxicity PIK3CG, ICAM1, MAPK1, CASP3, TNFSF10, TNF, PTK2B, FAS

Cytosolic DNA-sensing pathway IL-6, NFKBIA, IL1B, NFKB1, CHUK
Platelet activation PIK3CG, AKT1, MAPK1, MAPK14, NOS3, SRC

Nervous system

Neurotrophin signaling pathway PIK3CG, AKT1, MAPK1, MAPK14, JUN, BAX, BCL2, TP53, NFKBIA,
NFKB1, MAPK8, MAPK10

Retrograde endocannabinoid
signaling MAPK1, PTGS2, MAPK14, MAPK8, MAPK10

Cholinergic synapse PIK3CG, AKT1, MAPK1, FOS, BCL2
Inflammatory mediator regulation of

TRP channels PIK3CG, MAPK14, IL1B, MAPK8, MAPK10, SRC

Digestive system Bile secretion LDLR, HMGCR, ABCB1, NR1H4

Cellular processes

Apoptosis PIK3CG, CFLAR, TNF, CYCS, TP53, NFKBIA, NFKB1, BCL2L1, AKT1,
TNFSF10, CASP3, CASP9, BAX, BCL2, CASP8, FAS, CHUK

p53 signaling pathway CDK1, CASP3, CASP9, BAX, CYCS, CASP8, TP53, FAS, CDK4
Signaling pathways regulating
pluripotency of stem cells PIK3CG, AKT1, MAPK1, MAPK14, MYC, STAT3

Cytokine-cytokine receptor
interaction IL-6, TNFSF10, TNF, CCL2, CXCL8, IL1B, FAS, IL10, IL2

Development Osteoclast differentiation PIK3CG, TNF, PPARG, NFKBIA, NFKB1, MAPK10, AKT1, MAPK1,
FOS, MAPK14, JUN, IL1B, MAPK8, CHUK

Metabolism Metabolism of xenobiotics by
cytochrome P450 CYP3A4, CYP1A1, CYP2D6, CYP1A2

Genetic information
processing

Protein processing in endoplasmic
reticulum BAX, BCL2, MAPK8, HSPA5, MAPK10, NFE2L2
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major executioner caspase during the demolition phase of
apoptosis [35, 36]. An inhibition of the expression of CASP3
could suppress the process of apoptosis, decreasing the
postapoptotic remnants and fragments. .e extract of PCC
could attenuate CASP3 activation and has protective effects
against neuronal apoptosis [37]. BCL2 family members, like
BCL2 and BAX, could regulate apoptosis via the intrinsic
pathway [38]. Suppression of the antiapoptotic members or
activation of the proapoptotic members of the BCL2 family

leads to altered mitochondrial membrane permeability
resulting in a release of CYCS into the cytosol. Quercetin, the
shared compound of PCC and CM, could downregulate
proapoptotic proteins including BAX, CYCS, and CASP3
and upregulate the antiapoptotic protein, BCL2, via inhib-
iting the activation of the NF-κB signaling way [39]. Extract
of PCC can markedly elevate the ratio of the protein and
mRNA levels of BCL2/BAX, while remarkably decrease the
release of CYCS and the protein and mRNA expression of

TLR4
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BAX

Caspase-9

Caspase-9

Caspase-3
NF-κB

APAF1 CytoC

NF-κB

NFKBIA

IL-6

IL-1β
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MCP-1

TNF-α

Apoptosis

Inflammatory 
response

Figure 4: Illustration of crucial biological progress caused by putative targets and known therapeutic targets for SLE. BCL2, B-cell CLL/
lymphoma 2; BAX, BCL2-associated X; CYCS, cytochrome C somatic; APAF1, apoptotic peptidase activating factor 1; NF-κB, nuclear
factor-kappa B; NFKBIA, NF-kappa-B inhibitor alpha, IL-6, interleukin-6; IL-1β, interleukin 1 beta; PTGS2, prostaglandin-endoperoxide
synthase 2; CCL2, C-C motif chemokine ligand 2; TNF-α, tumor necrosis factor-alpha.
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CASP3 [40]. Extract of PC also can decrease the expression
of apoptotic protein BAX and activity of CASP3, while
enhancing the expression of antiapoptotic protein BCL2
[41]. More importantly, a decrease of BCL-2/BAX protein
ratio and activation of caspase-3 and 9 are closely related
with increased TLR4 and NF-κB expressions. .is suggests
that the TLR4/NF-κB signaling pathway could regulate
apoptosis [42]. Interestingly, ZDW in its entirety has been
shown to significantly reduce apoptotic cells via increasing
caspase-3 cleavage and improve renal function in genta-
micin-induced injury in mice [43]. However, the upstream
mechanism of ZDW’s negative apoptosis regulation remains
to be explored.

NF-κB, as a key transcription factor involved in the
regulation of immune responses and apoptosis, could
promote the inflammatory responses in the body. NFKBIA,
known as I-kappa-B-alpha (I-κBα), which inhibits the ac-
tivity of dimeric NF-kappa-B/REL complexes, has been
reported as a target for glucocorticoid-mediated immuno-
suppression [44]. It has been demonstrated that the extract
of PC can reduce the production of inflammatory mediators
by suppressing the NF-κB signaling pathway [45]. Although
all TLRs could lead to NF-κB activation, we found that ZDW
might be more sensitive to an LPS-induced TLR4/NF-κB
signaling pathway. LPS could bind the CD14/TLR4/MD2
receptor complex in many cell types, especially in mono-
cytes, dendritic cells, macrophages, and B cells, so as to
promote the secretion of proinflammatory cytokines [46].
As a receptor for LPS, the upregulation of TLR4 is re-
sponsible for the sustained activation of the cells involved in
autoantibody production [47, 48]. .e extract of RD has the
effect of downregulating the protein level of TLR4 and
suppressing the increased levels of inflammatory cytokines
[49]. Cytokines can be produced when the NF-κB signaling
pathway is activated during the progression of a direct
autoantibody-mediated tissue injury and the deposition of
complement-fixing immune complexes, inducing chronic
inflammatory response. Importantly, the activation of NF-
κB is critically responsible for the secretion of cytokines
including, IL-6, IL-1β, PTGS2, CCL2, and TNF-α [50, 51].
IL-1β and IL-6 belong to the IL family as inflammatory
cytokines and could impact on SLEDAI as inflammatory
mediators in the active stage of disease. PTGS2, known as
cyclooxygenase-2 (COX-2), is involved in the inflammation
process in LN [52]. Extract of RD could decrease proin-
flammatory cytokines such as IL-1β, IL-6, and COX-2 by
suppressing the NF-κB signaling pathway [53]. Further-
more, one finding is that the extract of CM has anti-in-
flammatory effects through the inhibition of COX-2
expression by suppressing the phosphorylation of I-κBα and
the activation of NF-κB [54]. CCL2, known as monocyte
chemoattractant protein-1(MCP-1), a key mediator in in-
flammatory processes, has a diagnostic value as a specific
marker for SLE diagnosis [55]. .e component of CM,
terpene glycoside, could reduce the proinflammatory mol-
ecules IL-6 andMCP-1 expressions [56]. TNFα, can not only
be activated by canonical NF-κB and MAPK signaling
playing a role in inflammation, but can also participate in the
derivation of inflammatory responses [57]. .e extract of

CO could attenuate TNF-α-induced NF-κB p65 transloca-
tion and suppress the expression levels of MCP-1 induced by
TNF-α [58]. In summary, ZDW may exert autoantibody
elimination by regulating apoptosis-related mechanisms and
anti-inflammation function by inhibiting the TLR4/NF-κB
signaling pathway and decreasing proinflammatory cyto-
kines in SLE.

5. Conclusions

TCM, one of the most important parts of complementary
and alternative medicine, markedly contributes to the
therapeutic action of autoimmune diseases..is study uses a
scientific approach to holistically elucidate that the phar-
macological mechanisms of ZDW in the treatment of SLE
may be associated with its involvement in apoptosis sup-
pression and anti-inflammation. Among these crucial bio-
logical functions, eleven targets were identified as key active
factors involved in the main biological processes with val-
idated evidence. However, to comprehensively understand
the mechanism of ZDW, further experimental research
needs to be undertaken to validate if ZDW treats SLE
through this mechanism as a formula.
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