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Abstract

essentiality of miRNAs.

Background: MicroRNAs (miRNAs) are a kind of small noncoding RNA molecules that are direct posttranscriptional
regulations of mRNA targets. Studies have indicated that miRNAs play key roles in complex diseases by taking part in
many biological processes, such as cell growth, cell death and so on. Therefore, in order to improve the effectiveness
of disease diagnosis and treatment, it is appealing to develop advanced computational methods for predicting the

Result: In this study, we propose a method (PESM) to predict the miRNA essentiality based on gradient boosting
machines and miRNA sequences. First, PESM extracts the sequence and structural features of miRNAs. Then it uses
gradient boosting machines to predict the essentiality of miRNAs. We conduct the 5-fold cross-validation to assess the
prediction performance of our method. The area under the receiver operating characteristic curve (AUC), F-measure
and accuracy (ACC) are used as the metrics to evaluate the prediction performance. We also compare PESM with
other three competing methods which include miES, Gaussian Naive Bayes and Support Vector Machine.

Conclusion: The results of experiments show that PESM achieves the better prediction performance (AUC: 0.9117,
F-measure: 0.8572, ACC: 0.8516) than other three computing methods. In addition, the relative importance of all features
also further shows that newly added features can be helpful to improve the prediction performance of methods.
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Background

MicroRNAs (miRNAs) are small non-coding RNAs with a
length of 22 nucleotides, which are processed from stem-
loop regions of longer RNA transcripts [1]. They bind
to the 3’ untranslated regions (UTRs) of target mRNAs
by sequence-specific base pairing to regulate the gene
expression at the post-transcriptional level [2, 3]. Stud-
ies have shown that miRNAs play crucial roles in many
biological processes, such as cell differentiation, growth,
immune reaction and death, thereby leading to a variety of
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diseases [4, 5]. For example, miR-28-5p and miR-28-3p are
down-regulated in colorectal cancer (CRC) samples com-
pared with normal colon samples [6]. Members of the let-7
family of microRNAs were significantly downregulated
in primary melanomas, and the anchorage-independent
growth of melanoma cells are also inhibited by let-7b [7].
The poor clinical features in gastric cancer are associ-
ated with the low levels of miR-34b and miR-129 expres-
sion [8]. The incidence of lymphoma is regulated by the
overexpression of miRNA hsa-mir-451a [9, 10]. Further-
more, after knocking out one or more members of a very
broadly conserved miRNA family, some abnormal phe-
notypes are observed [11]. For example, as paralogous
proteins, members of the same seed families often have
at least partially redundant functions, with severe loss-of-
function phenotypes apparent only after multiple family
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members are disrupted, which includes mmu-mir-22 [12],
mmu-mir-29 [13].

In order to systematically understand the associated
mechanisms between miRNAs and diseases, some
databases have been constructed, such as HMDD [14],
miR2Disease [15], dbDEMC [16], Oncomirdb [17]. With
these databases, some computational methods have been
proposed to identify potential miRNA-disease associa-
tions. Based on a kernelized Bayesian matrix factorization
model, Lan et al. proposed a computational method
(KBMF-MDI) to predict miRNA-diseases associations
based on known miRNA-disease associations, miRNA
sequence and disease sematic information [18]. By inte-
grating the miRNA-disease association network, miRNA
similarity network and disease similarity network, You
et al. [19] developed PBMDA to prioritize the underly-
ing miRNA-disease associations, which used a special
depth-first search algorithm in a heterogeneous network.
Luo et al. also proposed a network-based method for
drug repositioning based on similarities among drugs and
diseases [20]. DNRLMF-MDA was proposed to discover
hidden miRNA-disease associations based on known
miRNA-disease associations, miRNA similarity and dis-
ease similarity, the main feature of DNRLMF-MDA was
that it assigned higher importance levels to the observed
interacting miRNA-disease pairs than unknown pairs
[21]. Based on the inductive matrix completion model,
IMCMDA was also proposed to predict miRNA-disease
associations by integrating miRNA functional similarity,
disease semantic similarity and Gaussian interaction
profile kernel similarity [22]. Chen et al. [23] proposed a
computational model named Laplacian regularized sparse
subspace learning for miRNA-disease association pre-
diction (LRSSLMDA), which projected miRNA/disease’
statistical feature profiles and graph theoretical feature
profiles to a common subspace. MDHGI was a computa-
tional model to discover new miRNA-disease associations
based on the matrix decomposition and heterogeneous
graph inference, which integrated the predicted associ-
ation probability obtained from matrix decomposition
through a sparse learning method [24]. DLRMC was a
computational method to predict miRNA-disease asso-
ciations, based on matrix completion model with dual
Laplacian regularization (DLRMC) [25]. EDTMDA was a
computational method based on the ensemble of decision
trees, which built a computational framework by integrat-
ing ensemble learning and dimensionality reduction [26].
Based on the logistic model tree, Wang et al. proposed
a method for predicting miRNA-disease associations
(LMTRDA) [27]. Pasquier et al. proposed a method to
calculate the associations of miRNA disease pairs accord-
ing to the vector similarity of miRNAs and diseases based
on the distributional information of miRNAs and diseases
in a high-dimensional vector space [28]. RKNNMDA
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was a type of instance-based learning to predict poten-
tial miRNA-disease associations based on the k-nearest
neighbor algorithm and support vector machine (SVM)
[29]. BNPMDA was a novel computational model of
bipartite network projection for miRNA-disease associa-
tion prediction, and its main feature was that bias ratings
were constructed for miRNAs and diseases by using
agglomerative hierarchical clustering [30]. VAEMDA was
a novel miRNA-disease association prediction method
based on an unsupervised deep learning framework
with variational autoencoder [31]. Yan et al. proposed
ABMDA to predict potential miRNA-disease associa-
tions, which balanced the positive and negative samples
by performing random sampling based on k-means
clustering on negative samples [32]. Based on the k-mer
sparse matrix to extract miRNA sequence information
and deep auto-encoder neural network (AE), MLMDA
was developed to predict miRNA-disease associations
[33]. Cheng et al. also proposed a miRNA-disease asso-
ciation prediction method based on adaptive multi-view
multi-label learning(AMVML) [34]. By combined
the weighted profile and collaborative matrix fac-
torization (CMF), a new computation model logistic
weighted profile-based collaborative matrix factorization
(LWPCMEF) was developed to predict miRNA-disease
associations [35]. DBMDA was a novel computational
model for miRNA-disease association prediction, the
notable feature of this method was inferring the global
similarity from region distances based on the miRNA
sequences [36]. By combing the kernel-based nonlinear
dimensionality reduction, matrix factorization and binary
classification, a neoteric Bayesian model (KBMFMDA)
was proposed to predict miRNA-disease associations
[37]. Chen et al. also proposed a miRNA-disease asso-
ciation prediction method (NCMCMDA) based on a
neighborhood constraint matrix completion model [38].
Based on the neural inductive matrix completion with
graph convolutional networks, Li et al. also proposed
a method to predict miRNA-disease associations [39].
In addition, the matrix completion model was also
used in drug repositioning [40-43], predicting IncRNA-
disease associations [44, 45] and microbe-disease
associations [46].

Furthermore, the miRNA-target interaction was also
predicted by miRTRS based on known miRNA-target
interactions, miRNA sequences and gene sequences [47].
Bartel et al. [11] described the important biological func-
tions identified for most of the broadly conserved miR-
NAs of mammals, and they also reviewed how meta-
zoan miRNAs recognized and caused the repression of
their targets. Studies demonstrated that some miRNA
molecules were essential to the disease development [48].
Therefore, inspired by the bioinformatics development
of the protein essentiality prediction [49, 50], Gao et al.
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first proposed a computational method (miES) based
on machine learning and sequence features to iden-
tify the miRNA essentiality [51]. MiES used the miRNA
sequences and a logistic regression model for perform-
ing miRNAome-wide search for essential miRNAs. In
addition, miES further analyzed the miRNA conservation
[52], miRNA expression dataset and miRNA disease spec-
trum width (DSW) [53] to understand the important basis
for predicting the essentiality of miRNAs [54]. In addi-
tion, the sequence features also used in study of genome
[55]. The frequencies of k-mers were also used in ARP
to classify the reads into three categories [56]. In Mul-
tiMotifMaker, the position weight matrix (PWM) was a
used representation of motifs, and its 4 columns (A,C,T,G)
described the frequency of occurrence of each base at each
position [57].

However, the current development of miRNA essen-
tiality prediction method is still not good enough. Com-
plex and deeper features related to miRNAs should be
considered to improve the prediction quality of current
methods. The more effective and advanced computational
methods should also be developed to identify essential
miRNAs. Therefore, in this study we propose a com-
putational method (PESM) to predict potential essen-
tial miRNA based on the essential miRNA and non-
essential miRNAs benchmark dataset. PESM first inte-
grates more miRNA sequence features (such as 18 din-
ucleotide features : UC%, UG% and so on) as in miES.
Then PESM uses gradient boosting machines to pre-
dict the essentiality of miRNAs. In order to assess the
prediction performance of PESM and compare it with
other computational methods, we also conduct the 5-
fold cross validation (5CV). In addition, the area under
of receiver operating characteristic (ROC) curve (AUC),
accuracy (ACC) and F-measure are used as the met-
rics of all prediction methods. The competing methods
include miES, Gaussian Naive Bayes (GaussianNB) and
SVM. The experiment results of 5CV show that PESM
can obtain better prediction performance in terms of
AUC, ACC and F-measure (AUC: 0.9117, ACC: 0.8516
and F-mearsure: 0.8572) than other competing meth-
ods: miES (AUC: 0.8837, ACC: 0.8263 and F-mearsure:
0.8326), GaussianNB (AUC: 0. 8720, ACC: 0.8000 and F-
mearsure: 0.8093) and SVM (AUC: 0.8571, ACC: 0.8206
and F-mearsure: 0.8271). Comparing with miES, PESM
integrates more sequence and structural features of miR-
NAs. In addition, the gradient boosting machine model
is used to compute the predicted scores of essential miR-
NAs. By analyzing the relative importance of the fea-
tures, we can also conclude that the added new features
can represent the intrinsical characteristics of miRNAs.
Finally, the experiment results also prove that the predic-
tion ability of our method is superior to other competing
methods.
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Methods

Materials

In this study, we use the benchmark dataset of essential
miRNAs and non-essential miRNAs, which consists of the
pre-miRNA sequences and mature-miRNA sequences of
human, rat and mouse from miRbase [52]. The bench-
mark dataset includes 77 essential mice miRNAs and
the same number of non-essential miRNAs [11]. The
known essential mice miRNAs (positive samples) and
non-essential miRNAs (negative samples) were obtained
from the review paper [11]. In miES, the negative samples
were generated with two strategies: (1) the random selec-
tion; (2) the selection according to the maximum mean
AUC.

Feature set

The miRNAs are transcribed as long primary miR-
NAs, which produce miRNA precursors (pre-miRNAs) by
nuclear RNase III Drosha [58]. Then the pre-miRNAs are
cleaved into mature miRNAs [1]. All pre-miRNAs have
stem-loop hairpin structures [59]. Therefore, by consid-
ering the production process of miRNAs and the struc-
ture of pre-miRNAs, PESM uses the features of not only
mature-miRNAs but also pre-miRNAs. The selected fea-
ture set of pre-miRNA sequences and mature-miRNA
sequences has important influence on predicting the
essentiality of miRNAs. In this study, we first extract
the 14 pre-miRNA and mature-miRNA features which
include information about sequences and structures. In
addition, up to now various feature sets have been pro-
posed to study pre-miRNA and other relative predic-
tion problems. Inspired by the successful application of
dinucleotide frequency information in predicting pre-
miRNAs, we add the 18 dinucleotide frequency features
of pre-miRNAs and mature-miRNAs in this study [60].
In addition, we further add other 6 structure features of
pre-miRNAs, includes normalized base-pairing propen-
sity (P(s)), normalized base-pairing propensity divided by
its length (nP(s)), normalized Shannon entropy (Q(s)),
normalized Shannon entropy divided by its length (nQ(s)),
normalized base-pair distance(D(s)) and normalized base-
pair distance divided by its length(nD(s)) [61]. We use the
module RNALib of Vienna RNA Package to intrinsic fold-
ing quantitative measures P(S), nP(S), Q(s), nQ(s), D(s)
and nD(s) [62]. These structure features and Vienna RNA
Package have been broadly used in both miRNA predic-
tion and pre-miRNA prediction [63-65]. As a result, our
method consists of 38 features. Note that these features
also include the 14 features which are used in miES. The
more detail about the feature set is described in Table 1.

Gradient boosting regression trees
After computing the above sequence and structure features,
we take a supervised learning method named gradient
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Table 1 The feature set description
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Category Description

Number of features

Base content in pre-miRNAs
mature-miRNAs length

Base content in mature-miRNAs
non-mature-miRNAs length

Base contentin
non-mature-miRNAs

MFE and nMFE

Cleavage site base class

The content of base S in pre-miRNAs, S € {U, C, G} 3
The sequence length of mature-miRNAs 1
The content of base S in mature-miRNAs, S € {U, C, G} 3
The sequence length of non-mature-miRNAs 1

The content of base S in non-mature-miRNAs, S € {U, C, G} 3

The minimum free energy of pre-miRNA secondary structures and it is divided by its length 2

The cleavage sites are assigned into 3 classes, 1: all cleavage sites of mature-miRNAs from 1

the same pre-miRNAs are U; 0: not all cleavage sites are U; -1: all are non-U.
Dinucleotide pairs frequency in The Dinucleotide pairs SZ frequency in pre-miRNAs, S, Z € {U, C, G} 9
pre-miRNAs
Dinucleotide pairs frequency in The Dinucleotide pairs SZ frequency in mature-miRNAs, S, Z € {U, C, G} 9

mature-miRNAs

The structure feature of
pre-miRNAs

Normalized base-pairing propensity (P(s)), Normalized base-pairing propensity divided 6
by its length (nP(s)), Normalized Shannon entropy (Q(s)), Normalized Shannon entropy

divided by its length (nQ(s)), Normalized base-pair distance (D(s)), Normalized base-pair

distance divided by its length (nD(s))

boosting regression trees derived from the gradient boost-
ing machine model to predict essential miRNAs [66, 67].
This method has been successfully used in other classifi-
cation issues [68, 69]. In the common supervised learning
scenario, the sample data set can be represented by a set
containing feature vectors and labels: D = {(x;,y)}(i =
1,..,N), where N is the number of samples [70]. In this
study, x; € R? is the feature vector of the i — th miRNA,
while y; is its essentiality score. d is the dimensionality
of features. According to the gradient boosting regression
tree model, the predicted essentiality score J; of miRNA i
from its input feature vector can be calculated as follows:

K
Ji=¢@) =) fix).fi € F (1)

k=1

where K is the maximum depth of regression trees and F
is a set of functions containing the partition of the region
and score [70]. In order to learn the set of trees {f;}, the
regularized objective function is defined as follows [70]:

L) =Y Gy + Y Q(f) )
i k

where [ is a differentiable convex loss function that is used
to calculate the difference between the prediction y; and
target y;. To avoid the overfitting, the second term < is
used to control the complexity of the model. This reg-
ularized function can penalize the complicated models.
Finally, the model with simple and predictive functions
can be selected.

Since this model includes functions as parameters, it can
not use traditional optimization methods in the Euclidean
space to establish it. Instead, a new tree f; is added to the
ensemble, which optimizes the objective function and is

searched from the functional space F at each iteration ¢.
The process is defined as follows:

L = Zl(yl, “) + th Q(f)
i=1
= Zl((y,, - ) +ﬁ(x,')) + Xt: Q)
i=1

where 5/5»':) is the prediction of the i — th instance at the
t — th iteration. The model finds f; to optimize the above
objective function.

Equation (3) is still hard to optimize in the general set-
ting, so the second order Taylor expansion is used to
approximate the objective function as follows:

10 3 [1((57) st
i=1

1 t
+ thft%xi))} + ; Q)

(3)

(4)

where g; = 3A<t nl (yl, - D) and /; = aAg 1>l< zvj’,(t 1))

By removing the terms independent of f; (xl) the following
approximate objective function at step ¢ can be obtained:

n t
_ 1
L= D [gm» - zhifﬁoc,'))} rIom 6
A gradient boosting algorithm iteratively adds func-

tions that optimizes I for a number of user-specified
iterations.

In order to learn the function f; in each step, the map-
ping g : R* — {1,2,.., T} is defined to map the input to
the index of the region. The function is defined as follow:
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Je(X) = waen (6)

where w is a vector of scores in each region and g
represents the decision tree structure. Furthermore, the
function complexity was defined as follow:

T
Q(ﬂ):yT+%kaj2 )
j=1
where T is the number of trees. The parameters y and A
are used to make a balance. w? is the prediction score for
data corresponding to the j — th leaf from f;.
Then Eq(5) can be rewritten as follow:

T
— 1
"= Ya Wit Shita|w|+yT
j=1 iel; i€l;
(8)
where [; = {ilg(x;) = j} is defined as the instance set

of region j. When ¢g(x) is fixed, the optimal weight w;.k of
region j can be calculated as follows:
W Zieljgi ©)
/ Zie 5 hi + A

The optimal objective value is calculated as follow:

(Zzel gt

()
L ()_“Zzld,hﬁ yT (10)

Equation (10) is used to score the region partition spec-
ified by g. It also can find a good structure according to
the previous reference [70]. Since there can be infinitely
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many possible candidates of the tree structure, it applied
a greedy algorithm in practice [70]. The one step of the
algorithm was that splitting a leaf into two leaves. In each
round, it greedily enumerated the features and split the
feature that gives the maximum reduction calculated by
Eq. (10). The main feature of this model is the explicit
regularization term which prevents the model from over-
fitting. The detail of this model can be found in Chen
et al. [67].

Results
Performance evaluation
In order to assess the prediction performance of our
method and other computing methods, we conduct the
5CV based on the same benchmark dataset. The com-
peting methods include miES [51], GaussianNB [71] and
SVM [72, 73]. The benchmark dataset is downloaded from
miES. In each round of the 5CV, we divide the essential
miRNAs and non-essential miRNAs into the 5 sets, 4 of
which are used to train the model while the left one is used
as the testing set. We repeat the 5CV 50 times in this study.
In addition, the AUC value is used to measure the
prediction performance of computational methods. The
ROCs are drawn with TPR (true positive rate) with respect
to FPR (false positive rate) values. TPR is the fraction
of essential miRNAs that are correctly predicted, while
FPR is the fraction of non-essential miRNAs that are
incorrectly predicted. Furthermore, the F-measure and
ACC are also used to evaluate the prediction performance
of computational methods. The F-measure is calculated
from the harmonic mean of precision (P) and recall (R)
(F=2%P*R/(P+R)).

5-fold CV

1.0

0.8 4
2
& 0.6
(]
2
=
[e]
o
g 0.4 1
'_

0.2 —— PESM (AUC=0.9117)

' —— miES (AUC=0.8837)
—— Gaus_NB (AUC=0.8720)
—— SVM (AUC=0.8571)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Fig. 1 The ROC plot of the four computational methods with on the 5-fold cross validation
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Table 2 The ACC and F-measure values of four computational
methods with on the 5-fold cross validation

Method ACC F-measure
PESM 0.8516 0.8572
miES 0.8263 0.8326
GaussianNB 0.8000 0.8093
SVM 0.8206 0.8271

Comparison with other competing methods

In this study, we compare our method to other three com-
peting methods which include miES, GaussianNB and
SVM. MIES was a computational method for miRNA
essentiality prediction, which only uses sequence features
of known essential miRNAs. In addition, GaussianNB
and SVM are the typical classification models. Figure 1
plots the ROC curve and shows the AUC values of four
computational methods. In terms of AUC, our method
obtains the best prediction performance as its AUC value
is 0.9117, compared with other methods (miES: 0.8837,
GaussianNB: 0.8720 and SVM: 0.8571).

In addition, Table 2 shows the ACC and F-measure
values of four methods with the 5CV validation. We can
see from Table 2 that our method obtains the best predic-
tion performance (ACC:0.8516 and F-mearsure:0.8572),
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compared with other methods (miES (ACC:0.8263
and F-mearsure:0.8326), GaussianNB ( ACC:0.8000
and F-mearsure:0.8093) and SVM (ACC:0.8206 and
F-mearsure:0.8271)).

Relative importance of the features

In order to demonstrate the newly added features in the
prediction method, we further analyze the relative impor-
tance of all 38 features. Figure 2 plots the relative impor-
tance of the features, which is computed by the XGBoost
package. We can see from Fig. 2 that 4 newly added fea-
tures are ranked top 10 based on the relative importance,
which include %CC in mat, P(s), #Q(s) and D(s). These
4 added features rank 6, 4, 3 and 5, respectively. It also
demonstrates that the newly added features can reflect the
intrinsic characteristics of miRNAs and help improve the
performance of predicting essential miRNAs.

Parameter analysis for y, A, Kand T

In this study, we analyze four parameters, including the
regularization terms on the number of regions (y), on the
sum of squared scores (1), the maximum depth of regres-
sion trees (K) and the number of trees (7). The default
values of y, A, K and T are 0, 0.1, 6 and 1000, respectively.
We conduct the 5CV to evaluate the prediction perfor-
mance of PESM. In addition, one of four parameters is

0.14
0.12 4
0.10 1
0.08 4
0.06 4
0.04 4
0.02 4
0.00 -
B A DD F DR @ E®E @@ O @@ GG S S @ @ Nl it S 2R
FISELSLF IS LEEEELEEEE #7097 0° S EE FTFE SR
B S e R ST SR ST S S A S S A S $F G S e T ¢
SN R 0\30596’0"&(5”\9\3‘:\9"&“ VO @V e @ P N
LS < ST i it Qe g S il LG o & 0«@0\0\0\ &
<
Fig. 2 The relative importance of all 38 features. pre-miR means pre-miRNA; MIR means mature miRNA; non-MIR means non-mature-miRNA
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Table 3 The prediction performances of PESM with different
settings of A
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Table 5 The prediction performances of PESM with different
settings of T

A 0.25 0.50 0.75 1.0
AUC 09116 09116 09116 09117
A 1.25 1.50 1.75 20
AUC 0.9083 0.9041 0.9025 0.9041

analyzing while the other three parameters are set to be
the default values.

The default value of y is 0 in the XGBoost package. We
also compute the prediction performance of PESM with
the parameter y in the set 0, 0.1, 0.2 according to reference
[70]. The AUC values of our method are 0.9117, 0.9133
and 0.9100. In this study, we set the value of parameter y
to 0 based on our experiment results and the default value
in the XGBoost package.

We evaluate the prediction performance of PESM when
parameter A ranges from 0.25 to 2.0 with the increment of
0.25. We can see from Table 3 that PESM can achieve the
best prediction performance when it is set to 1.0 which is
also the default value of XGBoost package. Therefore, we
set A to 1.0 in this study.

Furthermore, in the XGBoost package, the default value
of parameter K is 6. Table 4 describes the AUC values
obtained by PESM when K ranges from 3 to 9. We can
see from Table 4 that our method can obtain the best pre-
diction performance when K is set to be 7, and obtain
reliable prediction performances when K ranges from 5
to 7. Therefore, by considering the default value in the
XGBoost package and our experiments results, we set K
to 6 in this study.

Finally, Table 5 shows the prediction performance of
PESM when the tree number T is set to 100, 500, 1000,
1500, 2000. We can see from Table 5 that PESM obtain the
reliable prediction performance when T is selected from
one of set 1000, 1500, 2000. Therefore, we also set the
default value of T to 1000 in this study.

Discussion

With the development of biotechnology, studies have
shown that miRNAs participate in many biological pro-
cesses, such as cell growth, cell death and so on. Fur-
thermore, miRNAs also play important roles in human
diseases, especially the complex diseases, such as can-
cer. Therefore, the study of miRNA and disease associa-
tions has become a main research topic in bioinformatics.

Table 4 The prediction performances of PESM with different
settings of K

K 3 4 5 6 7 8 9
AUC

09066 09067 09116 09117 09133 0.9058 0.9053

T 100 500
AUC

1000 1500 2000

0.8958 0.9068 09117 09141 09113

Based on the more systematic understanding of miRNAs,
studies further demonstrate that some miRNA molecules
are essential to the disease development. The essential
miRNAs are necessary to manifest principles of disease
mechanisms. Therefore, identifying the essential miRNAs
is very appealing.

Conclusion

In this study, we have developed a computational method
(PESM) to predict the essentiality of miRNAs. PESM
integrates the 38 sequence and structural features of miR-
NAs. Then it further uses the gradient boosting machines
to compute the predicted scores of essential miRNAs.
The experiment results with the 5-fold cross validation
show that the prediction performance of PESM is supe-
rior to other competing methods, including the state-of-
art method miES. Finally, we have analyzed the relative
importance of all features by the XGBoost package, and
the results demonstrate that the newly added features can
further improve the prediction performances.

Although our method can effectively predict the essen-
tial miRNAs and non-essential miRNAs, its limits should
be addressed in the future. First, the non-essential miR-
NAs in the current benchmark dataset are randomly
selected. Second, the more features of miRNAs also
should be designed, such as topological features of miR-
NAs. Finally, other similarity-based methods [74], collab-
orative metric learning methods [75] and deep learning
methods [76, 77] should be adopted. We would provide a
more effective computational method to predict essential
miRNAs by addressing above limitations in the future.

Abbreviations

5CV: 10-fold cross validation; ACC: Accuracy; AUC: Area under the receiver
operating curve; FPR :False positive rate; GaussianNB: Gaussian Naive Bayes;
MFE: minimum free energy; SYM: Support vector machine; TPR: True positive
rate

Acknowledgements
The authors are very grateful to the anonymous reviewers for their
constructive comments which have helped significantly in revising this work.

Authors’ contributions

GD and JW conceived the project; CY designed the experiments; and CY
performed the experiments; CY, GD and FXW wrote the paper. All authors read
and approved the final manuscript.

Funding

Publication costs are funded by National Natural Science Foundation of China
under Grant No.61962050. The authors would like to express their gratitude for
the support from the National Natural Science Foundation of China(
N0.61772552, No.61420106009, No.61832019 and No.61962050), 111 Project



Yan et al. BMC Bioinformatics (2020) 21:111

(No. B18059) and Hunan Provinvial Science and Technology Program (No.
2018WK4001).

Availability of data and materials
The datasets and source codes are available at https://github.com/
bioinfomaticsCSU/PESM.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

THunan Provincial Key Lab on Bioinformtics, School of Computer Science and
Engineering, Central South University, 932 South Lushan Rd, 410083
ChangSha, China. 2School of Computer and Information,Qiannan Normal
University for Nationalities, Longshan Road, 558000 DuYun, China. >Biomedical
Engineering and Department of Mechanical Engineering, University of
Saskatchewan, SKS7N5A9 Saskatoon, Canada.

Received: 28 November 2019 Accepted: 21 February 2020
Published online: 18 March 2020

References

1. Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function.
Cell. 2004;116(2):281-97.

2. Ambros V. micrornas: tiny regulators with great potential. Cell.
2001;107(7):823-6.

3. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded
rna. Nature. 2004;431(7006):343.

4. Wen D, Danquah M, Chaudhary AK, Mahato RI. Small molecules
targeting microrna for cancer therapy: Promises and obstacles. J Control
Rel. 2015;219:237-47.

5. ChenX, Xie D, Zhao Q, You Z-H. Micrornas and complex diseases: from
experimental results to computational models. Brief Bioinforma.
2019;20(2):515-39.

6. Almeida MI, Nicoloso MS, Zeng L, Ivan C, Spizzo R, Gafa R, Xiao L,
Zhang X, Vanninil, FaniniF, et al. Strand-specific mir-28-5p and
mir-28-3p have distinct effects in colorectal cancer cells.
Gastroenterology. 2012;142(4):886-96.

7. Schultz J, Lorenz P, Gross G, lbrahim S, Kunz M. Microrna let-7b targets
important cell cycle molecules in malignant melanoma cells and
interferes with anchorage-independent growth. Cell Res. 2008;18(5):549.

8. Tsai KW, Wu C-W, Hu L-Y, LiS-C, Liao Y-L, Lai C-H, Kao H-W, Fang W-L,
Huang K-H, Chan W-C, et al. Epigenetic regulation of mir-34b and
mir-129 expression in gastric cancer. Int J Cancer. 2011;129(11):2600-10.

9. Gorur A, Fidanci SB, Unal ND, Ayaz L, Akbayir S, Yaroglu HY, Dirlik M,
Serin MS, Tamer L. Determination of plasma microrna for early detection
of gastric cancer. Mol Biol Rep. 2013;40(3):2091-6.

10. Weidhaas J. Using micrornas to understand cancer biology. Lancet Oncol.
2010;11(2):106-7.

11. Bartel DP. Metazoan micrornas. Cell. 2018;173(1):20-51.

12. LuW, YouR, Yuan X, Yang T, Samuel EL, Marcano DC, Sikkema WK,
Tour JM, Rodriguez A, Kheradmand F, et al. The microrna mir-22 inhibits
the histone deacetylase hdac4 to promote t h 17 cell-dependent
emphysema. Nat Immunol. 2015;16(11):1185.

13. Dooley J, Garcia-Perez JE, Sreenivasan J, Schlenner SM,
Vangoitsenhoven R, Papadopoulou AS, Tian L, Schonefeldt S, Serneels
L, Deroose C, et al. The microrna-29 family dictates the balance between
homeostatic and pathological glucose handling in diabetes and obesity.
Diabetes. 2016;65(1):53-61.

14. LiY, QiuC, TuJ, GengB, Yang J, Jiang T, Cui Q. Hmdd v2. 0: a database
for experimentally supported human microrna and disease associations.
Nucleic Acids Res. 2013;42(D1):1070-4.

15. Jiang Q, Wang VY, HaoV, Juan L, Teng M, Zhang X, LiM, Wang G, LiuY.
mir2disease: a manually curated database for microrna deregulation in
human disease. Nucleic Acids Res. 2008;37(suppl_1):98-104.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34

35.

36.

37.

38.

Page 8 of 9

Yang Z, RenF, LiuC, He S, SunG, GaoQ, Yaol, Zhang Y, Miao R, Cao
Y, et al. dbdemc: a database of differentially expressed mirnas in human
cancers. In: BMC Genomics, vol. 11. BioMed Central; 2010. p. 5. https://
doi.org/10.1186/1471-2164-11-54-s5.

Wang D, GuJ, Wang T, Ding Z. Oncomirdb: a database for the
experimentally verified oncogenic and tumor-suppressive micrornas.
Bioinformatics. 2014;30(15):2237-8.

Lan W, Wang J, Li M, LiuJ, Wu F-X, Pan Y. Predicting microrna-disease
associations based on improved microrna and disease similarities.
IEEE/ACM Trans Comput Biol Bioinforma (TCBB). 2018;15(6):1774-82.
You Z-H, Huang Z-A, Zhu Z, Yan G-Y, Li Z-W, Wen Z, Chen X. Pbmda: A
novel and effective path-based computational model for mirna-disease
association prediction. PLoS Comput Biol. 2017;13(3):1005455.

LuoH, WangJ, LiM, Luo J, Peng X, Wu F-X, Pan Y. Drug repositioning
based on comprehensive similarity measures and bi-random walk
algorithm. Bioinformatics. 2016;32(17):2664-71.

Yan C, Wang J, Ni P, Lan W, Wu F-X, Pan Y. Dnrlmf-mda: predicting
microrna-disease associations based on similarities of micrornas and
diseases. [EEE/ACM Trans Comput Biol Bioinforma. 2019;16(1):233-43.
Chen X, Wang L, Qu J, Guan N-N, LiJ-Q. Predicting mirna—disease
association based on inductive matrix completion. Bioinformatics.
2018,34(24):4256-65.

Chen X, Huang L. Lrssimda: Laplacian regularized sparse subspace
learning for mirna-disease association prediction. PLoS Comput Biol.
2017;13(12):1005912.

Chen X, YinJ, QuJ, Huang L. Mdhgi: Matrix decomposition and
heterogeneous graph inference for mirna-disease association prediction.
PLoS Comput Biol. 2018;14(8):1006418.

Tang C, Zhou H, Zheng X, Zhang Y, Sha X. Dual laplacian regularized
matrix completion for microrna-disease associations prediction. RNA Biol.
2019;16(5):601-11.

Chen X, Zhu C-C, Yin J. Ensemble of decision tree reveals potential
mirna-disease associations. PLoS Comput Biol. 2019;15(7):1007209.
Wang L, You Z-H, Chen X, LiY-M, Dong Y-N, LiL-P, Zheng K. Lmtrda:
Using logistic model tree to predict mirna-disease associations by fusing
multi-source information of sequences and similarities. PLoS Comput Biol.
2019;15(3):1006865.

Pasquier C, Gardés J. Prediction of mirna-disease associations with a
vector space model. Sci Rep. 2016,6:27036.

Chen X, Wu Q-F, Yan G-Y. Rknnmda: ranking-based knn for mirna-disease
association prediction. RNA Biol. 2017;14(7):952-62.

Chen X, Xie D, Wang L, Zhao Q, You Z-H, Liu H. Bnpmda: bipartite
network projection for mirna—disease association prediction.
Bioinformatics. 2018;34(18):3178-86.

Zhang L, Chen X, Yin J. Prediction of potential mirna-disease
associations through a novel unsupervised deep learning framework with
variational autoencoder. Cells. 2019;8(9):1040.

ZhaoY, Chen X, Yin J. Adaptive boosting-based computational model
for predicting potential mirna-disease associations. Bioinformatics.
2019;35(22):4730-8.

Zheng K, You Z-H, Wang L, Zhou Y, Li L-P, Li Z-W. MImda: a machine
learning approach to predict and validate microrna—disease associations
by integrating of heterogenous information sources. J Transl Med.
2019;17(1):260.

Liang C, YuS, Luo J. Adaptive multi-view multi-label learning for
identifying disease-associated candidate mirnas. PLoS Comput Biol.
2019;15(4):1006931.

Yin M-M, CuiZ, Gao M-M, Liu J-X, Gao Y-L. Lwpcmf: logistic weighted
profile-based collaborative matrix factorization for predicting
mirna-disease associations. [EEE/ACM Trans Comput Biol Bioinforma.
2019. https://doi.org/10.1109/tcbb.2019.2937774.

Zheng K, You Z-H, Wang L, Zhou Y, Li L-P, Li Z-W. Dbmda: A unified
embedding for sequence-based mirna similarity measure with
applications to predict and validate mirna-disease associations. Mol
Ther-Nucleic Acids. 2020;19:602-11.

Chen X, LiS-X, YinJ, Wang C-C. Potential mirna-disease association
prediction based on kernelized bayesian matrix factorization. Genomics.
2020;112(1):809-19.

Chen X, Sun L-G, Zhao Y. Ncmcmda: mirna—disease association
prediction through neighborhood constraint matrix completion. Brief
Bioinforma. 2020. https://doi.org/10.1093/bib/bbz159.


https://github.com/bioinfomaticsCSU/PESM
https://github.com/bioinfomaticsCSU/PESM
https://doi.org/10.1186/1471-2164-11-s4-s5
https://doi.org/10.1186/1471-2164-11-s4-s5
https://doi.org/10.1109/tcbb.2019.2937774
https://doi.org/10.1093/bib/bbz159

Yan et al. BMC Bioinformatics

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

(2020) 21:111

LiJ, Zhang S, LiuT, Ning C, Zhang Z, Zhou W. Neural inductive matrix
completion with graph convolutional networks for mirna-disease
association prediction. Bioinformatics. 2020. https://doi.org/10.1093/
bioinformatics/btz965.

Yang M, LuoH, LiY, Wang J. Drug repositioning based on bounded
nuclear norm regularization. Bioinformatics. 2019;35(14):455-63.

LuoH, LiM, Wang S, LiuQ, LiY, Wang J. Computational drug
repositioning using low-rank matrix approximation and randomized
algorithms. Bioinformatics. 2018;34(11):1904-12.

Yang M, LuoH, LiY, Wu F-X, Wang J. Overlap matrix completion for
predicting drug-associated indications. PLoS Comput Biol. 2019;15(12)-.
https://doi.org/10.1371/journal.pcbi.1007541.

Luo H, LiM, MengyunY, Wu F-X, LiY, Wang J. Biomedical data and
computational models for drug repositioning: a comprehensive review.
Brief Bioinforma. 2019. https://doi.org/10.1093/bib/bbz176.

LuC, Yang M, LuoF, Wu F-X, LiM, PanY, LiY, Wang J. Prediction of
Incrna-disease associations based on inductive matrix completion.
Bioinformatics. 2018;34(19):3357-64.

LuC Yang M, LiM, LiY, WuF, Wang J. Predicting human Incrna-disease
associations based on geometric matrix completion. IEEE J Biomed
Health Inform. 2019. https://doi.org/10.1109/JBHI.2019.2958389.

Yan C, Duan G, Wu F, Pan'Y, Wang J. Mchmda: Predicting
microbe-disease associations based on similarities and low-rank matrix
completion. [EEE/ACM Trans Comput Biol Bioinforma. 2019. https://doi.
org/10.1109/TCBB.2019.2926716.

Jiang H, Wang J, LiM, Lan W, Wu F, PanY. mirtrs: A recommendation
algorithm for predicting mirna targets. IEEE/ACM Trans Comput Biol
Bioinforma. 2018. (https://doi.org/10.1109/TCBB.2018.2873299).
Beermann J, Piccoli M-T, Viereck J, Thum T. Non-coding rnas in
development and disease: background, mechanisms, and therapeutic
approaches. Physiol Rev. 2016,96(4):1297-325.

LiM, LiW, Wu F-X, PanY, Wang J. Identifying essential proteins based
on sub-network partition and prioritization by integrating subcellular
localization information. J Theor Biol. 2018;447:65-73.

LiG, LiM, PengW, LiY, PanY, Wang J. A novel extended pareto
optimality consensus model for predicting essential proteins. J Theor Biol.
2019;480:141-9.

Song F, CuiC, Gao L, CuiQ. mies: predicting the essentiality of mirnas
with machine learning and sequence features. Bioinformatics. 2018;35(6):
1053-4.

Kozomara A, Griffiths-Jones S. mirbase: annotating high confidence
micrornas using deep sequencing data. Nucleic Acids Res. 2013;42(D1):
68-73.

Huang Z, ShiJ, GaoY, CuiC, Zhangs, LiJ, ZhouY, CuiQ.Hmddv3.0:a
database for experimentally supported human microrna—disease
associations. Nucleic Acids Res. 2018;47(D1):1013-7.

De Rie D, Abugessaisa |, Alam T, Arer E, Arner P, Ashoor H, Astrém G,
Babina M, Bertin N, Burroughs AM, et al. An integrated expression atlas of
mirnas and their promoters in human and mouse. Nat Biotechnol.
2017;35(9):872.

Ni P, Huang N, Zhang Z, Wang D-P, Liang F, Miao Y, Xiao C-L, Luo F,
Wang J. Deepsignal: detecting dna methylation state from nanopore
sequencing reads using deep-learning. Bioinformatics. 2019;35(22):
4586-95.

Liao X, LiM, Junweil, ZouY, Wu F-X, PanY, Luo F, Wang J. Improving
assembly based on read classification. [EEE/ACM Trans Comput Biol
Bioinforma. 2020;17(1):177-88.

LiT, Zhang X, Luo F, Wu F-X, Wang J. Multimotifmaker: a multi-thread
tool for identifying dna methylation motifs from pacbio reads. [EEE/ACM
Trans Comput Biol Bioinforma. 2020;17(1):220-5.

LeeY, AhnC, Han J, ChoiH, KimJ, Yim J, Lee J, Provost P, Radmark O,
Kim S, et al. The nuclear rnase iii drosha initiates microrna processing.
Nature. 2003;425(6956):415.

Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z. The
microrna world: small is mighty. Trends Biochem Sci. 2003;28(10):534-40.
Kleftogiannis D, Theofilatos K, Likothanassis S, Mavroudi S. Yamipred: A
novel evolutionary method for predicting pre-mirnas and selecting
relevant features. IEEE/ACM Trans Comput Biol Bioinforma. 2015;12(5):
1183-92.

Loong SNK, Mishra SK. Unique folding of precursor micrornas:
quantitative evidence and implications for de novo identification. Rna.
2007;13(2):170-87.

62.

63.

64.

65.

66.

67.

69.

70.

71

72.

73.

74.

75.

76.

77.

Page 9 of 9

Hofacker IL. Vienna rna secondary structure server. Nucleic Acids Res.
2003;31(13):3429-31.

Batuwita R, Palade V. micropred: effective classification of pre-mirnas for
human mirna gene prediction. Bioinformatics. 2009;25(8):989-95.

Tseng K-C, Chiang-Hsieh Y-F, PaiH, Chow C-N, Lee S-C, Zheng H-Q,
Kuo P-L, Li G-Z, Hung Y-C, Lin N-S, et al. microrpm: a microrna prediction
model based only on plant small rna sequencing data. Bioinformatics.
2017;34(7):1108-15.

Stegmayer G, Yones C, Kamenetzky L, Milone DH. High class-imbalance
in pre-mirna prediction: a novel approach based on deepsom. IEEE/ACM
Trans Comput Biol Bioinforma (TCBB). 2017;14(6):1316-26.

Friedman J, Hastie T, Tibshirani R, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the
authors). Ann Stat. 2000;28(2):337-407.

Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In:
Proceedings of the 22nd Acm Sigkdd International Conference on
Knowledge Discovery and Data Mining. ACM; 2016. p. 785-94. https://
doi.org/10.1145/2939672.2939785.

He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. Simboost: a
read-across approach for predicting drug-target binding affinities using
gradient boosting machines. J Cheminformatics. 2017,9(1):24.

Oztirk H, Ozglr A, Ozkirimli E. Deepdta: deep drug-target binding
affinity prediction. Bioinformatics. 2018;34(17):821-9.

Chen T, He T. Higgs boson discovery with boosted trees. In: NIPS 2014
Workshop on High-energy Physics and Machine Learning. Montreal;
2015. p. 69-80.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Louppe G. Scikit-learn:
Machine learning in python. J Mach Learn Res. 2013;12(10):2825-30.
Chang C-C, Lin C-J. Libsvm: A library for support vector machines. ACM
Trans Intell Syst Technol (TIST). 2011;2(3):27.

Chen Q, Lai D, LanW, Wu X, Chen B, Chen Y-PP, Wang J. lldmsf:
Inferring associations between long non-coding rna and disease based
on multi-similarity fusion. [EEE/ACM Trans Comput Biol Bioinforma. 2019.
https://doi.org/10.1109/TCBB.2019.2936476.

Lan W, LiM, ZhaoK, LiuJ, Wu F-X, PanY, Wang J. Ldap: a web server for
Incrna-disease association prediction. Bioinformatics. 2016;33(3):458-60.
LuoH, WangJ, YanC, Li M, Fangxiang W, YiP. A novel drug
repositioning approach based on collaborative metric learning. [EEE/ACM
Trans Comput Biol Bioinforma. 2019. https://doi.org/10.1109/TCBB.2019.
2926453.

KongY, GaoJ, XuY, PanY, Wang J, Liu J. Classification of autism
spectrum disorder by combining brain connectivity and deep neural
network classifier. Neurocomputing. 2019;324:63-68.

An'Y, Huang N, Chen X, Wu F, Wang J. High-risk prediction of
cardiovascular diseases via attention-based deep neural networks.
|IEEE/ACM Trans Comput Biol Bioinforma. 2019. https://doi.org/10.1109/
TCBB.2019.2935059.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1093/bioinformatics/btz965
https://doi.org/10.1093/bioinformatics/btz965
https://doi.org/10.1371/journal.pcbi.1007541
https://doi.org/10.1093/bib/bbz176
https://doi.org/10.1109/JBHI.2019.2958389
https://doi.org/10.1109/TCBB.2019.2926716
https://doi.org/10.1109/TCBB.2019.2926716
https://doi.org/10.1109/TCBB.2018.2873299
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TCBB.2019.2936476
https://doi.org/10.1109/TCBB.2019.2926453
https://doi.org/10.1109/TCBB.2019.2926453
https://doi.org/10.1109/TCBB.2019.2935059
https://doi.org/10.1109/TCBB.2019.2935059

	Abstract
	Background
	Result
	Conclusion
	Keywords

	Background
	Methods
	Materials
	Feature set
	Gradient boosting regression trees

	Results
	Performance evaluation
	Comparison with other competing methods

	Relative importance of the features
	Parameter analysis for , , K and T
	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

