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ABSTRACT

Background: In meta-analysis, the normal distribution assumption has been adopted in most systematic reviews of random-
effects distribution models due to its computational and conceptual simplicity. However, this restrictive model assumption is
possibly unsuitable and might have serious influences in practices.

Methods: We provide two examples of real-world evidence that clearly show that the normal distribution assumption is explicitly
unsuitable. We propose new random-effects meta-analysis methods using five flexible random-effects distribution models that
can flexibly regulate skewness, kurtosis and tailweight: skew normal distribution, skew t-distribution, asymmetric Subbotin
distribution, Jones–Faddy distribution, and sinh–arcsinh distribution. We also developed a statistical package, flexmeta, that can
easily perform these methods.

Results: Using the flexible random-effects distribution models, the results of the two meta-analyses were markedly altered,
potentially influencing the overall conclusions of these systematic reviews.

Conclusion: The restrictive normal distribution assumption in the random-effects model can yield misleading conclusions. The
proposed flexible methods can provide more precise conclusions in systematic reviews.
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INTRODUCTION

In meta-analysis in medical studies, random-effects models have
been the primary statistical tools for quantitative evaluation of
treatment effects that account for between-studies heterogene-
ity.1,2 Conventionally, the normal distribution assumption has
been adopted in most systematic reviews due to its computational
and conceptual simplicity.2,3 However, the shape of the random-
effects distribution reflects how the treatment effects parameters
(eg, mean difference, log relative risk) are distributed in the target
population, and are directly associated with the fundamental
heterogeneity of treatment effects. If the normal distribution
assumption diverges drastically from the true heterogeneous
structure, the overall results of the meta-analyses may be
misleading. In addition, in recent studies, prediction intervals
have been gaining prominence in meta-analyses as a means to
quantify heterogeneity and effectiveness in real-world uses of the
treatment.4,5 Because the prediction interval is constructed by the
estimated random-effects distribution, it should be directly
influenced by the form of the distribution assumptions.

Several papers have discussed the flawed uses of the normal
distribution model in meta-analyses6–11 involving alternative
effective modelling strategy to handle outliers. Baker and

Jackson9 discussed the use of several non-normal random-effects
distributions to handle outliers in meta-analyses; for example,
t-distribution and Subbotin distribution. Lee and Thompson6 also
discussed Bayesian approaches using flexible skewed normal and
t-distributions of Fernandez and Steel.12 In addition, Baker and
Jackson10 proposed direct marginal modelling approaches of the
study-specific true underling effects that can express skewed
distributions and do not require numerical integrations for the
likelihood-based inferences. However, to date there are still
limited methods to address this relevant issue, especially to
handle skewness, kurtosis, and tailweight of the random-effects
distributions flexibly. Also, there are only limited useful statistical
packages that can be handled by non-statisticians; for example,
although the R package metaplus13 can handle several non-
normal distributions, it is only limited to t-distribution and normal
mixture distribution. Particularly, the well-established Azzalini’s
skew normal distribution and related families14 have not been
discussed in the meta-analysis methodology.

In this article, we propose random-effects meta-analysis
methods with flexible distribution models that can flexibly
express skewness, kurtosis, and tailweight: (1) skew normal
distribution,14,15 (2) skew t-distribution,14,16 (3) asymmetric
Subbotin distribution,14,17 (4) Jones–Faddy distribution,18 and
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(5) sinh–arcsinh distribution.19 Via application of these five
flexible random-effects distribution models to two recently
published systematic reviews,20,21 we will demonstrate that the
overall conclusions and interpretations of meta-analyses can be
dramatically altered if the normal distribution assumption is not
suitable. In addition, we provide a new R package, flexmeta, that
can perform meta-analysis with simple code using the flexible
random-effects distributions. We will explicitly show that the
implicit uses of the normal distribution assumption might yield
misleading results, and that our flexible alternative distributions
may provide more valid conclusions for health technology
assessments and policy making.

METHODS

Descriptions of two motivating meta-analyses
We searched for recently published systematic reviews in leading
medical journals (eg, BMJ, JAMA), and found two examples20,21

that clearly demonstrated the unsuitability of the normal
distribution assumption. The first example is a meta-analysis
by Rubinstein et al20 assessing the benefits and harms of
spinal manipulative therapy (SMT) for the treatment of chronic
lower back pain. In Figure 1A, we present a forest plot of
their meta-analysis of 23 randomized controlled trials assessing
the reduction of pain at 1 month (0–100; 0 = no pain, 100 =
maximum pain) for SMT (N = 1,629) versus recommended
therapies (N = 1,526). The effect measure was the mean
difference (MD). Using the ordinary random-effects meta-
analysis method based on the normal random-effects distribution,
we identified a substantial heterogeneity of the treatment effects,
I2 = 92%, τ2 = 112.20 (P < 0.01; Cochrane’s Q-test). The
between-studies heterogeneity should be addressed in synthesis
analysis. However, most of the MD estimates fell within
relatively narrow range around the mean, although a small
number exhibited larger effect sizes. This might imply that
the true MD distribution is a skewed, heavy-tailed, and sharp
distribution. Although the average MD was estimated as −3.17
(95% confidence interval [CI], −7.85 to 1.51) using the
DerSimonian-Laird method,3 the point and interval estimates
depend on the normal distribution assumption.

The second example is a meta-analysis by Koutoukidis et al21

aimed at estimating the association of weight loss interventions
with biomarkers of liver disease in nonalcoholic fatty liver
disease. In Figure 1B, we also present a forest plot of their meta-
analysis of 25 randomized controlled trials that assess the weight
loss (kg) for more-intensive weight loss interventions (N = 1,496)
versus no or lower-intensity weight loss interventions (N =
1,062). Again, the effect measure was the MD, and we identified
a substantial heterogeneity of the treatment effects: I2 = 95%,
τ2 = 12.45 (P < 0.01; Cochrane’s Q-test). In this case, the MD
estimates were not symmetrically distributed, and a certain
number of trials exhibited a larger intervention effect than the
average MD of −3.51 (95% CI, −5.03 to −2.00). Thus, the true
MD distribution would be a skewed, heavy-tailed distribution. In
particular, in predicting the intervention effect of a future trial,
the normal distribution model would not suitably fit this dataset.
Although the ordinary 95% Higgins–Thompson–Spiegelhalter
(HTS) prediction interval5 was (−11.02 to 3.99), it might not
express the true nature of the intervention effects in the target
population.

The flexible random-effects distribution models
To address the restriction problem of the normal distribution, we
propose random-effects meta-analysis methods using five flexible
random-effects distribution models based on Bayesian method-
ology. For the notation, we consider that there are K studies to be
synthesized, and that Yi (i = 1, 2,…, K ) is the estimated treatment
effect measure in the ith study, eg, mean difference, odds ratio,
and hazard ratio; the ratio measures are typically transformed to
logarithmic scales. The random-effects models considered here2,3

are then defined as

Yi � Nð�i; �2i Þ ð�Þ
�i � Fð�Þ

where θi is the true effect size of the ith study, and �2i is the
within-studies variance, which is usually assumed to be known
and fixed to valid estimates. Note that the normal likelihood
model adopts a large sample approximation, and it is possibly a
substantial limitation of this model; however, the source codes for
the flexmeta package are available at the Github site (https://
github.com/nomahi/flexmeta), and users can customize the
likelihood models freely. Also, F(θ) corresponds to the random-
effects distribution that expresses the heterogeneous probability
distribution of θi. For the conventional normal-normal random-
effects model, F(θ) corresponds to a normal distribution. The
predictive interval for future study4 is substantially constructed
based on the random-effects distribution F(θ). To overcome the
limitations on the expressive ability of the normal distribution,
our proposal is to adopt alternative flexible probability
distributions.

Currently, due to developments in statistical distribution
theory, various flexible probability distributions are available.14

Here, we chose five representatives of the newest recently
developed distributions. In Figure 2, we present some examples
of these five distributions and their ability to express various
shapes. Their mathematical details are presented in eAppendix 1
at Journal of Epidemiology online; here, we describe them in a
non-technical manner.

Skew normal distribution SN(ξ,ω,α)
The skew normal distribution14,15 is a generalized version of the
conventional normal distribution that allows for skewness. ξ is the
location parameter that regulates the center location, and ω is the
scale parameter that regulates the dispersion of the distribution;
we use these notations similarly for the following four
distributions as well; in the graphical displays in Figure 2, we
set these parameters to ξ = 0 and ω = 1, consistently. Also, α
is the skewness parameter that adjusts the skewness, and the
distribution is positively (negatively) skewed for α > 0 (α < 0).
When α = 0, it accords to a normal distribution N(ξ,ω). In
Figure 2A, we present probability density functions of the skew
normal distribution with α = 0, 1, 2, 4, 6, 8. It can flexibly express
skew-shaped distributions, but has limitations in expressing
kurtosis and tailweight.

Skew t-distribution ST(ξ,ω,ν,α)
The skew t-distribution16 is also a generalized version of the
conventional Student t-distribution that allows for skewness. The
t-distribution can express heavy tailweight and kurtosis relative to
the normal distribution via varying the degree of freedom ν (> 0).
In this case, α is the skewness parameter; the distribution is
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positively (negatively) skewed for α > 0 (α < 0). Also, for α = 0,
it accords to the ordinary t-distribution. In Figure 2B and
Figure 2C, we present the skew t-distribution with α = 1, 2, 4,
5, 10, 20 with ν = 2, 8. The skew t-distribution can express
flexible shapes by controlling the degree of freedom, relative to the
skew normal distribution, especially for kurtosis and tailweight.

Asymmetric Subbotin distribution (Type II)
AS2(ξ,ω,ν,α)
Subbotin22 proposed a symmetric probability distribution that can
flexibly regulate the kurtosis and tail thickness; it involves
a double exponential and trapezoidal-shaped distributions as

special cases. Baker and Jackson9 proposed to use the Subbotin
distribution for meta-analyses. An extended version of this
distribution is the asymmetric Subbotin distribution of type II
(AS2).14,17 We present some examples of the AS2 distribution in
Figure 2D and Figure 2E, which clearly display its flexible
expression ability. α is the skewness parameter, and ν (> 0) is the
degree of freedom that regulates the kurtosis. The distribution
is positively (negatively) skewed for α > 0 (α < 0), and more
kurtosed for smaller ν.

Jones–Faddy distribution JF(ξ,ω, a, b)
Jones and Faddy18 proposed another skewed version of the

Figure 1. Forest plots for the two motivating examples: (A) meta-analysis of chronic low back pain20 and (B) meta-analysis of
nonalcoholic fatty liver disease21
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t-distribution. The Jones–Faddy distribution regulates the
skewness and kurtosis by two parameters, a (> 0) and b (> 0);
ξ and ω are the location and scale parameters. Some examples are
provided Figure 2F and Figure 2G, some examples are provided.
This distribution is positively (negatively) skewed for a > b
(a < b). Also, it reduces to t-distribution for a = b, with a + b
degrees of freedom. It can also flexible express various skewed,
sharp, and heavy-tailed distributions by regulating the four
parameters.

Sinh–arcsinh distribution SAS(ξ,ω,δ, 7)
Jones and Pewsey19 proposed a flexible unimodal four-parameter
distribution that is induced by sinh–arcsinh (SAS) transformation.
The SAS distribution can express symmetric and skewed shapes
with heavy and light tailweight. In Figure 2H and Figure 2I,
several examples are presented. ξ and ω are the location and scale
parameters, δ (> 0) is the kurtosis parameter, and � is the
skewness parameter. This distribution is positively (negatively)
skewed for � > 0 (� < 0). The kurtosis is regulated by δ. It can

express various skew t-distributions with quite sharp and gently
sloped shapes with various degrees of skewness.

Methods for the treatment effect estimation and
prediction
For the random-effects model (+), we can adopt the flexible
distribution models for the random-effects distribution F(θ). The
average treatment effect can be addressed as the mean μ of F(θ).
As in the conventional DerSimonian-Laird-type normal-normal
model, the parameters of F(θ) can be estimated by frequentist
methods (eg, the maximum likelihood estimation), but in
many cases, they require complex numerical integrations; the
computations of CIs and P-values also have computational
difficulties. Besides, through Bayesian approaches, we can
compute posterior distributions of the mean parameter using a
unified Markov Chain Monte Carlo (MCMC) framework.23,24 In
addition, under the Bayesian framework, we can directly assess
the predictive distribution of the treatment effect for a future study
by the posterior predictive distribution.5 When using the flexible

Figure 2. Flexible models for the random-effects distribution: (A) skew normal distribution; (B), (C) skew t-distribution; (D), (E)
AS2 distribution; (F), (G) Jones–Faddy distribution; (H), (I) sinh–arcsinh distribution
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parametric distributions, we can directly assess the nature and
degree of heterogeneity using the predictive distribution. The
variance of these distributions can be similarly defined for these
distributions, but might not be properly interpreted as a dispersion
parameter for skewed distributions. For these flexible skewed
distributions, the predictive distributions can be directly used as a
heterogeneity measure. Also, if we assume a non-informative prior
distribution, the posterior inference can be substantially equivalent
to the frequentist inference. We adopted vague priors for all
model parameters in the random-effects distribution models. For
comparisons of competing models, we can use model assessment
criteria of Bayesian statistics (eg, the deviation information
criterion [DIC]).25 These computations can be easily performed
by simple commands using the R package flexmeta (available
at https://github.com/nomahi/flexmeta). The methodological
details for the Bayesian modelling are presented in eAppendix 1.

Applications to the two meta-analyses
We applied the flexible random-effects models to the two meta-
analysis datasets described above. As reference methods, we also
conducted the same analyses using the normal and t-distribution
models. We used R ver. 3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria) and the flexmeta package for the
statistical analyses; to implement MCMC, we used RStan
ver. 2.19.2.26 After 10,000 warm-ups, 250,000 samples were
used for the posterior inferences and prediction. The 95% credible
intervals (CrI) and predictive intervals (PI) were calculated using
the posterior samples of the mean of F(θ) and the predictive
distribution of the effect of a future study θnew ∼ F(θ) from
MCMC. To evaluate the impacts of adopting the flexible
distribution models rather than the ordinary normal distribution,
we present graphical displays of the posterior and predictive
distributions. In addition, we assessed model adequacies by DIC.

RESULTS

In Table 1A, we present the summary of the posterior
distributions for the mean μ of the random-effects distributions.
For the first example, the meta-analysis of chronic lower back
pain, the posterior summary of the normal distribution is similar
to the results of the conventional method, and the overall MD is
−3.17 (95% CrI, −8.02 to 1.73). The posterior means and 95%
CrI of μ were quite different. In Figure 3, we present graphical
displays of the 250,000 posterior samples of μ. All of the
estimated posterior distributions using the five flexible random-
effects distribution models indicated skewed and sharp-shaped
distributions; it was sharper even for the t-distribution. DIC
comparisons suggested that the best-fitting model was the AS2
distribution (DIC = 139.03); the SAS distribution was compara-
ble to it (DIC = 139.97). Both of these distributions yielded larger
MD estimates: −3.99 (95% CrI, −9.47 to −0.10) and −5.33 (95%
CrI, −11.37 to −0.94), respectively. In addition, the posterior
probabilities that μ is smaller than 0 were 0.98 and 0.99, respec-
tively, whereas that of the normal random-effects distribution
model was 0.90. In the original paper by Rubinstein et al20 the
overall MD test was not statistically significant at the 5% level.
However, the overall results were clearly altered by adopting the
skewed flexible distribution models, which strongly indicated that
the true effect sizes would lie within a narrower range and would
be skew distributed. The overall conclusion for the overall MD
could be changed using the flexible models. Also, we present a

summary of the predictive distribution of this example in
Table 2A. These results also indicated that the predictive
distribution would be strongly skewed. Note that the random-
effects distributions with similar DICs had quite different
posterior distributions (eg, SN, AS2, JF, and SAS), DIC is not
an absolute measure to select “correct” statistical models and
such results can commonly occur. There are many other useful
measures for model selections,27 and users can adopt other criteria
via customizing the source codes of flexmeta available at the
Github site.

For the second example, the meta-analysis of non-alcoholic
fatty liver disease, we present summaries of the posterior
distribution of μ and the predictive distribution in Table 1B and
Table 2B. For this case, the normal distribution model provides
results that are similar to those of the conventional methods.
However, DIC comparisons revealed that the normal distribution
was the worst-fitted model (DIC = 99.27), whereas AS2 and
skew t-distribution were the best-fitted (DIC = 94.72 and 95.44,
respectively). For the overall MD μ, the flexible models exhibited
more skewed posterior distributions and larger MD estimates.
Further, in Figure 4, we present the predictive distributions of
the seven distribution models. We found that all of the flexible
distribution models exhibited skewed and sharp-shaped distribu-
tions. In particular, the well-fitted AS2 and skew t-distributions
indicated that the treatment effect in a future study θnew would lie
within a narrower range and would be skew distributed. However,
the 95% PI of the normal distribution model was −10.71 to 3.68,
those of AS2 and skew t-distribution were −12.96 to 0.15 and
−11.53 to 0.55, respectively. The posterior probabilities of
Pr(θnew < 0) of the normal distribution model was 0.84, whereas
those of AS2 and skew t-distribution were 0.97 and 0.95,
respectively. Hence, the overall conclusions might be altered.
Note that the resultant posterior inferences and predictions
depended on the prior distributions (see eAppendix 2), and the
sensitivity should be carefully considered in practices.

DISCUSSION

Conclusions obtained from meta-analyses are widely applied to

Table 1. Summary of the posterior distributions for the mean μ of
the random-effects distribution20,21

Random-effects distribution Mean SD 95% CrI Pr(μ < 0) DIC

(A) Meta-analysis of the treatment of chronic low back pain
Normal distribution −3.17 2.47 (−8.02, 1.73) 0.90 145.62
t-distribution −1.43 1.91 (−5.47, 2.14) 0.78 143.54
Skew normal distribution −4.27 2.05 (−8.37, −0.32) 0.98 141.91
Skew t-distribution −3.47 2.09 (−8.04, 0.19) 0.97 140.50
AS2 distribution −3.99 2.39 (−9.47, −0.10) 0.98 139.03
Jones–Faddy distribution −3.09 2.05 (−7.49, 0.65) 0.95 141.94
Sinh–arcsinh distribution −5.33 2.91 (−11.37, −0.94) 0.99 139.97
(B) Meta-analysis of the treatment of nonalcoholic fatty liver disease
Normal distribution −3.52 0.77 (−5.04, −1.98) 1.00 99.27
t-distribution −3.06 0.66 (−4.43, −1.81) 1.00 97.95
Skew normal distribution −3.83 0.69 (−5.29, −2.55) 1.00 96.52
Skew t-distribution −3.61 0.69 (−5.14, −2.40) 1.00 95.44
AS2 distribution −3.78 0.83 (−5.72, −2.44) 1.00 94.72
Jones–Faddy distribution −3.49 0.68 (−4.93, −2.23) 1.00 97.02
Sinh–arcsinh distribution −4.24 0.86 (−6.03, −2.75) 1.00 96.70

AS2, Asymmetric Subbotin distribution (Type II); CrI, credible interval,
DIC, deviance information criterion.
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public health, clinical practice, health technology assessments,
and policy-making. If misleading results have been produced by
inadequate methods, the impact might be enormous. In this
article, we proposed effective methods for meta-analysis using
flexible random-effects distribution models, and provided an
easily implementable statistical package for these methods.
Through illustrative examples, we clearly showed the restrictions
of using the conventional normal random-effects distribution

model, which may yield misleading conclusions. The flexible
random-effects distribution models represent effective tools for
preventing such an outcome. Conventionally, these MCMC
computations require special software and high-performance
computers; to address these obstacles, we developed a user-
friendly package, flexmeta, which was designed to be easily
handled by non-statisticians and is freely available online. The
proposed methods and the developed tools would help us to
provide precise evidence. At a minimum, we recommend using
these methods in sensitivity analyses.

In this study, we adopted five flexible distributions, but other
probability distributions exist in statistical theory (eg, see the
comprehensive textbook by Azzalini and Capitanio).14 Other
choices might also be considered, but the five distribution models
discussed here have sufficient expressive abilities, and signifi-
cantly different results would not be obtained by adopting
other existing distributions. Another choice would be to adopt
nonparametric methods.23,24 However, in meta-analysis in
medical studies, the number of studies K is usually not large28,29;
consequently, nonparametric methods would be unstable in
many applications because they require much larger statistical
information (parallel to K) to conduct valid estimation and
prediction. Also, the proposed methods have the same limitations
because the flexible random-effects distributions would not be
identifiable if the number of studies is small. Especially, when the
number of studies is less than 5, even the normal distribution
models are difficult to estimate.30 This problem would be a
substantial limitation of these methods.

In addition, the normal distribution model implicitly involves
some relevant hidden assumptions that were well discussed in

Table 2. Summary of the predictive distributions for the two meta-
analyses20,21

Random-effects distribution Mean SD 95% PI Pr(θnew < 0)

(A) Meta-analysis for the treatment of chronic low back pain
Normal distribution −3.17 11.33 (−25.62, 19.29) 0.61
t-distribution −1.43 9.69 (−20.46, 17.35) 0.58
Skew normal distribution −4.26 9.43 (−26.42, 9.92) 0.63
Skew t-distribution −3.47 9.60 (−26.85, 8.51) 0.59
AS2 distribution −4.22 10.56 (−32.22, 6.81) 0.58
Jones–Faddy distribution −3.09 9.65 (−24.65, 11.22) 0.59
Sinh–arcsinh distribution −5.37 11.80 (−33.51, 7.67) 0.60
(B) Meta-analysis for the treatment of nonalcoholic fatty liver disease
Normal distribution −3.52 3.63 (−10.71, 3.68) 0.84
t-distribution −3.06 3.37 (−9.77, 3.51) 0.86
Skew normal distribution −3.83 3.18 (−11.31, 0.93) 0.93
Skew t-distribution −3.61 3.23 (−11.53, 0.55) 0.95
AS2 distribution −3.81 3.57 (−12.96, 0.15) 0.97
Jones–Faddy distribution −3.49 3.20 (−10.78, 1.72) 0.91
Sinh–arcsinh distribution −4.31 3.72 (−12.78, 0.61) 0.95

AS2, Asymmetric Subbotin distribution (Type II); PI, predictive interval.

Figure 3. Posterior distributions for μ of the meta-analysis of chronic low back pain20 using seven random-effects distribution models
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Jackson and White.11 The fully parametric assumptions for a
random-effects distribution similarly induces the same limita-
tions, but the flexible alternative distribution assumptions address
a relevant limitation “the shape of the normal distribution is
assumed (for the random-effects distribution), not just the first
two moments”.11 Although various methods to overcome the
limitations of the normal distribution assumptions have been
developed, there are no unique methods that address the all
limitations discussed by Jackson and White11 uniformly. The
proposed methods in this paper would be added as effective tools
to address the relevant issue.

As shown by the real data applications, existing meta-analyses
may have reached misleading conclusions due to the straightfor-
ward uses of the normal random-effects distribution model.
Our proposed methods might change the overall conclusions of
these meta-analyses, and systematic re-evaluation of existing
meta-analyses would be an interesting topic for future studies.
In addition, for future systematic reviews, the flexible methods
might be used as standard methods to provide accurate
conclusions, at least in sensitivity analyses.
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