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Purpose. Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we
propose an improved anticorrelated noise reduction (ACNR)method without causing cross-contamination artifacts.Methods.The
proposed algorithm diffuses both basis material density images (e.g., water and iodine) at the same time using a novel correlated
diffusion algorithm. The algorithm has been compared to the original ACNR algorithm in a contrast-enhanced, IRB-approved
patient study. Material density accuracy and noise reduction are quantitatively evaluated by the percent density error and the
percent noise reduction. Results. Both algorithms have significantly reduced the noises of basis material density images in all
cases.The average percent noise reduction is 69.3% and 66.5% with the ACNR algorithm and the proposed algorithm, respectively.
However, the ACNR algorithm alters the original material density by an average of 13% (or 2.18mg/cc) with a maximum of 58.7%
(or 8.97mg/cc) in this study.This is evident in the water density images as massive cross-contaminations are seen in all five clinical
cases. On the contrary, the proposed algorithm only changes the mean density by 2.4% (or 0.69mg/cc) with amaximum of 7.6% (or
1.31mg/cc). The cross-contamination artifacts are significantly minimized or absent with the proposed algorithm. Conclusion.The
proposed algorithm can significantly reduce image noise present in basis material density images from dual-energy CT imaging,
with minimized cross-contaminations compared to the ACNR algorithm.

1. Introduction

Dual-energy X-ray CT permits retrospective decomposition
of anatomy into basis material density maps (images) from
the low- and high-kVp acquisitions [1–8]. Through material
decomposition, the energy-dependent attenuation measure-
ments contained in kVp projections are transformed into
energy-independent basis material projection data corre-
sponding to the basis material pair (e.g., water and iodine).
Although the pair of basis material projection data (sino-
gram) essentially contain all useful information about the
material being imaged, they are difficult to understand and
to be interpreted by physicians. A more useful form, which
physicians are familiar with, is the reconstructed images.
Having the identical geometry, the same reconstruction
algorithm to reconstruct the single-energy CT images can

therefore be applied to the first basis material projection data
to obtain the corresponding basismaterial density image.The
step is repeated for the second basis material as well.

An example is shown in Figure 1. Although the basis
material density images may look like the reconstructed
kVp images, they represent the effective density (in mg/cc)
necessary to create the observed low- and high-kVp atten-
uation measurements. For instance, pure water appears as
1,000mg/cc in a water density image, and 50mg/cc of diluted
iodine is labeled as such in an iodine density image, and so
forth. In addition, any nonbasis material is mapped to both
basis materials. For this reason, basis material density images
are sometimes called “material density maps.”

It is well known that the basis material density images
suffer from much lower signal-to-noise ratio (SNR) than
single-energy CT images. This can be easily demonstrated by
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Figure 1: Exemplary reconstructed basis material density images, as
well as the kVp images, from a dual-energy head CT exam.

the following simple analysis. Let us define the SNR of iodine
in a low-kVp image as

SNR
𝐿
(𝑥, 𝑦) ∝

𝜇𝐼
𝐿
(𝑥, 𝑦)

𝜎
𝐿
(𝑥, 𝑦)

, (1)

where 𝜇𝐼 stands for the attenuation coefficient of iodine, 𝜎 is
the noise, (𝑥, 𝑦) represents a pixel coordinate in the image,
and subscript 𝐿 indicates the low-kVp image. Then the SNR
of iodine in a basis material density image is

SNR
Δ𝐸
(𝑥, 𝑦) ∝
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, (2)

where 𝑤𝐼 is weighting coefficient to produce the iodine
density image, and subscript𝐻 indicates the high-kVp image.
By comparing (2) with (1) and using the fact that 𝜇𝐼

𝐿
and 𝜇𝐼

𝐻

are very close for the most of clinically relevant energy levels,
we can conclude that

SNR
Δ𝐸
(𝑥, 𝑦) ≪ SNR

𝐿
(𝑥, 𝑦) . (3)

Noise reduction in dual-energy CT has been an active
research area to obtain basis material density images of
diagnostic quality. An excellent overview of algorithmic
approaches can be found in [9]. Other methods based on
the optimization of acquisition protocol and/or hardware
have also been proposed [10, 11]. It has been recognized
that, however, the most effective noise reduction method for
basis material density images exists in anticorrelated noise
reduction technique (ACNR) [9, 12–16]. This technique is
based on the knowledge that image noises between the basis
material density image pair are anticorrelated [1, 12, 17].
Taking advantage of this physical property, Kalender et al.

has proposed to use a high-pass filtered version of the first
basis material density image (e.g., water) to noise reduce the
complimentary basis material density image (e.g., iodine)
[12]. In practice, an adaptive filter has replaced the simple
high-pass filter in several clinical applications [9, 12–14].

ACNR algorithms are effective in suppressing noise.
However, they are at the risk to introduce a detrimental
artifact [9, 12]. Figure 2 shows a comparison of the original
and ACNR noise-reduced water density images from a dual-
energy abdominal CT exam of a patient. Although the noise
is reduced, artifacts are evident throughout the liver area.
By inspecting the iodine density image, it is clear that the
iodinated hepatic vessels correlate well with the artifacts in
the water density image, suggesting that, during the noise
reduction, edge structures and hepatic vessels containing
contrast medium were transferred from the iodine density
image to the water density image.This artifact will be referred
to as “cross-contamination” in this paper.

Cross-contamination is very undesirable as it alters the
original density values and introduces false anatomical or
pathological information to the complimentary basis mate-
rial density image. It not only hinders the quantification
accuracy of dual-energy CT imaging, but also potentially
leads to misdiagnosis [9].

In this paper, we propose an improved ACNR algorithm,
based on correlated anisotropic diffusion, which can simul-
taneously reduce the image noise and minimize the cross-
contamination in the basis material density images. Our
algorithm can accomplish both tasks at the same time because
of the novel design of a correlated anisotropic diffusion
filter that intelligently differentiates the correlated anatomical
structures from the uncorrelated ones. Although our filter
kernel is based on the anisotropic diffusion filters that have
gained popularity in medical imaging applications [18–21],
the correlated filter kernel design has never been seen in the
literatures. Since our algorithm performs diffusion in both
basis material density images simultaneously, it is also more
efficient than the original ACNR algorithms.

2. Methods

2.1. Anisotropic Diffusion Filter. The traditional gradient-
based denoising model could not retain the image details
well. Anisotropic diffusion-based filters represent the most
promising denoising technique besides statistical iterative
reconstruction, but do not rely on proprietary CT projection
data that is often not retrievable retrospectively [18]. To
fully understand our proposed algorithm, we need to briefly
describe the anisotropic diffusion filter first.

The diffusion operation can be described by the following
equation:

𝜕𝐼 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div [𝐷 (∇𝐼)] , (4)

where ∇𝐼 denotes the local image gradient and the operator
𝐷 the diffusive function. Present anisotropic diffusion filter
constructs 𝐷 by either a simple signal-to-noise ratio (SNR)
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Figure 2: Comparison of the original and noise-reduced basis material (water) density images from a dual-energy abdominal CT exam of a
patient. (a) Original water density image. (b) Noise-reduced water density image using the ACNR algorithm [12]. In spite of the fact that the
noise in the image is reduced, artifacts are evident throughout the liver area. (c) Original iodine density image. The iodinated hepatic vessels
correlate well with the artifacts in the water density image, suggesting that the artifacts are caused by cross-contamination.

measure or, more sophistically, ameasure of the local contour
and gradient principal directions and their relative strength
[19].

The diffusive function should be monotonically decreas-
ing so that diffusion decreases as the gradient increases. One
of such function is

𝐷(∇𝐼) = 𝛼 ⋅ 𝑒−‖∇𝐼‖
2
/2𝜎
2

. (5)

Equations (4) and (5) describe an iterative process in
which the diffusion operation continues until a stop criterion
is reached. The parameter 𝜎 is estimated from the noise in
the image. Owing to its edge preserving power, anisotropic
diffusion filters have been widely used in many medical
imaging applications as a noise and speckle reduction tool
[19–21].

2.2. Correlated Anisotropic Diffusion Filter. In this section,
we propose a correlated anisotropic diffusion that simultane-
ously diffuses both basis material density images:
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where 𝑚1 and 𝑚2 denote the two basis materials, 𝐼
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(8)

A graphic representation of 𝑓(∇𝐼
𝑚1
, ∇𝐼
𝑚2
) is displayed in

Figure 3. It is clear from the figure that the diffusion strength
decreases when the gradient in either image increases, or
the difference in gradient between the two images increases.
Since most high spatial resolution features are present in
the lung and bony regions, the first two terms in (8) make
that sure the filtration in these regions needs to be kept to a
minimum to reduce its impact on spatial resolution. On the
other hand, since iodinated hepatic vessels appear only in one
of the images, the third and fourth terms in (8) ensure that
the diffusion strength is significantly reduced as well around
these vessels to avoid cross-contamination.

Through (7), correlated diffusion is performed on both
images simultaneously. To improve computational speed, we
assess (7) in a multiresolution fashion. In another word, we
first downsample the CT images to 128 × 128 pixels and
perform correlated diffusion on the down-sampled images.
The resulting images are then upsampled to 256 × 256 pixels
and 512 × 512 pixels, with correlated diffusion performed on
each resolution. To preserve the image resolution, a lossless
wavelet similar to that used in [20] has been employed to
perform the down- and upsamplings. A prototype software
has been developed for this study in PV-WAVE Rogue Wave
Software, (Boulder, CO) on a standard Red hat Linux system
with Intel dual-core CPU (3.3GHz). The computation speed
is roughly 0.7 second per slice (512 × 512 pixels).

2.3. Noise Suppression. Next, we compute a noise mask for
each basis material density image that is simply the dif-
ference between the original image, 𝐼

𝑚1
(or 𝐼
𝑚2
), and its
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Figure 3: A graphic representation of 𝑓(∇𝐼
𝑚1
, ∇𝐼
𝑚2
) from (8).

filtered version (i.e., the resultant image from the correlated
anisotropic diffusion step described in Section 2.2) as follows:

𝑁
𝑚1
(𝑥, 𝑦) = 𝐼

𝑚1
(𝑥, 𝑦) −
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,

𝑁
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𝜕𝑡
.

(9)

Finally, we follow the general scheme of ACNR algorithm
to cancel the noise in a basis material density image using the
weighted complimentary noise mask [12] as follows:
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(10)

where 𝜇
𝑚1

and 𝜇
𝑚2

denote the linear attenuation coefficients
of materials 𝑚1 and 𝑚2, respectively, and 𝐸

0
symbolizes the

optimal energy at which the anticorrelated noises are best
cancelled, resulting in the highest SNR in themonochromatic
energy images [8].

2.4. Experiment. Theproposed algorithmhas been applied to
dual-energy abdominal CT exams of five patients to evaluate
its efficacy. The patient population includes three males and
two females, with the age ranging from 21 to 63 years old.The
average patient weight is 57.6 kg. The human study has been
approved by the Institutional Review Board (IRB) of Xijing
Hospital, Xi’an, China.

The patients are scanned on a GE 750HD CT scanner
(GE Healthcare, Waukesha, WI) that features the fast-kVp
switching dual-energy capability [8]. The dual-energy pro-
tocol includes alternating the tube potential between 80 and
140 kVp on a view-by-view basis, 600mA, and 0.6 sec gantry
rotation time, large body bowtie, and 40mm collimation.
All datasets are reconstructed with 5mm slice thickness,
standard reconstruction kernel, and a display field of view
of 36 cm. The CTDIVOL is 17.64mGy, which is comparable to
that of a single-energy abdominal CT exam.

The CT scan begins approximately 75 seconds after the
patient receives 100mL Optiray 350 (Covidien Pharmaceuti-
cals, Hazelwood, MO), which is administered intravenously
at a fixed rate of 3-4mL per second.

3. Results

Figures 4(a) and 4(b) depict the original water and iodine
density images from the same abdominal exam showed
earlier in Figure 2. The image quality is suboptimal due to
its high noise level.The corresponding noise-reduced density
images using the proposed algorithm are shown in Figures
4(e) and 4(f). It is clear that the proposed algorithm has
significantly reducing the noise and thus enhanced the image
quality. For comparison, the noise-reduced density images
using the ACNR algorithm are also displayed in Figures
4(c) and 4(d). By comparing Figures 4(c) and 4(e), it is
obvious that the proposed algorithm is superior to the ACNR
algorithm in minimizing the contamination artifacts.

Figures 5(a) and 5(b) depict the noisy original water
and iodine density images from another abdominal study.
The corresponding noise-reduced density images using the
ACNR algorithm are displayed in Figures 5(c) and 5(d).
Cross-contamination artifacts can be easily seen near the
main hepatic portal vein (pointed by arrow) in the water den-
sity image. By inspecting the complimentary iodine density
image, the iodinated hepatic portal vein (pointed by arrow)
in Figure 5(d) is the root cause of the cross-contamination.
Figures 5(e) and 5(f) show the noise-reduced density images
using the proposed algorithm. It is clear that the proposed
algorithm can minimize the cross-contamination artifacts
while significantly reduced the noise in both density images.

Table 1 summarizes the quantitative results from the
clinical cases (including the two cases shown in Figures 4 and
5). We define the material density accuracy and the amount
of noise reduction by a percent density error,

% density error =
Densityoriginal − Densitynoise reduced

Densityoriginal
,

(11)

and a percent noise reduction,

% noise reduction =
𝛿original − 𝛿noise reduced

𝛿original
, (12)

where 𝛿 symbolizes the standard deviation. Both material
density and standard deviation are measured in a ROI (20 ×
20 pixels) in the relative smooth liver region, such as those
shown in Figures 4 and 5. FromTable 1, it can be seen that the
average percent noise reduction is 69.3% and 66.5% with the
ACNR algorithm and the proposed algorithm, respectively.
In addition, the material densities are changed by an average
of 13.1% and 2.4%after theACNRalgorithmand the proposed
algorithm, respectively, compared to the original densities.

Figure 6 compares noise masks randomly selected from
one of the patient exams. As indicated in (9), a noise
mask is computed as the difference between the original
water (or iodine) density image and its filtered version.
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(a) (b) (c)
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Figure 4: Example images from a dual-energy abdominal CT study. ((a) and (b)) Original water and iodine density images of suboptimal
image quality due to its high noise level. ((c) and (d)) Noise-reduced water and iodine density images using the ACNR algorithm [12]. Cross-
contamination artifacts are clearly visible throughout the liver area in (c). The iodinated hepatic vessels in (d) are the root cause of the cross-
contaminations seen in (c). ((e) and (f)) Noise-reduced water density images using the proposed algorithm which are free of contamination.

Figures 6(a)–6(c) display the noise mask generated using
the ACNR algorithm, the noise mask generated using the
proposed algorithm, and the difference image, respectively.
Figure 6(a) contains a large amount of edge structures,
such as ribs and vertebrae (arrows), suggesting a high
likelihood of cross-contamination when the noise mask is
used to denoise the complimentary basis material density
image. On the contrary, these anatomical structures are
absent from Figure 6(b). The reduction of contamination-
prune structures is evident as shown in the difference image
(Figure 6(c)). This further exemplifies the proposed algo-
rithm’s ability to minimize cross-contaminations.

4. Discussions

Table 1 shows that both algorithms—ACNR and our pro-
posed—can significantly reduce the noises of basis material
density images derived from material decomposition. As a
result, the image quality, and potentially diagnosis efficacy, is
substantially improved (e.g., Figure 4(e) versus Figure 4(a)).
Since a noise reduction by a factor of 𝑛 would otherwise
require an exposure increase by 𝑛2, either algorithmmay lead

to tremendous dose saving to patients who undergo dual-
energy CT exams.

However, the noise reduction by the ACNR algorithm is
at a cost of altering the material density by, for example, an
average of 13% (or 2.18mg/cc) with a maximum of 58.7% (or
8.97mg/cc) in this study. These alterations are clinically and
quantitatively undesirable. Although it is difficult to avoid
introducing cross-contaminations, we challenge ourselves to
minimize this adversity while preserving the ACNR algo-
rithm’s effectiveness in noise suppression.

As shown inTable 1, the proposed algorithmonly changes
the mean density by 2.4% (or 0.69mg/cc) with a maximum
at 7.6% (or 1.31mg/cc). This is also evident from the cases
shown in Figures 4 and 5. In both cases, ACNR algorithm
has resulted in massive cross-contamination artifacts, partic-
ularly in the water density images. The artifacts, however, are
minimized or absent after the proposed algorithm. It should
be noted that this minimization of cross-contamination
comes at a small cost—the average percent noise reduction
decreases from 69.3% to 66.5%. However, compared to
retaining the material density accuracy, we feel that this
slightly increased noise is acceptable.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Example images from a dual-energy liver study. ((a) and (b)) Original water and iodine density image. ((c) and (d)) Noise-reduced
water and iodine density images using the ACNR algorithm [12]. Cross-contamination artifacts are clearly visible near the main hepatic
portal vein (arrow) in (c). The iodinated hepatic portal vein (arrow) in (d) is the root cause of the cross-contamination seen in (c). ((e) and
(f)) Noise-reduced water density images using the proposed algorithm which are free of contamination.

(a) (b)

(c)

Figure 6: Example of noise masks randomly selected from one of the clinical exams. (a) Noise mask generated using the ACNR algorithm
[12]. Structures such as vertebrae and ribs can be clearly seen (arrows). (b)Noisemask created using the proposed algorithm. (c)Thedifference
image between (a) and (b). Reduction of anatomical structures is evident with the proposed algorithm.
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Table 1: Percent CT number accuracy and percent noise reduction observed in five clinical cases. Both CT number and standard deviation
are measured in a ROI (20×20 pixels) in the relative smooth liver region, such as those shown in Figures 4 and 5. ACNR: anticorrelated noise
reduction [12].

Dataset Basis material Algorithm Mean density
(mg/cc)

Standard
deviation

Absolute
density error
(mg/cc)

% Density
error

% Noise
reduction

Case 1
(Figure 4)

Water
Original 29.16 72.22 — — —
ACNR 26.00 24.26 3.16 10.8% 66.4%

Proposed 27.85 30.29 1.31 4.5% 58.1%

Iodine
Original −961.41 29.71 — — —
ACNR −961.22 9.45 0.19 0.002% 68.2%

Proposed −961.33 10.32 0.08 0.008% 65.3%

Case 2
(Figure 5)

Water
Original 15.28 88.27 — — —
ACNR 24.25 27.99 8.97 58.7% 68.3%

Proposed 15.42 28.17 0.14 0.9% 68.0%

Iodine
Original −967.92 31.42 — — —
ACNR −967.41 9.83 0.51 0.05% 68.7%

Proposed −966.31 10.98 0.61 0.2% 65.1%

Case 3

Water
Original 5.74 85.39 — — —
ACNR 6.81 25.99 1.07 18.6% 69.6%

Proposed 5.93 27.07 0.19 3.7% 68.3%

Iodine
Original −934.50 34.77 — — —
ACNR −935.87 9.26 1.37 0.2% 73.2%

Proposed −935.61 9.91 1.11 0.2% 71.5%

Case 4

Water
Original 9.42 45.94 — — —
ACNR 7.48 15.89 1.94 20.6% 65.4%

Proposed 8.70 16.57 0.72 7.6% 63.9%

Iodine
Original −993.72 12.84 — — —
ACNR −994.56 3.41 0.84 0.08% 73.4%

Proposed −994.25 3.94 0.53 0.05% 69.3%

Case 5

Water
Original 12.98 161.68 — — —
ACNR 15.81 48.47 2.83 21.8% 70.0%

Proposed 13.85 51.20 0.87 6.7% 68.3%

Iodine
Original −990.19 20.36 — — —
ACNR −989.32 6.25 0.87 0.09% 69.3%

Proposed −988.89 6.76 1.3 0.1% 66.8%
Original — — — — —

Average ACNR — — 2.18 13.1% 69.3%
Proposed — — 0.69 2.40% 66.5%
Original — — — — —

Maximum ACNR — — 8.97 58.7% 73.4%
Proposed — — 1.31 7.6% 71.5%

Although anisotropic diffusion has gained its popularity
since the 1990s [18–21], the correlated anisotropic diffusion
algorithm has never been described in the literature. In this
work, we take advantage of the well-known noise property
of dual-energy CT imaging (anticorrelation) [1, 12, 17] and
incorporate it into our anisotropic diffusion framework.
The unique formulation is shown to have improved the
overall quantitative accuracy of the basis material densities

compared to high-pass filter-based approaches [12–14]. Other
noise suppression approaches, such as noise forcing and
clipping, have also attempted to correlate thewater and iodine
(or water and bone) densities [15]. The proposed algorithm
differs from these approaches in that our approach is based
on neighborhood operation (i.e., diffusion) and thus does not
leave any pixilated noise appearance near edge pixels or in
area with high noise levels.
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The dual-energy protocol used in this study results in
47% lower dose compared to the manufacturer’s default
protocol (i.e., 17.6mGy versus 33.4mGy [8]). Our protocol
is selected to satisfy an IRB requirement that the CTDIVOL
from dual-energy exams should be consistent with that of
single-energy abdominal CT exams. The consequence is that
the original basis material density images are fairly noisy,
as evidenced from Figures 4(a) and 4(b) and Figures 5(a)
and 5(b). Nevertheless, the focus of this study is not the
optimization of scanning protocol; thus this is still considered
acceptable. For the same reason, we did not correct CTDIVOL
for individual patient sizes [22].

One limitation of this study is that there is no observer
study-based image quality assessment. As a result, the benefit
of overall image quality enhancement from either the ACNR
algorithm or the proposed algorithm cannot be quantified
compared to the original material density images. This is one
of the future directions we will be working on.
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