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Abstract: Soil mix cut-off walls have been increasingly used for containment of organic contaminants in
polluted land. However, the mixed soil is susceptible to deterioration due to aggressive environmental
and mechanical stresses, leading to crack-originated damage and requiring costly maintenance.
This paper proposed a novel approach to achieve self-healing properties of soil mix cut-off wall
materials triggered by the ingress of organic contaminants. Oil sorbent polymers with high absorption
and swelling capacities were incorporated in a cementitious grout and mixed with soil using a
laboratory-scale auger setup. The self-healing performance results showed that 500 µm-wide
cracks could be bridged and blocked by the swollen oil sorbents, and that the permeability was
reduced by almost an order of magnitude after the permeation of liquid paraffin. It was shown by
micro-CT scan tests that the network formed by the swollen oil sorbents acted as attachments and
binder, preventing the cracked mixed soil sample from crumbling, and that the oil sorbents swelled
three times in volume and therefore occupied the air space and blocked the cracks in the matrix.
These promising results exhibit the potential for the oil sorbents to provide soil mix cut-off walls in
organically-contaminated land with self-healing properties and enhanced durability.
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1. Introduction

The problem of soil contamination resulting from industrial waste storage, treatment and disposal
practices, and from accidental spills, is of widespread concern. Among the most common soil
contamination sources are former manufactured petrol plants, and as a result, a lot of potentially fertile
soils were contaminated with organic contaminants [1,2]. Present technologies for remedial action
often involve disruption of the contaminant transport pathway from a contaminant source zone to a
receptor [3]. Although soil mixing was developed in the 1960s in Japan and Sweden for geotechnical
applications, its potential in geo-environmental applications became evident in the 1980s in the USA
and in the 1990s in Europe for the remediation of contaminated land [4]. Soil mixing auger systems
create columns as the soil is mixed, and by using a self-hardening cementitious grout mixture and by
overlapping columns, low permeability cut-off walls can be constructed. Soil mix cut-off walls have
successfully been employed in organically contaminated sites as a containment technology, such as the
Sir John Rogerson’s Quay Project in Dublin, Ireland [5], and Project SMiRT in Castleford, UK [4].

Despite the successful commercial applications of soil mix cut-off walls in polluted land,
the inevitable crack-originated damage and chemical degradation can undermine their integrity
and serviceability. Although cut-off walls are not designed to transmit load, it is common for these
walls to experience changes in loading conditions due to subsequent construction activities associated
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with redevelopment, which can cause deformation and cracking [6]. Environmental stressors such
as wet-dry cycles can also contribute to the cracking of soil mix cut-off walls, resulting in significant
increase in permeability by up to six orders of magnitude [7]. A major concern with such damage of
in-ground cut-off walls is that it is usually very difficult to inspect and repair [8], making the concept
of self-healing cut-off wall materials extremely attractive.

Self-healing in cementitious materials is triggered by physical or chemical factors.
Microcapsule-based self-healing, for example, is often triggered by tensile stress in the matrix, leading to
the rupture of microcapsule shell and release of healing agents [9–11]. Polymer-based self-healing
approaches, on the other hand, are usually chemically triggered. Extensive studies incorporated
superabsorbent polymers (SAPs) in cementitious materials, and found that the swelling of SAPs
triggered by the ingress of water could effectively seal cracks [12–14]. Following the idea of SAP-based
self-healing, oil absorbent polymers, also known as oil sorbents, have recently been studied for the
development of self-healing oil well cement systems [15]. When hydrocarbons come in contact with oil
sorbents, the particles swell, enabling the cement sheath to have self-healing properties. To achieve a
high absorption capacity, desired properties of oil sorbents include: (1) good mutual solubility, which is
governed by the chemical structure—the chain structure of both organic liquids and absorbents should
be similar; (2) high surface area, which maximizes the sorption surface available; (3) porous structure,
which further facilitates the migration of organic liquids into the structure of absorbents; (4) a fairly
low degree of cross-linking, which improves the swelling capacity of a polymer structure and hence
improves its absorption capacity [16]. The reported absorption capacity of oil sorbents varied from 5 to
140 g/g in different organic liquids, with the typical values ranging from 5 to 40 g/g.

Lu et al. [17] synthesized a styrene-butyl acrylate copolymer with the absorptivity of 7 g/g in
diesel and the size of ~180 nm. The self-healing performance of the cracks in the oil well cement
specimens with and without oil absorbents was measured by the oil flow test under different pressures.
According to the authors’ calculation, the width of the crack in the control sample remains almost
unchanged during the curing in the oil bath for a period of 6 days, while the crack width in the oil
sorbent-containing sample significantly decreases from 25 µm to 12 µm. Wang et al. [18] synthesized a
methyl methacrylate-lauryl methacrylate copolymer with an average size of 207 µm and an absorption
capacity of 5.5 g/g in kerosene. The larger size of oil sorbent particles enabled the cement samples
to self-heal wider cracks up to 180 µm. More recently, the self-healing performance of oil sorbents
in oil well cement were investigated by Zhang et al. [19]. After cracking, the cement samples were
immersed in kerosene at 80 ◦C. The results showed that when the oil sorbent dosage increased from 0%
to 8.0%, permeability decreased from 2.64 × 10−3 to 0.25 × 10−3 µm2 after 30 days of healing. The first
commercial deployment of oil sorbents in oil cement systems was conducted by Schlumberger to
prevent leaks in the Berliner Gaswerke AG, and it was observed that the gas flow rate was reduced by
up to 100% [20].

Despite the development of self-healing oil well cement, the incorporation of oil sorbents in
geotechnical infrastructure, including soil mix cut-off walls, has not been investigated. The concept of
chemically-triggered self-healing oil sorbent-based soil mix cut-off wall materials is explored for the
first time in this paper: oil sorbents are incorporated in the cementitious grout and mixed with the
in-situ soil using an auger mixing system, and the oil sorbents can swell and then block cracks when
exposed to the ingress of organic contaminants. The objectives of this study are to: (1) demonstrate the
feasibility of soil mixing with oil sorbent-incorporated cementitious grout using a laboratory-scale
auger setup; (2) investigate the effects of oil sorbents on the properties of the grout and mixed
soil columns; (3) demonstrate the swelling behavior of oil sorbents in the mixed soil, triggered by
organic contaminants, and the self-healing performance in terms of crack blockage and recovered low
permeability; and (4) explore the self-healing process and mechanism with microstructural analyses
including SEM-EDX and micro-CT scan.
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2. Materials and Methods

2.1. Materials

A sharp sand provided by Ridgeons, Llangefni, UK was used as a model sand soil to replicate the
particle size range of the sand stratum at the made ground of land remediation sites. The sand used
had particle sizes ranging from 0.07 to 1.18 mm with a median particle size of 0.36 mm. Potable water
was used to maintain the water content of the soil at 20%. The soils were placed in tinplate buckets,
310 mm in diameter and 400 mm high, using consistent moderate compaction in four equal layers
of 100 mm each. Grout binders used in this study consisted of CEM I 52.5 N Portland cement (PC)
and ground granulated blast furnace slag (GGBS) supplied by Hanson, Cambridge, UK.

The oil sorbent, a styrene-ethylene/butylene-styrene (SEBS) polymer, was supplied by M2 Polymer
Technologies, Dundee, IL, USA. This oil sorbent product is especially effective with volatile and high
Kb-value solvents such as hexane, liquid paraffin, gasoline, diesel, kerosene, benzene, and chlorinated
solvents. The product crosslinks to encapsulate organics and forms a rubbery mass that can seal the
cracks. The oil sorbents were delivered in the form of white rubbery particles with a bulk density of
~350 kg/m3 and an average particle diameter of 520 ± 230 µm. In this study, liquid paraffin was chosen
as the representative organic contaminant due to its good stability and low toxicity.

Three mixes were used in this study to investigate the self-healing performance of mixed soil
incorporating varying dosages of oil sorbents. Grouts were prepared in a high-speed mixer by first
dry mixing cement, GGBS, and oil sorbents and then adding and mixing pre-hydrated bentonite
slurry (5% bentonite in water and hydrated for 24 h) with the binders together. A soil-to-grout ratio
of 4:1 and a binder-to-water ratio of 1:1 were used. The ratios of constituents of the control and oil
sorbent-containing mixes are detailed in Table 1. The percentages at the end of the mix identification
indicate the mass fraction of oil sorbents with respect to the grout weight.

Table 1. The soil-grout mixes used in this study in ratio of the constituents.

Mix Soil-to-Grout Ratio
Grout (%) Oil Sorbents

(% by Grout Weight)PC GGBS Bentonite Water

Control 4:1 25 25 2.5 47.5 0
OS-5% 4:1 25 25 2.5 47.5 5

OS-10% 4:1 25 25 2.5 47.5 10

2.2. Laboratory-Scale Auger Setup

A laboratory-scale auger setup, as shown in Figure 1, was used to produce mixed soil columns.
The automated system consisted of a vertical track that enables the penetration and retreat of the auger
and grout injector component. Grout is pumped into the grout injector from a peristaltic flow pump
down the hollow shaft section of the auger. The auger head used in this study had two layers of blades
with sharpened edges and a blade axis twist of 5◦. The cutter diameter of 50 mm was used to produce
samples suitable for strength and permeability tests.

The auger penetrated the soil at a speed of 5 mm/s in a clockwise direction with a rotation speed
of 50 rpm and to the required depth of 300 mm. Injection of the grout then took place on the retreat
of the auger, while the direction of rotation was reversed. After injecting the full requisite quantity
of grout, two further mixing cycles were performed without further grout injection to ensure the
effective mixing of the soil and the grout. After 7 days of mixing, all the mixed columns were extruded,
and trimmed using an electrical saw into 100 mm long samples to be tested for mechanical and
permeability properties. The extruded columns were placed in a curing incubator until the day of
testing. All specimens were mixed in a standard laboratory environment of 21 ◦C (±2 ◦C) and 60%
(±10%) relative humidity (RH) and cured at 21 ◦C (±2 ◦C) and 98% (±2%) RH.
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Figure 1. Laboratory-scale auger setup used in this study for the formation of soil-grout columns.

2.3. Experimental Methods

The filtration method was used to measure the absorption characteristics of the oil sorbents.
Organic fluids were added to 1.0 g dry oil sorbent particles and the whole was filtered after one
day. The absorption capacity was calculated from the weight increase between the dry state and the
saturated state.

The unconfined compressive strength (UCS) was obtained using the trimmed cylindrical samples
tested in a 50 kN servohydraulic compression frame. The vertical load was applied axially at a constant
rate of strain of 1 mm/min until failure, from which the strength was then calculated. In addition,
a linear variable differential transformer was used to measure the vertical displacement of the specimen
in order to calculate the axial strain and the secant modulus of elasticity (E50). The secant modulus was
calculated by measuring the slope of the straight line drawn between the zero point and the stress at
50% of the maximum stress at failure.

The vertical permeability of the specimens was determined by a constant flow rate test using
flexible wall permeameters and peristaltic flow pumps. A steady flow rate was applied at the bottom
of the sample using flow pumps. A pore pressure transducer positioned at the inflow position
measured the pore water pressure generated. When a constant pressure had been reached, the vertical
permeability of the sample was determined. The samples were first tested after 28-day curing and then
they were cracked using the UCS frame until the peak force was reached. The cracked samples were
permeated with liquid paraffin for six hours and the recovered properties were tested to assess the
self-healing efficacy.

The SEM was used to characterize the microstructural morphology of the specimens and EDX
was used to study the elemental composition. Small chipped pieces were collected from the cracked
specimens. Phenom ProX SEM (Thermo Fisher Scientific, Waltham, MA, USA) was used, and the
specimens were scanned and images were captured at different magnifications.

Micro-CT was used to investigate the distribution and morphology of the oil sorbents before and
after the absorption of liquid paraffin, as well as the blockage of cracks by the swollen oil sorbents.
The X-ray CT scanner used was the Nikon XT H 225 ST CT scanning apparatus (Nikon Metrology,
Derby, UK). In this study, a specimen with the size of ~15 mm × 15 mm × 15 mm was scanned.
The first scan was carried out on the undamaged sample after 28-day curing; the sample was then
cracked by the UCS frame and immersed in liquid paraffin for six hours and the second test was
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conducted. The reconstructed image matrix had a volume of 2000 × 2000 × 1000 and the effective
voxel size was 5 µm. The density of each voxel, represented by the material local linear attenuation
coefficient, was normalized to 16-bit grey values, and specialized rendering software (VGStudio MAX)
(Volume Graphics, Heidelberg, Germany) allowed for visual inspection of this 3D volume.

3. Results and Discussion

3.1. Feasibility of Using Oil Sorbents for Self-Healing in Soil Mix Cut-OffWalls

The expansion of the oil sorbents triggered by organic contaminants plays an important role in
healing the cracks in the soil mix cut-off walls. The volume expansion of the oil sorbents immersed in
liquid paraffin for 10 min is shown in Figure 2. The filtration test results show that the oil sorbents have a
very high absorption capacity for pure straight-chain hydrocarbons such as hexane, at up to 23 g/g. This
is because hexane has a linear structure similar to the chemical structure of the oil sorbent polymers,
making it easy for the hexane molecules to be absorbed to and enter the oil sorbents. The absorption
capacity for medium-density refined oil products was 10–13 g/g including liquid paraffin, diesel,
mineral oil, and benzene. These values are comparable to the ones found in the literature, such as
Nam et al. [21], who synthesized an oil sorbent consisting of ethylene/1-octene copolymers with a
diesel absorption capacity of 7.6 g/g. Zhang et al. [19] produced a lauryl methacrylate-styrene-hydroxyl
ethyl methacrylate polymer that had an absorption capacity of 12.7 g/g in paraffin.

Figure 2. The swelling of oil sorbent particles after absorbing liquid paraffin.

3.2. Effect of Oil Sorbent on Fresh Grout Properties

The proper rheological behavior of fresh grout plays an important role in the successful mixing
of soil with the grout, as the pumpability of a grout mixture is primarily defined by its viscosity.
The grout should be flowable enough to make sure it can be pumped through an auger without
any blockage. Figure 3 shows that the plastic viscosity and yield stress presented an almost linear
increase with the increasing oil sorbent content. The plastic viscosities of the grouts with the oil sorbent
contents of 0%, 5% and 10% were 24, 28, and 42 mPa·s, respectively. The addition of oil sorbent at
10% increased the viscosity of grout by 75% compared with the control sample. As the flowability
decreased, higher energy was needed to initiate the flow of the grout, thus increasing the yield stress.
The yield stress with the oil sorbent contents of 5% and 10% grouts increased to 9.9 and 10.6 Pa from the
control value of 9.2 Pa. Previous studies have also reported that the addition of polymers significantly
increased the viscosity and reduced the fluidity of cementitious materials. It was found that the cement
grout containing 5% epoxy resin appeared to have a plastic viscosity increase of 80% compared with
the control sample [22]. To achieve proper workability of the cement grout, the plastic viscosity of the
fresh grout should be less than 160 mPa·s [23], as it is the case for all the plastic viscosity values of the
oil sorbent-containing grouts in this study. As a result, the addition of the oil sorbents at a dosage of up
to 10% by grout weight is feasible, in terms of workability, for the construction of soil mix cut-off walls.
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Figure 3. Plastic viscosity and yield stress of control and grouts with oil sorbents contents of 5%
and 10%.

3.3. Physical and Mechanical Properties of Oil Sorbents for Self-Healing in Soil Mix Cut-OffWalls

Control and oil sorbent-containing mixed soil samples were extruded from the sand container
after 7 days of auger mixing (Figure 4). The actual column lengths corresponded well with the intended
lengths (300 mm) and the overall column diameters ranged from 55–60 mm. The diameters were
10–20% larger than the diameter of the auger, suggesting some spreading of the grout beyond the auger
blade edges. Closer inspection after the sawing and trimming of the columns showed that the cylinder
samples had smooth and homogenous surfaces on both ends and the side. In general, the columns had
very good consistency for both diameters and length with no evident pockets of pure sand or binder
within them, indicating the oil sorbents did not agglomerate or affect adversely the soil mixing process.

Figure 4. Representative images of (a) extruded mixed soil columns; (b) mixed soil samples after
sawing and trimming; (c) cross-sections of the mixed soil samples.
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The UCS of the mixed soil samples with and without oil sorbents were tested at 28, 56, and 90 days
as shown in Figure 5a. The results show that the addition of the oil sorbents at a dosage of 5%
and 10% generally decreased the UCS regardless of the age of the samples. After 28 days of curing,
the UCS values of the control, OS-5%, and OS-10% samples were 3433, 3016, and 2410 kPa, respectively.
With the increase of sample age, the adverse effect of oil sorbents on UCS did not become more
significant. After 90-day curing, compared with the UCS of the control samples of 4598 kPa, the UCS
values of OS-5% and OS-10% decreased by 7% and 22%, respectively. The oil sorbent particles are
an elastomer and have low Young’s modulus and high failure strain compared with cement [24],
so the oil sorbent particles could not resist or transmit load in the mixed soil matrix due to their low
stiffness. The decreasing trends on UCS due to the oil sorbent addition agreed with previous research
in the literature. Wang et al. [18] incorporated an oil absorbent polymer (methyl methacrylate-lauryl
methacrylate) in oil well cement, and it was reported that the compressive strength was significantly
decreased by about 28% and 41% with the addition of oil absorbent polymers at dosages of 5% and 8%
by cement weight, respectively.

Figure 5. The effects of oil sorbents addition on: (a) unconfined compressive strength (UCS) at different
ages; (b) stress-strain curves of control and oil sorbent-containing mixed soil samples.
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The representative stress-strain curves and crack patterns of the control and oil sorbent-containing
samples are presented in Figure 5b. The cracks found on the surfaces of the control and oil
sorbent-containing samples were mostly vertical, indicating the splitting failure pattern of the mixed
soil was not affected by the addition of oil sorbents. The stress-strain behavior of oil sorbent-containing
soil mix samples becomes more ductile as the oil sorbent content increases, despite the decreased peak
stress with the addition of oil sorbents. The strains at failure of the OS-5% and OS-10% samples were
1.2% and 1.3%, compared to the control value of 1.1%. The values of E50 were 303, 248, and 221 MPa
for the control, OS-5%, and OS-10% samples, suggesting the decreased stiffness was due to the
incorporation of the highly deformable and rubbery oil sorbents. The reason is that the polymeric oil
sorbents absorb a significant amount of strain energy and dissipate stress by deforming. For the oil
sorbent-containing samples, large plastic deformations occur and much of the energy is consumed by
the breakage of oil sorbents and dislocation glide of the polymer network structure. The increased
ductility due to oil sorbent addition is beneficial to the soil mix cut-off wall materials because the
cementitious matrix could deform to a greater extent without cracking, reducing the risk of the increase
in permeability.

3.4. Blockage of Cracks

The self-healing performance of the oil sorbent-containing samples is expected when the oil
sorbents on the crack surface are exposed to organic contaminants. After 28 days of curing, an OS-10%
sample was cracked under UCS test and then immersed in liquid paraffin for 30 min. Microscope images
were taken using a Leica stereo microscope, and the visualization of crack blockage was conducted by
comparing the images before and after the immersion in liquid paraffin. Two types of oil sorbents
were observed on the cracked surface in Figure 6: (1) stretched oil sorbents anchored on both sides
of the crack and (2) oil sorbent particles embedded in one side of the crack. Both types of the oil
sorbents swelled significantly after the immersion in liquid paraffin. In Figure 6a,b, the area of the
stretched oil sorbents increased to around 0.21 mm2 after the immersion compared to its original
area of 0.13 mm2. The two-fold increase in the area of oil sorbents could make it more difficult
for the permeated organic contaminants to flow through the crack. In Figure 6c,d, the area of the
larger embedded oil sorbent particle increased from its original area of around 0.43 mm2 to 1.34 mm2.
The considerable swelling of the oil sorbent particle managed to bridge and block a 500 µm-wide crack,
indicating effective self-healing performance in terms of crack blockage. Improved crack blockage in oil
well cement incorporating oil sorbents has been successfully demonstrated for 180 µm-wide cracks [18].
The maximum crack width that can be blocked is primarily controlled by the size and absorption
capacity of the oil sorbent polymers. In general, larger oil sorbents with higher oil absorption capacity
are able to block wider cracks. In Wang et al.’s research [18], the oil sorbents had an average particle
size of 207 µm and a paraffin absorption capacity of 5.5 g/g. In comparison, the oil sorbents used
in this study had an average particle size of 520 µm and a paraffin absorption capacity of 12.4 g/g,
and therefore the healable crack width in this study was as much as 500 µm. The microscope images
only presented an indication of the blockage at the cracking mouth but did not reflect the overall
self-healing performance of the mixed soil samples. Therefore, investigations on the recovery of
permeability as described in the following section were carried out to obtain more comprehensive
information about the self-healing efficacy.

3.5. Recovery of Permeability in Soil Mix Cut-OffWalls Oil Sorbents

The permeability results of the undamaged, cracked, and post-healing mixed soil samples are
shown in Figure 7. After the cracking using the UCS frame, the damaged control, OS-5%, and OS-10%
samples had similar permeabilities of 1.7 × 10−7, 1.5 × 10−7, and 1.4 × 10−7 m/s, all of which were
higher than the undamaged values (~1.0 × 10−8 m/s) by an order of magnitude. After the six-hour
permeation of liquid paraffin, the oil sorbents on the crack surface swelled and blocked the crack
volume, thus decreasing the permeability. In the post-healing samples, the permeabilities of OS-5% and
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OS-10% samples dropped to 7.2 × 10−8 and 3.1 × 10−8 m/s, compared to unchanged permeability of the
control samples. Similar results of permeability recovery were obtained in previous studies on oil well
cement incorporating oil sorbents. Zhang et al. [19] added a lauryl methacrylate-styrene-hydroxyl ethyl
methacrylate copolymer with a paraffin absorption of 12.7 g/g in oil well cement, and they reported
that the permeability decreased from 2.64 × 10−3 to 0.25 × 10−3 µm2 after the samples were immersed
in paraffin for 30 days. The results also showed that the permeability of the post-healing samples
decreased as the oil sorbent content increased. Adding 5% oil sorbents reduced the permeability by
half of an order of magnitude, and a content of 10% substantially reduced the permeability by almost
an order of magnitude. It is, however, not suggested that the oil sorbents be added at a very high
content, because adding oil sorbents can adversely affect the strength of the mixed soil. It is therefore a
trade-off between reducing the strength and improving the self-healing performance. The oil sorbent
content of 10% used in this study could provide a reference: the post-healing permeability dropped by
almost an order of magnitude, although the UCS decreased by 22%.

Figure 6. Blockage of cracks by liquid paraffin-triggered swollen oil sorbents: (a,c) oil sorbents before
immersion and (b,d) oil sorbents after immersion in liquid paraffin.

Figure 7. Permeabilities of undamaged, cracked, and post-healing control and oil sorbent-
containing samples.
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3.6. Morphology of Oil Sorbents in Soil Mix Cut-OffWalls

To investigate the microstructure of mixed soil samples incorporating oil sorbents before and after
the absorption of liquid paraffin, SEM-EDX analysis was conducted. Before the permeation of liquid
paraffin, folded oil sorbent particles were observed on the cracking surface (Figure 8a). The oil sorbent
particle firmly embedded itself into the cementitious matrix, indicating the strong bonding between
the cement binder and the polymers. The bonding strength and friction between the polymer and
the cementitious particles enabled the oil sorbents to bear tensile stress that developed during the
cracking process, thus preventing the further opening of cracks. Macro pores with a size of ~30 µm
could also be observed within the folded oil sorbent particles due to the porous structure of oil sorbents.
However, these pores were not interconnected and did not extend through the entire particle, so
the adverse effect of oil sorbents on the undamaged permeability was negligible. The hydrophobic
hydrocarbon polymer backbone of styrene-ethylene/butylene-styrene polymer enables the adsorption
of organic contaminants; however, it also hinders the chemical bonding with the cement hydration.
Nonetheless, some cement hydration products were observed to precipitate on the surface and between
the folds of the oil sorbent, likely due to weak van der Waals forces. These hydration products included
clusters of fibrous calcium silicate hydrate (CSH), large hexagonal portlandite, needle-like ettringite,
and cubic calcite.

Figure 8. Representative results of (a) SEM image of an unswollen oil sorbent particle in cementitious
matrix and (b) EDX analysis of two points on the oil sorbent.
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To further analyze the oil sorbents and hydration products, EDX was used to determine their
elemental composition. EDX analysis was carried out on two locations in Figure 8a. A variety of
chemical elements, including oxygen, carbon, calcium, silicon, and aluminum, were detected on the
seemingly smooth polymer surface (Figure 8b). This shows that the oil sorbent surface was covered
with tiny cement hydration products. Likewise, the EDX-2 located on the cementitious particles also
showed the presence of carbon, indicating that the particle was actually a mix of the hydrocarbon oil
sorbents and cement hydration products. The two locations had very similar elemental compositions,
and the only difference between them lay in the concentrations of the elements. On the surface of oil
sorbent, carbon, a unique element of the oil sorbent polymer, accounted for the highest percentage of
the chemical composition. In contrast, on the cementitious particle, oxygen was the most-detected
element, indicating that cement hydration products were in the majority.

After the permeation of liquid paraffin for six hours, the oil sorbent-containing sample was also
observed under SEM. Before being sent into the chamber of the SEM, the samples were vacuum dried
for 5 days to remove the liquid paraffin from the oil sorbents. The swollen oil sorbent particles were
more porous than the unswollen state, and cavities could be seen throughout the particle (Figure 9).
These cavities used to be filled with absorbed liquid paraffin, and the evaporated paraffin created the
pore-structure in the oil sorbent particle. Despite the permeation of liquid paraffin and swelling of
the oil sorbents, cementitious particles were seen to be firmly attached to the oil sorbent polymers.
This indicates that the aggressive ingress of organic contaminants had no adverse effects on the bonding
between the cement hydration product and the oil sorbents.

Figure 9. Representative SEM image of swollen oil sorbents in mixed soil samples permeated with
liquid paraffin.

3.7. Self-Healing Process in Soil Mix Cut-OffWall Materials Incorporating Oil Sorbents

Uniform distribution of the oil sorbents in the mixed soil columns is achieved with the
laboratory scale auger set-up. This was confirmed with the high-resolution X-ray micro-computed
tomography conducted on the undamaged and post-healing mixed soil sample, as shown in Figure 10.
The undamaged oil sorbent-containing sample contained four phases: (1) the lightest air phase of the
pores within the folded oils sorbent particles and few pores between sand and binder particles that
were generated during soil mixing; (2) a light solid phase of oil sorbents; (3) a dense solid phase of
cementitious binder, and (4) the densest solid phase of sand particles. For the convenience of analysis,
a region of interest, 8.5 mm × 8.5 mm × 6.7 mm, was extracted and the representative 3D and 2D
images are shown in Figure 10a,b. The four phases were colored in the 2D image with black for air
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pores, red for oil sorbents, white for cementitious binders, and brown for sand particles. In the 2D
cross-sections, pores were mostly observed within the oil sorbents and not connected with each other.

Figure 10. Reconstructed (a) 3D and (b) 2D image of undamaged OS-10% specimen; (c) 3D and
(d) 2D image of post-healing OS-10% specimen (black for pores and cracks, red for oil sorbents, white for
cementitious binders, and brown for sand particles).

The post-healing sample was also scanned after the UCS-induced cracking and immersion in
liquid paraffin for six hours. Oil sorbents embedded in the cementitious matrix acted as an attachment
and binder to prevent the mixed soil sample from crumbling. In addition, it is shown that the swollen oil
sorbents with different sizes could effectively block and heal most cracks. In contrast to the vacuum-dried
post-healing samples for SEM tests, where paraffin had to be removed from the oil sorbents, the micro-CT
scan sample was saturated with liquid paraffin and the CT reflected the microstructure of the swollen oil
sorbents more accurately. A region of interest, 13.1 mm × 11.5 mm × 11.3 mm, was extracted and the
representative 3D and 2D images are shown in Figure 10c,d. From the 3D image, cracks shown in black
with an average width of 525 ± 202 µm were seen randomly distributed over the sample. Without the
incorporation of oil sorbents, the propagation of such wide cracks would normally disassemble the
mixed soil samples, thus suggesting the benefit of the oil sorbent to protect the integrity of the cracked
sample. The polymers absorbed liquid paraffin and swelled to form a saturated solid rubbery mass,
so there were no pores within the oil sorbents in the 2D slice, which is an apparent morphological
change of oil sorbents triggered by the organic contaminant. These swollen oil sorbents blocked
cracks and made it difficult for the permeated liquid to flow into the mixed soil further. In this way,
the permeability was reduced once the swelling behavior was triggered and the mixed soil self-healed.

To quantify the increase in volume of the swollen oil sorbent, the volumetric fractions of the oil
sorbents were measured in the micro-CT analysis. Figure 11 shows the extracted oil sorbent network
in the undamaged soil mix sample (left) and post-healing sample saturated with liquid paraffin (right).
The volumetric fraction of unswollen oil sorbents was 4.9% by total mix volume, while that of swollen
ones was 13.7%. This nearly three-fold increase demonstrates the capacity of the oil sorbent to occupy
the air space and block the cracks. In addition, the swollen oil sorbents form large, interconnected
polymer networks in the cementitious matrix, which contribute greatly in maintaining the integrity of
the mixed soil sample and in preventing the flow of permeated organic contaminants.
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Figure 11. Comparison of the extracted oil sorbent networks of (a) undamaged and (b) post-healing
OS-10% specimen.

4. Conclusions

This study developed organic contaminant-triggered self-healing soil mix cut-off wall materials
incorporating oil sorbents. The main conclusions were:

1. The laboratory-scale auger mixing produced good quality mixed soil columns with oil
sorbent-containing grout. The addition of oil sorbents was found to increase the ductility
of the mixed soil and allowed it to deform to a greater extent.

2. The 500 µm-wide cracks could be blocked and the permeability was reduced by an order of
magnitude after the permeation of liquid paraffin, indicating that the oil sorbents were capable of
absorbing the organic contaminants and swelling to heal the cracks.

3. SEM-EDX tests showed that the oil sorbent particle firmly embedded itself into the cementitious
matrix, indicating strong interfacial bonding. Micro-CT scan analysis verified the uniform
distribution of the oil sorbents during the mixing process. The oil sorbents swelled three times in
volume, triggered by liquid paraffin, and therefore blocked the cracks in the matrix.

4. These promising results exhibit the potential for the oil sorbents to provide soil mix cut-off walls
in organically-contaminated land with self-healing properties and enhanced durability.
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