
REVIEW

Rodent models of impaired fear extinction

Nicolas Singewald1
& Andrew Holmes2

Received: 23 July 2018 /Accepted: 24 September 2018 /Published online: 31 October 2018
# The Author(s) 2018

Abstract
The measurement of Pavlovian forms of fear extinction offers a relatively simple behavioral preparation that is nonetheless
tractable, from a translational perspective, as an approach to study mechanisms of exposure therapy and biological underpinnings
of anxiety and trauma-related disorders such as post-traumatic stress disorder (PTSD). Deficient fear extinction is considered a
robust clinical endophenotype for these disorders and, as such, has particular significance in the current Bage of RDoC (research
domain criteria).^ Various rodent models of impaired extinction have thus been generated with the objective of approximating
this clinical, relapse prone aberrant extinction learning. These models have helped to reveal neurobiological correlates of
extinction circuitry failure, gene variants, and other mechanisms underlying deficient fear extinction. In addition, they are
increasingly serving as tools to investigate ways to therapeutically overcome poor extinction to support long-term retention of
extinctionmemory and thus protection against various forms of fear relapse; modeled in the laboratory bymeasuring spontaneous
recovery, reinstatement and renewal of fear. In the current article, we review models of impaired extinction built around (1)
experimentally induced brain region and neural circuit disruptions (2) spontaneously-arising and laboratory-induced genetic
modifications, or (3) exposure to environmental insults, including stress, drugs of abuse, and unhealthy diet. Collectively, these
models have been instrumental in advancing in our understanding of extinction failure and underlying susceptibilities at the
neural, genetic, molecular, and neurochemical levels; generating renewed interest in developing novel, targeted and effective
therapeutic treatments for anxiety and trauma-related disorders.
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Canst thou not minister to a mind diseased,
Pluck from the memory a rooted sorrow,
Raze out the written troubles of the brain…
Shakespeare, Macbeth

Fear extinction: from Pavlov to the present

It is almost 100 years since I.P. Pavlov (1849–1936) described
extinction as a phenomenon whereby repeated non-reinforced
presentation of a conditioned stimulus (CS) led to the reduction
in the magnitude of the conditioned response(s) (CR) (Pavlov
1927). In the case of fear extinction, the CS is typically a previ-
ously neutral stimulus that, through conditioning, has come to be
associated with an aversive outcome, such that its occurrence
alone is capable of eliciting some form(s) of fear/anxiety/defen-
sive CR. The CR, and the degree of its diminution in amplitude
and frequency under extinction, can be objectivelymeasured and
quantified in the laboratory in human (e.g., galvanic skin re-
sponse, startle) and rodent (e.g., startle, freezing) subjects and
has even been documented in invertebrates (Eisenhardt 2014).
In part because of its conceptual appeal as an (ostensibly)
straightforward psychological phenomenon and the relative ease
of measurement across species in the laboratory, fear extinction
has become an increasingly popular behavioral assay in clinical
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and preclinical settings alike (Flores et al. 2018; Hariri and
Holmes 2015). Pavlovwould no doubt be astonished at the num-
ber of research publications that now in some way make use of
fear extinction (Fig. 1).

In addition to being relatively easy to compare readouts of
fear extinction between humans and rodents, given the simi-
larity of laboratory testing procedures, there are a number of
other factors that give extinction translational appeal. First, as
summarized below, many of the brain regions that have been
connected in some way to effective or deficient fear extinc-
tion, respectively, are common across humans and rodents—
lending credence to the idea that findings at the neural level in
one species are informative to the other (Milad and Quirk
2012). Second, fear extinction has repeatedly been found to
be impaired in various psychiatric conditions associated with
trauma, notably PTSD, but also phobias, panic disorder, and
obsessive-compulsive disorder (Lissek et al. 2005;Milad et al.
2008; Milad et al. 2009; Rauch et al. 2006; Rosen and
Schulkin 1998; Wicking et al. 2016; Zuj et al. 2016).
Indeed, poor fear extinction efficacy is linked to the persis-
tence and treatment resistance of symptoms in PTSD (King
et al. 2018b; Sijbrandij et al. 2013). Deficient fear extinction
therefore represents a robust clinical endophenotype for these
disorders and, as such, has particular significance in the cur-
rent Bage of RDoC^ (Anderzhanova et al. 2017; Lonsdorf and
Richter 2017). Third, extinction in rodents is impaired by

known factors in the etiology of trauma-related conditions—
we discuss some of these factors in greater detail below.
Fourth, the extinction of unwanted responses to reminders of
(a) prior trauma(s) is a core process underlying exposure ther-
apy for PTSD and other anxiety disorders. Indeed, individual
differences in fear extinction in humans are predictive of the
degree of fear reductions produced by exposure therapy (Ball
et al. 2017; Waters and Pine 2016) and enhanced extinction
recall positively predicts cognitive behavioral therapy (CBT)
outcome in, for example, social anxiety disorder (Ball et al.
2017; Berry et al. 2009; Forcadell et al. 2017).

The importance of models of impaired
extinction

The various facets of fear extinction support the face, con-
struct and predictive validity of this measure as a behavior
and higher-order neural process of relevance to both the path-
ophysiology and treatment of PTSD and other emotional dis-
orders. There is a pressing need for such translationally rele-
vant experimental paradigms because emotional disorders are
at globally pandemic proportions (Craske et al. 2017) and
resistance to current treatments remains a major constraint to
recovery (Sippel et al. 2018). While exposure therapy can be
successful in alleviating anxiety, fear extinction is an inherent-
ly fragile form of inhibitory memory that is prone to reinstate-
ment (in the face of stressors), spontaneous recovery (with the
passage of time) and renewal of fear (in non-extinction con-
texts) (Bouton 2014; King et al. 2018b; Vervliet and Raes
2013) (Fig. 2). These examples of fear relapse are observed
in individuals having undergone exposure therapy and follow-
up assessments. It has therefore been proposed that failure to
build fear inhibitory associations can explain the high rates of
fear relapse in anxiety disorder patients (Craske et al. 2014).
The risk of relapse thus remains a major limitation of current
therapies and advocates for the importance of models that
capture not just the extinction process per se, but a scenario
more closely approximating to the clinical, relapse-prone,
clinical picture of impaired extinction.

Much has already beenwritten on the topic of extinction. In
the current article, our goal is not to attempt a summary of the
vast literature pertaining to fear extinction. Rather, we aim to
highlight some of the work that has been directed at studying
and developing rodent models of impaired fear extinction.
This is because as already noted, by recapitulating the defi-
cient extinction present in anxiety and trauma-related disor-
ders, these models arguably have the greatest potential to re-
veal insight into important aspects of the pathophysiology of
these disorders. Furthermore, a better understanding of the
mechanisms of impaired extinction and the associated limita-
tions of current therapeutic strategies forms a solid platform
for designing new approaches to more effective therapeutics
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Fig. 1 The growing popularity of rodent models of impaired fear
extinction. A PubMed search was performed for the years 1990–2016
(inclusive), using the search term BExtinction^ (a) or a combination of
the terms BExtinction AND Alcohol OR Cocaine OR Heroin OR
Cannabis OR Amphetamine OR Ecstasy OR Nicotine,^ BExtinction
AND Gene OR Genetics,^ or BExtinction AND Stress^ (b)
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(Bukalo et al. 2014; Graham et al. 2011; Singewald et al.
2015).

We place models into somewhat arbitrary subcategories
based on how the impairment in fear extinction was produced:
by disruptions to neural function, via genetic engineering or
spontaneous variations, or from other factors including envi-
ronmental insults such as drug, bad diet, or stress exposure
(Fig. 3). A Bmodel^ in this context is a subject exhibiting an
impairment in extinction as a result of one (or more) of these
factors, and is distinguished from the use of fear extinction as
a test or assay (Cryan and Holmes 2005). We have not includ-
ed models of impaired extinction of avoidance behavior and
refer the reader to excellent recent review of this emerging
literature (Rodriguez-Romaguera and Quirk 2017). We ac-
knowledge from the outset that the scope of the article is far
from exhaustive and does not cover a great deal of important
research, particularly with regard to pharmacologically in-
duced deficits in extinction already covered in earlier reviews
(Giustino and Maren 2018; Singewald et al. 2015).

Fig. 2 Relapse of extinguished
fear poses an important challenge
in behavioral, extinction-based
therapies. This cartoon depicts
three of the principal ways relapse
can occur and which can be
modeled in the laboratory both in
animals and humans by return of
fear paradigms. Reinstatement:
the return of fear following
exposure to the original US or
stressors. Renewal: the return of
fear following exposure to the
original trauma-associated
context or to contexts that
otherwise differ from the therapy-
context. Spontaneous recovery:
the return of fear simply with the
passage of time since therapy. CR
conditioned response; US,
unconditioned stimulus
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Fig. 3 Some of the main classes of models of impaired extinction
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Nonetheless, relevant examples for each category are
shown in Table 1, together with observed evidence of corre-
sponding extinction-circuit abnormalities. In these examples
and elsewhere, we dissociate impairments (i.e., delayed and/or
no/insufficient reductions in conditioned responding) occur-
ring either within extinction-training, from deficits in extinc-
tion memory retrieval manifest at recent (e.g., 1 day) or more
remote (e.g., 1 week) timepoints after training. While the im-
portance of within-session extinction for longer-term reduc-
tion in fear responding is debated (Plendl and Wotjak 2010),
there is evidence to suggest that the rate of within-session
extinction determines vulnerability to fear relapse (King

et al. 2018b). In addition, at least some degree of within-
session extinctions appears to be important for pharmacolog-
ical boosting of extinction (Smits et al. 2013) (for further
discussion, see Singewald et al. 2015).

Toward a neurotopography of extinction:
system and circuit models of impaired
extinction

Altering the activity of specific brain regions is a classical
approach to mapping the key structures necessary for the

Table 1 Representative examples of rodent models of impaired fear
extinction. Effects on extinction training, retrieval (typically assessed
1 day after training) and fear relapse (assessed via spontaneous
recovery, renewal, or reinstatement). Abbreviations: I = impaired, N =
not impaired, n.d. = not determined, ↑ high freezing in fear relapse
paradigm, - not changed. FC = fear conditioning, BDNF = brain-

derived neurotrophic factor, BLA = basolateral nucleus of the amygdala,
CeL = centrolateral nucleus of the amygdala, CeM = centromedial nucle-
us of the amygdala, dmPFC = dorsomedial prefrontal cortex, IFN-α =
interferon alpha, LPS = lipopolysaccharide, SR = spontaneous recovery,
vmPFC = ventromedial prefrontal cortex, 5-HTT = serotonin transporter

Model subcategory Extinction
training

Extinction
retrieval

Fear
relapse

Extinction circuitry dysfunction Reference

Region and neural circuit disruptions

BLA inactivation (N) I n.d. (Sierra-Mercado et al. 2011

vmPFC inactivation I I n.d. (Sierra-Mercado et al. 2011

vHPC inactivation (N) I n.d. (Sierra-Mercado et al. 2011)

CeL cell-specific disruption N I n.d. (Gafford et al. 2012)

Genetic factors

5-HTT deletion I n.d. n.d. vmPFC/BLA dendritic dysmorphology,
vmPFC hypoactivity

(Wellman et al. 2007)

BDNF mutation I n.d. n.d. vmPFC hypoactivity (Soliman et al. 2010)

S1 inbred strain I I ↑ vmPFC/BLA hypoactivity, dmPFC/CeM
hyperactivity

(Hefner et al. 2008; Sartori et al.
2016)

S1 (weak conditioning) N I (Whittle et al. 2013)

Selection for trait anxiety I I ↑. vmPFC hypoactivity, dmPFC hyperactivity (Muigg et al. 2008; Yen et al.
2012)

Subpopulation stratification I I ↑ vmPFC/BLA dendritic dysmorphology (Laricchiuta et al. 2016)

Exposure to environmental insults, developmental factors

Acute stress I I n.d. vmPFC/BLA dendritic dysmorphology (Maroun et al. 2013)

Single prolonged stress N I ↑ vmPFC hypoactivity, BLA/vHPC
hyperactivity/connectivity

(Knox et al. 2012; Knox et al.
2018)

Acute stress and behavioral
stratification

I I ↑ vmPFC hypoactivity, BLA
hyperactivity/gene expression

(Sillivan et al. 2017)

Subchronic or chronic
stress

N I n.d. vmPFC dendritic dysmorphology (Izquierdo et al. 2006; Miracle
et al. 2006)

Chronic ethanol N I ↑ vmPFC hypoactivity, dmPFC dendritic
dysmorphology

(Holmes et al. 2012)

High fat/sugar diet I(trend) I n.d. Fewer vmPFC parvalbumin cells, increased
vmPFC FosB/ΔFosB

(Baker and Reichelt 2016)

Immune activation (IFN-α) I n.d. n.d. BLA microglia, astrocyte activation (Bi et al. 2016)

(LPS) I I n.d. (Quinones et al. 2016)

Adolescence N I n.d. (McCallum et al. 2010)

I I - vmPFC hypoactivity (Hefner and Holmes 2007;
Pattwell et al. 2013)
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acquisition, consolidation, or retrieval of extinction.
Traditional methods such local lesioning, interregional dis-
connection, electrical stimulation, and pharmacological (e.g.,
GABA receptor agonist) inactivation, have been supplement-
ed by newer optogenetic and chemogenetic approaches that
allow for access over specific neural populations and path-
ways with better spatial and/or temporal precision. From these
studies, it is clear that the learning of and the memory for
extinction is distributed in a network fashion across brain
areas including the prefrontal cortex (PFC), amygdala and
hippocampus, but also a range of additional structures such
as periaqueductal gray (PAG), bed nucleus of the stria
terminalis (BNST), VTA, striatum, and others.

The broad strokes of the principal findings to date are as
follows: Using a range of techniques, including temporary
inactivations, immediate-early gene analyses, single-unit re-
cordings, and optogenetics, activity in the dorsomedial PFC
(dmPFC) positively associates with high fear/poor extinction,
via reciprocal connections to pro-fear subpopulations of pro-
jections neurons in the basal amygdala (BA) (Burgos-Robles
et al. 2009; Courtin et al. 2014; Dejean et al. 2016; Fitzgerald
et al. 2014; Karalis et al. 2016; Senn et al. 2014; Whittle et al.
2010). Conversely, the ventromedial PFC (vmPFC) and its
projections to the BA exerts a pro-extinction effect
(Bloodgood et al. 2018; Bukalo et al. 2015; Sierra-Mercado
et al. 2006). In turn, ventral hippocampus (vHPC) inputs to the
central amygdala (CeA) (Xu et al. 2016) and vmPFC (Marek
et al. 2018) are recruited to gate the flow of information un-
derlying contextual fear and context-induced fear renewal af-
ter extinction, respectively.

The well-studied vHPC-mPFC-BA system subserving ex-
tinction is itself supported by other structures that are being
revealed by recent work. These include the ventrolateral
periaqueductal gray (vlPAG), which when inhibited impairs
extinction (and fear learning) (Arico et al. 2017; Tovote et al.
2015), the BNST, inhibition of which prevents stress-induced
fear renewal (Goode et al. 2015) and the lateral part of the
central amygdala (CeL), wherein different populations of cells
are predicted to promote or oppose the expression of extinc-
tion via inputs from the paraventricular nucleus of the thala-
mus (PVT) (Do-Monte et al. 2015; Haubensak et al. 2010;
Knobloch et al. 2012; Li et al. 2013; Penzo et al. 2015).
Thus, functional deficits at any of these multiple nodes within
the highly integrated Bextinction network^ potentially contrib-
ute to extinction deficits (Knox et al. 2018) (reviewed in
Holmes and Singewald 2013) and enhanced propensity for
fear relapse (Marek et al. 2018) in psychiatric disorders due
to irregularities in communication across the network. A re-
curring observation across a diverse set of models (Table 1)
links functional deficiencies in certain nodes in the Bextinction
circuit;^ in particular, emphasizing loss of function in the
vmPFC (infralimbic cortex) and BLA and CeL subregions
of the amygdala, and a corresponding over-engagement of

the dmPFC (prelimbic cortex) CeM amygdala nucleus. For
some examples of disruptions in fear extinction caused by
experimental manipulations of these nodes (see Table 1).

The notion of network disruptions underlying poor extinc-
tion is also already finding support from human functional
imaging studies, though the low spatial resolution of these
tools does not afford the same level of subregional changes
revealed by the rodent studies (Fenster et al. 2018; Fullana
et al. 2018; Sevenster et al. 2018). For instance, high resting
dmPFC metabolism correlates with low vmPFC and hippo-
campal activation during extinction recall and this, in turn,
associates with PTSD severity scores (Marin et al. 2016).
Moreover, hippocampal-vmPFC co-activation in healthy sub-
jects correlates with superior extinction recall (Kalisch et al.
2006; Milad et al. 2007; Rabinak et al. 2013), while stronger
hippocampal–dmPFC connectivity is associated with greater
fear renewal (Hermann et al. 2017). An important goal for
future human and rodent studies is now to further parse pre-
cisely how these finely balanced dynamic interregional inter-
actions breakdown during impaired extinction (Lesting et al.
2011; Muigg et al. 2008).

It is (not) all in the genes: genetic models
of impaired extinction

The fact that there is such high heritability estimates of PTSD and
anxiety disorders (Pitman et al. 2012; Stein et al. 2002), suggests
there is a genetic component to the risk of developing a clinical
disorder after encountering trauma(s) (Almli et al. 2014). The
most common (Breverse genetics^) approach to identifying ge-
netic factors associated with impaired extinction has been to
examine the behavioral consequences of engineering functional
changes (e.g., knockout, knockin, overexpression) in specific
genes encoding for molecules including Reelin, Pet-1, GAD67,
Plaur, Dynorphin, GRP, Trk B, Stathmin, and others (Bukalo
et al. 2014). Of those models based on well-known human poly-
morphisms, candidate genes associated with allele-specific vari-
ation in extinction (Lonsdorf and Kalisch 2011), include the
BDNF Val66Met (see Felmingham et al. 2018 for evidence of
a link between BDNF alleles and impaired fear extinction
learning in PTSD) and COMT Val158Met polymorphisms
(Table 1). Other examples are FKBP5 and the serotonin trans-
porter, 5-HTTLPR, which interacts with stress to influence risk
for PTSD (Caspi et al. 2010).

To date there have been fewer examples of models that are
based on a ‘forward-genetics’ approach that use a rat or mouse
strain exhibiting impaired extinction as a basis for elucidating
underlying biological and genetic correlates (Holmes and
Singewald 2013; McGuire et al. 2013). However, our labora-
tories have taken such an approach in examining a profound
extinction deficit in a common inbred mouse strain, 129S1/
SvImJ (S1), that was detected from a mouse inbred strain
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panel survey (Camp et al. 2009; Camp et al. 2012; Flores et al.
2014; Hefner et al. 2008; Temme et al. 2014). This inability to
extinguish fear is seen across cued and contextual fear para-
digms when contrasted with the profiles of normal
extinguishing (e.g., C57BL/6 J) mouse strains. Interestingly,
however, under Bweak^ (low shock) fear conditioning, short-
term extinction acquisition is evident in S1 mice but the ex-
tinction memory still fails to consolidate and express over the
long-term (Whittle et al. 2013).

The deficit in S1 mice does not extend to appetitively mo-
tivated instrumental extinction (Hefner et al. 2008), but there
is deficient safety learning and overgeneralization of fear to
ambiguous contexts and cues in these mice (Camp et al. 2012;
Temme et al. 2014). Notably, deficient safety learning and fear
overgeneralization are also characteristics of anxiety and
trauma-related disorders (Duits et al. 2015; Lissek et al.
2014; Lissek et al. 2005). In another clinical parallel, S1 mice
have lower heart rate variability (HRV) and depressed HRV
during extinction training (Camp et al. 2012); resembling the
reduced HRV seen in anxiety patients (Chalmers et al. 2014)
and the slow recovery of HRV after trauma recall in PTSD
patients (Arditi-Babchuk et al. 2009).

At the neural level, ex vivo immediate-early gene analysis
(Hefner et al. 2008) and in vivo neuronal recordings (Fitzgerald
et al. 2014) has revealed evidence of hyper-excitability in the
dmPFC andmedial nucleus of the CeA (CeM) and hypoactivity
in the vmPFC and BA of S1 mice (Table 1), consistent with the
respective pro-fear and pro-extinction roles of these regions.
Speaking to the translational relevance of these observations,
they align well with functional magnetic resonance imaging
studies of patients with PTSD that reported a hypoactivation
of the vmPFC and exaggerated amygdala reactivity during ex-
tinction recall (Garfinkel et al. 2014; Milad et al. 2009; Phelps
et al. 2004). The generation of an effective extinction memory
in these structures requires the expression and translation of
relevant plasticity and learning-associated genes (Orsini and
Maren 2012; Singewald et al. 2015).

The mechanisms by which the expression of genes are fine-
tuned to, in turn, shape extinction is an emerging area that has
also led to a focus on microRNAs (miRNAs) (Murphy and
Singewald 2018)—a class of short, single-stranded non-coding
RNAs (Smith and Kenny 2017). A pioneering study on this
subject showed that extinction training increased the
microRNA, miR-128b, to cause expression of a set of genes
which are associated with synaptic plasticity. When miR-128b
was experimentally increased in the IL of the B6 mouse strain,
it was found to promote fear extinction (Lin et al. 2011). In an
extinction-deficient mouse model, microarray approaches re-
vealed that miR-144-3p exhibited increased amygdalar expres-
sion following successful extinction training. Viral enhance-
ment of miR-144-3p expression in the BA rescued impaired
fear extinction in S1 mice leading to reduced conditioned re-
sponses during both training and extinction retrieval.

Furthermore, miR-144-3p overexpression protected against
the return of fear in extinction-intact B6 mice, suggesting that
miR-144-3p plays a critical role in extinction learning and long-
lasting fear alleviation via interaction with its target genes Pten,
Notch1, and Spred1, and their noted plasticity-associated down-
stream signaling cascades (Murphy et al. 2017).

Clearly, we remain in the earliest stages of defining how
extinction efficacy is influenced not only by inherited gene
variation, but also the ever-increasing range of mechanisms
that are engaged to lay down extinction memories by control-
ling gene-expression. This is certainly an exciting area to
watch going forward.

Stress, drugs, and bad diet: environmental
insult models of impaired extinction

We now turn to models of impairments in extinction produced
by various environmental insults and certain other factors
(Table 1). Given clinical evidence that a history of exposure
to stress is a major risk factor for anxiety and trauma-related
disorders, there have been multiple efforts to model stress-
induced extinction deficits in rodents and identify mecha-
nisms to prevent or reverse these (Chauveau et al. 2012)
This literature has been recently reviewed (Deslauriers et al.
2018; Maren and Holmes 2015; Stockhorst and Antov 2015),
but we would like to emphasize a number of the key findings
here. One notable point is that the literatures on the neural and
genetic correlates of impaired extinction increasingly align
with emerging evidence linking stress and extinction. As an
example, the aforementioned contrasting extinction pheno-
type of the S1 and B6 strains was exploited by a quantitative
genetic approach to uncover a genomic region associated with
extinction located on chromosome 3, and a novel candidate
gene (peptidylprolyl isomerase D, Ppid) encoded within this
genomic region (Gunduz-Cinar et al. 2018).

In turn, Ppid is a member of the tetratricopeptide repeat
protein family, which includes FKBP5, and is involved in
the regulation of steroid hormone receptors (Zannas and
Binder 2014). Moreover, Ppid alters extinction in a manner
requiring the glucocorticoid receptor (GR), suggesting this
gene affects extinction by modulating a key stress-regulating
system (Gunduz-Cinar et al. 2018). This latter finding is no-
table given an increasingly compelling translational evidence
implicating glucocorticoids in trauma-related conditions and
fear extinction (Maren and Holmes 2015) and S1 mice have
abnormal HPA-axis responses to stress (Camp et al. 2012).
For example, at least a subpopulation of PTSD patients show
increased sensitivity of the negative-feedback system of the
HPA-axis and lower cortisol levels (Yehuda 2002), while
(systemic or intra-BLA) administration of GR agonists pro-
motes extinction in rodents (Flores et al. 2018) and in humans
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with PTSD or other anxiety disorders (de Quervain et al. 2011;
Michopoulos et al. 2017; Soravia et al. 2014).

Another major take homemessage in this section is that the
effects of stress on extinction are dependent not only on the
type and chronicity of the stressors, but also on the age, sex,
and prior experience of the subject. For example, extinction
efficacy varies dramatically across development and adoles-
cence through into adulthood, both in rodents and in humans
(Baker et al. 2016; Pattwell et al. 2012) (Table 1). Concerning
stressor-type, to date, it seems that immobilization stress and
single prolonged stress produce particularly robust deficits in
fear extinction (Deslauriers et al. 2018). In an illustrative ex-
ample of the often reported nuances in this field, stressing
adolescent rats, through a combination of predator order and
elevated platform exposure, impaired extinction into adult-
hood but, for reasons that remain unclear, did so only in males
and not females (Ter Horst et al. 2012; Toledo-Rodriguez et al.
2012). This extends clear evidence of sex differences in fear
extinction (Baran et al. 2009; Fenton et al. 2016; Hunter 2018;
Matsuda et al. 2015; Shansky 2015; Shvil et al. 2014).

Adding to the complexity of this area, not only are there
varying responses to stress between sexes, but there is also
individual variation within a population of the same sex. For
example, following exposure to a footshock-based stress-en-
hanced fear learning procedure, male (but not female)
(C57BL/6 J) mice could be split into extinction-resilient and
susceptible subgroups, that were in turn associated with spe-
cific patterns of corticoamygdala activity (Table 1) and gene
expression (Sillivan et al. 2017). These data advocate for the
greater consideration of subpopulation differences in stress-
related models of impaired extinction, both to better approxi-
mate the marked individual differences in risk for stress dis-
orders in humans and predict the efficacy of drugs and other
therapeutic interventions (King et al. 2018a).

There are interesting overlaps between the effects of exposure
to stress and drugs of abuse, another risk factor for anxiety dis-
orders and PTSD, on extinction. For example, chronic cannabis
use is associated with impaired extinction in humans (Papini
et al. 2017) as is chronic ethanol exposure in rodents. Socially
isolating rats during adolescence has been shown to increase
ethanol drinking and impair fear extinction (Skelly et al. 2015),
while chronic exposure to vaporized ethanol impairs extinction
retrieval in mice, in association with dendritic dysmorphology
and blunted NMDA receptor-mediated neuronal transmission in
the dmPFC (Holmes et al. 2012). Along similar lines, 2 weeks of
ethanol consumption in a liquid diet rendered rats extinction
resistant (Bertotto et al. 2006), while a shorter regimen of intra-
peritoneally administered ethanol produced an increase in fear
during extinction acquisition and increased neuronal activation
(i.e., c-Fos expression) in the dmPFC, BA, CeA, and PVT
(Quinones-Laracuente et al. 2015). However, while stress and
ethanol exposuremay produce similar effects on extinction, there
is no clear cut relationship between differences in the propensity

to drink ethanol across mouse strains and the capacity for extinc-
tion (Crabbe et al. 2016).

Unlike most other abused drugs, alcohol is consumed like a
food and is a source of calorific intake. The degree to which
this contribute to the deleterious physiological effects of
chronic drinking is debated but may be relevant here given
recent evidence that abnormal diet can affect fear extinction.
Rats fed a high-fat/high-sugar diet over the course of 6 weeks
developed poor extinction (Table 1) and altered certain makers
of infralimbic cortex function (Baker and Reichelt 2016). One
possibili ty is that such effects are driven by the
neuroinflammatory responses that are associated with a
high-fat diet (Valdearcos et al. 2014). Giving credence to this
hypothesis are reports that immune activation (via lipopoly-
saccharide administration) disrupts fear extinction (Quinones
et al. 2016), as does intra-BLA infusion of interferon-α; in a
manner preventable by administration of a microglial activa-
tion inhibitor (minocycline) (Bi et al. 2016).

We wish to highlight these latter findings not to overstate
the potential importance of poor diet as a risk factor for
trauma-related conditions, but rather to underscore the
expanding range of environmental insults found to disrupt fear
extinction. A challenge for future work will be to model the
real-world combination of dietary factors, exposure to drugs
and life stressors faced by most at-risk individuals, and to use
the rodent models to decipher how these interact and poten-
tially synergize to affect clinical outcomes.

Outlook: using models of impaired extinction
to discover novel therapeutic strategies

The value of rodent models of impaired extinction is ultimate-
ly gauged by their utility as a platform for the identification of
novel mechanisms for therapeutically normalizing extinction.
While there are examples of targeting circuit abnormalities via
deep brain stimulation in these models (Rodriguez-
Romaguera and Quirk 2017; Whittle et al. 2013), much of this
work has focused on pharmacological approaches, reflecting
the continued importance of developing novel drugs for anx-
iety, and trauma-related disorders (Bukalo et al. 2014; Graham
and Richardson 2011; Singewald et al. 2015). Encouragingly,
certain models in mouse strains (e.g., S1 strain (Gunduz-Cinar
et al. 2013; Gunduz et al. 2015; Hefner et al. 2008; Sartori
et al. 2016; Whittle et al. 2010; Whittle et al. 2016; Whittle
et al. 2013) and rats, e.g., ethanol-exposed (Bertotto et al.
2006), stressed (Matsumoto et al. 2013), and adolescents
(Ganella et al. 2017; McCallum et al. 2010), have demonstrat-
ed that deficient extinction is effectively rescued by pharma-
cological manipulations of various transmitter systems includ-
ing serotonergic, glutamatergic, dopaminergic, noradrenergic,
endocannabinoid signaling. Along these lines, there is the ex-
citing potential for enhancing disturbed neuroplasticity in
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extinction-related circuits via epigenetic mechanisms such as
histone acetylation (Whittle et al. 2016; Whittle et al. 2013) or
altering the expression of specific microRNAs, such as
miR144 (Murphy et al. 2017) to produce long-term fear re-
ductions in extinction-impaired subjects.

Once a promising pharmacological target is identified, a
critical question is how it should be clinically administered
to maximize its therapeutic potential and mitigate risk of fail-
ure in clinical trials. In this regard, the administration of a
single drug concomitant to fear extinction in extinction-
deficient individuals does often not suffice to support the ex-
tinctionmemory-augmentingmechanism to an extent that pre-
vents temporal, spatial, or stress-dependent fear relapse
(Singewald et al. 2015). Using extinction-deficient mice, our
group was able to show for the first time that only the admin-
istration of neuropeptide S (NPS) before and the NMDA re-
ceptor partial agonist d-cycloserine (DCS) after successful
extinction training, but not administration of NPS alone re-
sults in formation of a robust extinction memory, which with-
stands various types of fear relapse (Sartori et al. 2016).

Supporting the utility of this dual pharmacotherapeutic con-
cept, it was demonstrated that fear relapses in extinction-
deficient mice can also be reduced by combined administration
of L-DOPA and the HDAC-inhibitor MS-275, concomitant to
extinction training (Whittle et al. 2016). This speaks to the
potential importance of dual or multiple pharmacotherapeutic
adjuncts to extinction in these cases. These should be critical
considerations in drug development when designing preclinical
experiments to evaluate translational potential in extinction-
impaired rodent models. Moreover, at present no drug that
can pass the blood brain barrier has a pharmacodynamic profile
that combines the advantages of promoting memory and reduc-
ing anxiety, without also being sedating. This is not to say it is
unfeasible and has already been achieved by neuropeptide S or
fibroblast growth factor-2 targeting drugs, (Graham and
Richardson 2011; Sartori et al. 2016) and endocannabinoid-
targeting approaches (Micale et al. 2013; Patel et al. 2017), to
give just a few examples. Although the pharmacological aug-
mentation of exposure-based therapies has not yet entered
broad clinical use, it represents an exciting idea with the clear
potential for improving clinical outcome.

Beyond pharmacological approaches, less conventional ap-
proaches have to date been less studied in extinction-deficient
models, but are certainly worthy of investigation. One interest-
ing modification to changing the way extinction memories are
formed simply involves training in multiple contexts (de Jong
et al. 2018). This could potentially mitigate against the context
dependency of extinctionmemories (Bukalo and Holmes 2018;
Maren et al. 2013) and the high rate of fear relapse after CBT
(Boschen 2009). Preliminary clinical work has shown that
performing exposure therapy in multiple contexts reduces, for
instance, the reoccurrence of fear of spiders (Vansteenwegen
et al. 2007). As more extinction trials/longer CSs are typically

needed to achieve reductions in fear in extinction-impaired in-
dividuals, behavioral manipulations that could potentially
shorten these procedures are of particular interest.
Reactivation of the original fear memory prior to or during
extinction training has been proposed to render fear memories
plastic and receptive to extinction (Monfils et al. 2009; Schiller
et al. 2010) (but see Luyten and Beckers 2017) and has been
successfully used to attenuate remote fear memories, which are
known to be resilient against extinction-mediated attenuation
(Khalaf et al. 2018). Along similar lines, there are neurally
based strategies for reversing plastic changes underlying fear
memory to enable extinction, including the targeting of
perineuronal nets around parvalbumin-positive interneurons in
the BA (Gogolla et al. 2009; Gunduz-Cinar et al. 2018).

A final point to underscore is that eventual success of novel
treatments will be bolstered by grounding them in a solid
understanding of how they act at the neural level. The field
can draw upon the great advances that have been made in
delineating the neural circuitry of fear extinction, as discussed
above (Hariri and Holmes 2015). In the ideal scenario, extinc-
tion rescuing effects in an impaired model can be aligned with
the normalization of disturbed neurobiological markers, in-
cluding abnormal patterns of brain activation within key brain
substrates for extinction (for an example, see Whittle et al.
2010). This notion of therapeutic circuit modulation is sup-
ported by clinical observations that successful exposure-based
CBT is associated with the reversal of dACC and amygdala
hyper-reactivity (Ball et al. 2017; Goossens et al. 2007;
Straube et al. 2006) and improved extinction recall is associ-
ated with increased vmPFC activity (Ball et al. 2017;
Lonsdorf et al. 2014; Milad et al. 2007). Though still prelim-
inary, these convergent neural and behavioral data, from both
the laboratory and clinic, help position models of impaired
fear extinction as a vital component of future research aimed
at developing effective new therapeutic approaches to allevi-
ating the suffering of patients with trauma-related conditions.
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