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Animal survival relies on a constant balance between energy supply and energy

expenditure, which is controlled by several neuroendocrine functions that integrate

metabolic information and adapt the response of the organism to physiological

demands. Polarized ependymoglial cells lining the floor of the third ventricle and

sending a single process within metabolic hypothalamic parenchyma, tanycytes are

henceforth described as key components of the hypothalamic neural network controlling

energy balance. Their strategic position and peculiar properties convey them diverse

physiological functions ranging from blood/brain traffic controllers, metabolic modulators,

and neural stem/progenitor cells. At the molecular level, these functions rely on an

accurate regulation of gene expression. Indeed, tanycytes are characterized by their

own molecular signature which is mostly associated to their diverse physiological

functions, and the detection of variations in nutrient/hormone levels leads to an

adequate modulation of genetic profile in order to ensure energy homeostasis. The

aim of this review is to summarize recent knowledge on the nutritional control of

tanycyte gene expression.
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INTRODUCTION

Living organisms require an adequate balance between energy supply and energy expenditure to
maintain cell and organ functions. While all cells are able to sense systemic cues of the immediate
environment in order to maintain energetic and cellular stability, the central nervous system is
often considered as the conductor orchestrating the maintenance of energy homeostasis by sensing
the global metabolic state and responding via efferent regulatory signals (1).

A large number of brain regions have been recognized to play a role in metabolic homeostasis,
but neuronal networks mainly converge to the hypothalamus, which contains numerous neural
cells that influence feeding and energy expenditure (1, 2). Among these cells, tanycytes have been
described as a component of the hypothalamic neural network controlling energy balance (3–6).
Tanycytes are special elongated and polarized ependymoglial cells that line the lateral walls and the
floor of the third ventricle (Figure 1) (7–9). They are morphologically distinguished from more
dorsally-located classical cuboidal ependymal cells by the absence of beating cilia that drive the
flow of cerebrospinal fluid (CSF), and by the presence of a single long radial process sent into
the mediobasal hypothalamus including the median eminence (ME) and hypothalamic nuclei
involved in the regulation of energy balance (Figure 1) (8). Due to their strategic position in
contact with 1—the CSF at their apical surface, 2—fenestrated blood capillaries in the ME, and
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3—blood-brain-barrier vessels and/or neurons that regulate
appetite/energy expenditure in the hypothalamic parenchyma
(Figure 1), tanycytes are henceforth considered as crucial
components of energy homeostasis regulation. Indeed, their
versatile functions include the dynamic regulation of blood-
brain and blood-CSF exchanges (10), the shuttling of circulating
metabolic signals to hypothalamic neurons (11, 12), the detection
of the metabolic state of the animal (10, 13–15), and neural
stem cell properties (16, 17). Moreover, they are able to
adapt the above-mentioned functions to the physiological
state of the animal (10, 11) which allow them to constitute
a key gear component in the hypothalamic regulation of
energy balance.

To regulate energy balance, one key process is the
coordination between gene expression and metabolic status
of the individual (18, 19). Indeed, molecular mechanisms relay
environmental metabolic cues such as nutrient availability
and/or hormone levels to the appropriate gene expression
response, that will ensure the appropriate cellular function and
thus the latter’s regulation of energy balance. Although poorly
described, these processes also occur in tanycytes during energy
imbalance in order to adapt their functions to the metabolic
state. This review will focus on the regulation of gene expression
in tanycytes necessary for their function and plasticity in the
metabolic hypothalamus. It will first define each tanycyte

FIGURE 1 | Is tanycyte subtype classification obsolete? (A) Tanycytes are polarized ependymoglial cells lining the basal part of the third ventricle (3V), visualized by

vimentin immunostaining (white). (B) Tanycytes have been classified in four subtypes (β1, β2, α1, and α2). (C) Tanycytes (light gray) are morphologically distinguished

from classical multiciliated cuboidal ependymal cells (dark gray). They send a single long radial process into the mediobasal hypothalamus including the median

eminence (ME), the arcuate nucleus (ARH), the ventromedial nucleus (VMH), and the dorsomedial nucleus (DMH). Tanycytes lining the ME and vmARH are uniciliated

cells, contact fenestrated vessels (red) and carry blood/brain barrier (green), whereas tanycytes lining the dmARH, the VMH and the DMH are biciliated cells, and

contact neurons and blood/brain barrier vessels (pink/green). In the vmARH, vessels are permeable or not according to the energy status of the individual (red/green

dashes). (D) Many genes exhibite a gradient, rather than a clear-cut distribution across tanycyte subpopulations.

subtypes associating their molecular signature to their specific
functions. Secondly, I will provide our current understanding
about the effects of nutrition on tanycyte gene expression
and its consequent impact on tanycyte function. Finally, the
potential molecular mechanisms leading to these modulations
will be discussed.

MOLECULAR INSIGHTS INTO TANYCYTE
CLASSIFICATION AND
METABOLIC FUNCTION

Tanycyte Classification
Tanycytes do not constitute a homogeneous cell population
(20–22); to the contrary, they show a complex heterogeneity
which is not fully comprehended yet. Depending on their
dorsoventral location along the third ventricle, the different
hypothalamic nuclei where their processes are sent, and their
morphological, structural, genetic and functional properties (20),
tanycytes have been classified in four subtypes (β1, β2, α1,
and α2) (Figure 1). β2 tanycytes line the floor of the third
ventricle in the ME of the hypothalamus, and contact the
perivascular space facing the hypothalamo-hypophysial portal
system—characterized by a fenestrated endothelium—together
with neuroendocrine secretory axon terminals. β1 tanycytes
line the lateral evaginations of the infundibular recess and the
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area of the ventromedial arcuate nucleus (vmARH), and contact
en passant periventricular vessels before continuing into the
parenchyma up to the perivascular space of lateralME fenestrated
vessels or the pial surface of the brain. α2 tanycytes line the
area of the dorsomedial arcuate nucleus (dmARH), whereas α1
tanycytes line the ventromedial (VMH) and dorsomedial nuclei
(DMH). α tanycyte processes are sent into the brain parenchyma
where they contact blood-brain barrier (BBB) vessels and/or
neurons (20).

Tanycyte Genetic Profiles Are Associated
to Specific Metabolic Functions
While some genes are commonly expressed in the entire tanycyte
population (e.g., Ppp1r1b, Vim, Rax, Dio2, Slc16a2) (23, 24), each
tanycyte subtype also exhibits its own molecular signature which
is mostly associated to their various physiological functions in the
regulation of energy homeostasis.

Hence, β tanycytes are described as component of blood-
brain interface (8, 25, 26) able to dynamically control the access
of nutrients and hormones to the brain (10), as well as the
secretion of neuropeptides into the hypothalamo-hypophysial
vascular system in the ME (3, 27, 28); whereas α-tanycytes
are described as modulators of neuronal activity (29–31). Both
α- and β-tanycytes are also considered as chemosensitive cells
(4, 6) and diet-responsive adult neural stem cells (32). Although
the molecular mechanisms underlying these various functions
remain largely unknown, numerous genes have been associated
to them in the literature and/or using publicly available gene
expression databases (i.e., Allen brain atlas) (4, 5, 20, 23, 24,
33). Therefore, β tanycytes in direct contact with fenestrated
capillaries are the only subtype to express tight junction protein
Claudin1 (Cldn1) (8–10), necessary to ensure a tight blood-CSF
barrier, and the vascular endothelial growth factor (Vegf ) (10),
necessary to ensure the permeability of ME vessels. In another
hand, they specifically express N-Cadherin (Cdh2) and Caveolin-
1 (Cav1) (34), which are implicated in endocytosis/transcytosis,
and/or recycling of cell surface receptors for the regulation of cell
signaling. Still related to their transporter properties, GLUT1–
known as facilitated glucose transporter member 1 (Slc2a1)–
is expressed in β1 tanycytes and, to a lesser extent, in β2
tanycytes (34–36). β tanycytes have also restricted expression
of neural stem markers such as Sox2 (16, 17, 37, 38), Fgf-10
(17, 39, 40), Blbp (17), and Musashi1 (17), as well as several
growth factor receptor genes, such as Fgfr1 (38, 41) and Cntfr
(42), consistent with their stem/ progenitor cell function. In
contrast, the gene markers of α tanycytes are more similar to
non-tanycyte ependymal cells than β tanycytes. In particular, α
tanycytes making contact with BBB capillaries and/or neurons
express GLAST (Slc1a3) (17, 43), MCT1 (Slc16a1) and MCT4
(Slc16a4) (29) involved in the recapture of glutamate and lactate
transport, respectively, necessary for the modulation of neuronal
activity. They also express connexin 43 (Gja1), a component of
gap junction which allow intercellular communications between
adjacent cells (44–46). α tanycytes also express Fgf18 (40) and
Prss56 (47), which have been associated to their stem/progenitor
cell function.

Towards a New Tanycyte Classification
Although helpful, this classification in α vs. β tanycytes is a
too simplistic generalization. Indeed, recent advances in our
understanding of tanycyte physiology suggest that the current
classification is no longer adequate and should be revised:
associating one gene to one function to one tanycyte subtype is
become pretty tricky, leading to confusion within the scientific
community. For instance, while β tanycytes are associated to
permeable fenestrated vessels in the ME and α tanycytes to
BBB capillaries in the ARH, the VMH and the DMH, the
permeability of vmARH vessels varies according to the energy
status of the individual (10), which means that the status
of tanycytes lining the vmARH would oscillate between α

and β phenotypes (Figure 1). The main explanation for these
issues is that intermediate zones in which tanycyte subtypes
interdigitate are observed along the mature 3V ependymal
layer (Figure 1) (8, 48), making difficult to reliably distinguish
each subtype. Consistently, although specific characteristics and
marker genes are used to separate tanycyte subtypes, many genes
exhibited a gradient, rather than a clear-cut distribution across
tanycyte subtypes (Figure 1). This suggests that tanycytes may
be composed of continuous cell trajectories with transition zones
between different subtypes and that more than four subtypes may
be defined.Moreover, tanycytes belonging to a given subtypemay
interact with different neural cell types and different neuronal
populations with a possible impact on their transcriptomic
profiles resulting in different subpopulation groups within the
same tanycyte subtype (Figure 1). Finally, tanycytes may also
show a further degree of diversity within each subtype depending
on the physiological status of the organism (10). Therefore,
drawing a comprehensive picture of tanycyte molecular signature
and, by this way, improving their classification is crucial and
constitute the next challenge in understanding tanycyte biology
and functions in the regulation of energy balance.

Major technological advances offer nowadays more powerful
tools to analyze cell molecular profiles and, in our case, to
improve tanycyte classification in a way that better reflects
their complex biology. Recently, single-cell RNA sequencing
(scRNA-seq) on dissected mediobasal hypothalamus has been
used to characterize the genetic signature of hypothalamic
neural cells (23, 24). Tanycyte population and their 4 subtypes
have been found in these studies. Chen et al. (24) used high-
throughput Drop-seq method to sequence more than 14,000
single cells obtained from dissociated hypothalamic tissues.
Using semi-supervised clustering analysis, they identified 45 cell
clusters with distinct gene expression signatures. Among these
clusters, they distinguished one Sox9+ and Rax+ cell cluster—
transcriptionally distinct from ependymocytes and other glial
cell types—corresponding to tanycytes. A deeper characterization
of their transcriptional heterogeneity was able to identify the
four known tanycyte subtypes. In the second study, Campbell
et al. (23) also used Drop-seq to analyze more than 20,000
single cells obtained from medio-basal hypothalamus (ARH-
ME region), and their clustering analysis revealed two clusters
for tanycytes. While data also confirm four tanycyte subtypes,
they also characterize a new tanycyte gene with very restricted
patterns of expression. Indeed, Sprr1a which participate to the
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impermeabilization of the skin, is found only at the border
between ARH and ME, where tanycytes are thought to form a
diffusion barrier (8, 49), suggesting the presence of an additional
tanycyte subgroup with special diffusion barrier properties. This
data therefore provides the first evidence that there is a wider
range of tanycyte cell types along the third ventricle. Using
tSNE map associated to in situ hybridization data from Allen
brain atlas, these two studies defined novel markers for each
tanycyte subtypes (23, 24). In these two studies, Nestin (Nes) and
Vimentin (Vim) are highly transcribed in tanycytes, confirming
their origin from embryonic radial glia and their function
as neural stem cells in adult hypothalamus. However, these
genes are also highly expressed in ependymal cells and cannot
serve as tanycyte-specific markers. Some tanycyte-enriched genes
found in these studies include Col23a1, Slc16a2, Rax, Lhx2,
Prdx6, and Ptn. Moreover, α tanycyte markers include Cd59a,
Slc17a8, Crym, and Vcan; α2 and β1 tanycyte markers include
Frzb and Penk; and β tanycyte markers include Col25a1,
Cacna2d2, and Adm genes. Additionally, in silico analysis of
high-throughput single cell transcriptomics also allows them to
define potential tanycyte functions according to their molecular
signature (23, 24). Indeed, gene ontology analysis of the tanycyte-
specific genes identified terms that include signal transduction, G
protein-coupled receptor signaling pathway, and modulation of
synaptic transmission, consistent with their known functions in
transmission of metabolic information to neurons. On another
hand, Campbell et al. used an analytical tool called DEPICT
(Data-driven Expression Prioritized Integration for Complex
Traits), designed to systematically prioritize tissue or cells based
on enriched expression of GWAS-associated genes. This tool
allows them to predict that transcripts from waist/hip ratio-
associated loci (but not BMI, type 2 diabetes, or anorexia-linked
loci) are enriched in tanycytes (23).

The first single-cell studies including tanycytes therefore
brought out many new information. The novel tanycyte-
and tanycyte subtype-specific markers identified will allow the
development of genetic tools for delineating, labeling, and tracing
the different tanycyte subtypes, as well as achieving their specific
manipulation using relevant Cre or CreERT2 mouse lines in
order to comprehensibly dissect their different functions in the
regulation of energy metabolism. Moreover, the identification
of Sprr1a as a specific marker for the tanycytes located at the
corner of the infundibular recess confirms the existence of more
than 4 tanycytes subtypes (23). However, our knowledge about
tanycyte molecular signature remain basic. First, these scRNA-
seq approaches have a low resolution due to the fact that they
take into account many other neural cell types (only 15% of
total cell number are tanycytes): this suggests that other tanycyte
subtypes and specific markers are yet to be identified. Secondly,
these data are still focus on the ventrodorsal organization of
tanycytes but we still know very little about their anterio-
posterior regionalization (43, 50). Thirdly, tanycyte molecular
signature could also be impacted by neural populations with
which they interact. Indeed, cells sense the presence of potential
interaction partners through a wide range of receptors and,
specifically respond by changing the expression of many
target genes via complex regulatory networks. α tanycytes

contacting endothelial cells, as well as different glial and neuronal
populations, numerous tanycyte subtypes are consequently
expected. Finally, on a wider scale, tanycytes could also be
classified according to the regulatory networks to which they
belong. New approaches—notably the association of tanycyte cell
sorting with single cell transcriptomics, and 3D fluorescence in
situ hybridization—are therefore necessary in order to complete
tanycyte molecular classification.

MODULATION OF TANYCYTE GENE
EXPRESSION IN RESPONSE TO
METABOLIC CHALLENGES

Among genes expressed in tanycyte population and/or subtypes,
several of them are involved in the regulation of energy balance.
Although tanycytes are not unique cells expressing these genes
within the metabolic hypothalamus, the functional importance
of tanycyte genes is suggested by the fact that their expression is
tightly regulated by the energy status and/or that their tanycyte-
specific deletion have an impact on energy balance. Indeed, many
studies have highlighted genes that are differentially regulated
in α and β tanycytes in response to food restriction and/or, in
seasonal mammals, to photoperiod (Table 1). These changes are
associated with a plasticity of tanycyte function, which has been
proved to be crucial to adapt the physiological response to the
metabolic state and restore energy balance.

Tanycytes Control the Access of Nutrients
and Hormones Into the
Metabolic Hypothalamus
To maintain energy homeostasis, tanycytes ensure an efficient
communication between the periphery and the brain, notably the
ARH. Indeed, β tanycytes form a “tanycyte barrier” by expressing
tight junction proteins in a continuous belt around their cell
bodies in front of fenestrated blood vessels present in the ME
(8). This delocalization of barrier properties from the vascular
wall to the ventricular wall gives tanycytes a key role in the
control of the access for peripheral metabolites and hormones
to the ARH: indeed, they constitute a “three-way exchange
interface” between the blood, the CSF and the brain parenchyma
(8, 10–12). During an energy imbalance, blood–ARH exchanges
are crucial events to detect changes in homeostatic status and
adequately answer the physiological demands. Our studies have
shown that tanycytes are capable of modifying their own barrier
properties to create a privileged route for circulating metabolic
signals to ARH neurons (3, 51). Concretely, we observed an
increase in the number of fenestrated vessels associated to the
strengthening of the tanycyte barrier (10). Especially, vessels
present in the vmARH, belonging to capillary loops arising
from the ME, lose their usual BBB properties, and display
fenestrations after 24 h fasting, allowing consequently a passive
and rapid diffusion of the circulating hormones and nutrients
towards a discrete population of appetite-regulating vmARH
neurons (10, 52). This vascular remodeling is thought to be
due to drops in blood glucose levels (10) likely detected by
tanycytes themselves thanks to their glucose-sensing properties
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(6, 13, 14) (see below): indeed, this remodeling is mimicked by
intracerebroventricular injections of non-metabolizable glucose
analog in fed animals and prevented by the normalization of
glucose levels in fasting animals (10). While many growth factors
are involved in controlling structural plasticity in the brain,
hypoglycemia-induced plasticity of the blood–ARH interface is
modulated by VEGF (10), a growth factor known to induce
vascular plasticity (53). It is now well-established that acute
hypoglycemia rises VEGF levels, by increasing Vegfa mRNA
expression (54), stability (55) and translation (56). In our model,
transcriptional analysis on FACS-isolated tanycytes showed an
increase in Vegfa expression specifically in tanycytes during
fasting (10).Moreover, the selective knockout ofVegfa expression
in tanycytes using a cre-lox approach revealed that the absence
of tanycyte Vegfa regulation attenuates the effect of fasting
on the ME-vmARH vascular plasticity (10). Interestingly, the
up-regulation of Vegfa expression in tanycytes during fasting
is concomitant with an increase in hypoxia-inducible factor
1α (Hif1a) expression, known to be involved in hypothalamic
glucose-sensing (57) and to promote Vegfa expression (54).
HIF-1a could thus be the missing link between hypoglycemia
and Vegfa expression in our model. This vascular plasticity is
accompanied by a concomitant reorganization of tanycyte tight
junction complexes in both the ME and the vmARH, aiming to
maintain brain homeostasis which could be disturbed by these
newly permeable vessels (10). That partly results from an increase
in the expression of transmembrane TJ proteins (e.g., Ocln and
Cldn1mRNA) in fasting condition (10). However, further studies
are necessary to determine whether the increase in TJ protein
expression is directly linked to tanycyte detection of glucopenia
and may be the result of the appearance of newly-fenestrated and
permeable capillaries in the ME and vmARH parenchyma.

The presence of tight junction complexes at the apical pole
of β tanycytes not only prevents the diffusion of blood-borne
molecules through the paracellular cleft, but also creates cell
polarity and consequently the establishment of transcytosis. In
the context of energy balance, the transport of leptin (11) and
ghrelin (12) towards the CSF has been observed in tanycytes.
The reorganization of tanycyte tight junction complexes in
conditions of energy deficit and the consecutive polarization of
vmARH tanycytes may consequently impact tanycyte hormonal
transports. Changes in homeostatic status also modulate nutrient
transports. Indeed, gene expression analysis on FACS-isolated
tanycytes in fed vs. fasted state revealed an upregulation of the
facilitated glucose transporter 1 (GLUT1, also known as solute
carrier family 2 Slc2a1) (10) in fasted condition, whatmay involve
once again the transcription factor HIF-1 (58). If the expression
of other factors involved in hormonal/nutrient transports (e.g.,
clathrin Clta, Cltb or/and Cltc; lepr) is differentially regulated by
energy imbalance is still unknown.

The functional significance of the differential regulation
of tanycyte genes is the opening of the “ARH window” to
the periphery. Indeed, dye and hormone infusion as well
as microdialysis showed an increased access of blood-borne
molecules towards appetite neurons located in the vmARH
(10, 52), allowing the adaptation of feeding behaviors to the
nutritional status of the individual.

Tanycytes Directly Sense the Metabolic
State of the Organism
Central control of energy balance requires the monitoring of
many circulating signals–including both circulating metabolites
such as glucose, free fatty acids and amino acids, and secreted
hormones such as ghrelin, leptin and insulin–that provide
information about the nutritional status and body energy stores.
Many studies have described tanycytes as metabolic sensors
able to detect glucose (13, 14, 44, 46), amino acids (15), or
leptin (11). Tanycytes (mainly α tanycytes and in a lesser extend
β tanycytes) have mainly been shown to be able to detect
changes in glucose levels in the CSF and release paracrine
factors (e.g., ATP), that activate neighboring tanycytes (13)
but could also potentially activate neighboring hypothalamic
neurons (59, 60). The idea that tanycytes act as glucose-sensors
has gained credence with the demonstration that selective
glucose puffing onto tanycyte cell bodies induces Ca2+ waves
in brain slice preparations (13) or in primary tanycyte cultures
(46), as well as the immunodetection of molecules known to
be essential components of glucose metabolism in pancreatic
β-cells (61), such as the glucose transporter GLUT2 (62),
glucokinase (63, 64), and the KATP channel subunits Kir6.1
(62, 65). However, non-metabolizable glucose analogs (e.g.,
2-deoxy-D-glucose and methyl-α-D-glucopyranoside) are also
capable of evoking these signals in tanycytes (13), suggesting
that tanycytes would not completely mimic β-cell sensing
and/or that different mechanisms exist according to tanycyte
subtypes. Thereupon, three different potential mechanisms have
been proposed (4), involving 1- Na+-linked glucose transporter
(SGLT), 2- G-protein coupled receptors (Taste receptors T1r1/3
and metabotropic glutamate receptor mGluR4) (14), or/and 3-
glucokinase-dependent metabolism of glucose to ATP (46, 66).
The last mechanism is supported by the fact that pharmacological
(46, 67) and genetic inhibition of glucokinase (Gck) (66) in
tanycytes disturbs their glucose-sensing and have an impact on
the regulation of energy balance. Interestingly, the expression
and the subcellular localization of GCK varies according to
the metabolic state of tanycytes. Indeed, Salgado et al. (64)
have observed a 2-fold reduction of Gck mRNA level in the
mediobasal hypothalamus of hypoglycemic rats compared to
normoglycemic condition and a 2-fold increase in hyperglycemic
rats. However, using tanycyte isolated by FACS in fed vs.
fasted condition, we did not observe variations in Gck mRNA
expression in mice (10). Moreover, the transcriptional regulation
of Gck in rats is associated to a regulation of its localization
and consequently of its activity (64). Hyperglycemic rats display
an intense GCK nuclear localization (inactivation of GCK),
whereas hypoglycemia induces a diffuse GCK immunoreaction,
mainly localized in the apical pole of tanycytes (64). Future
work is necessary to determine whether the expression of other
components involved in tanycyte glucose-sensing is modulated
in response to energy imbalance. Moreover, the different glucose-
sensing mechanisms observed in tanycytes suggest that different
tanycyte subtypes display differential responses to glucose,
and tanycyte subgroup-specific gene expression modulation in
response to glucose should consequently be investigated.
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Seasonal Cycles Modulate
Tanycyte Functions
The regulation of gene expression in tanycytes to control
energy metabolism has been largely documented in the context
of seasonal cycles (4, 68, 69). In the natural environment,
mammalian models sensitive to photoperiod (e.g., CBA/N and
C3H mice, F344 rats, Djungarian hamsters) adopt behavioral
and physiological adaptations (i.e., hibernation, daily torpor,
migration, changes in pelage, reproduction, and altered feeding)
resulting from both innate rhythmical processes orchestrated by
photoperiod and an adaptation to food availability. In general,
mammals increase food intake and accumulate energy stores
in spring and summer (corresponding to a long photoperiod);
and then reduce appetite, conserve energy by entering in
hypometabolic states and/or survive by catabolizing their
stored energy depots in winter (corresponding to a short
photoperiod). Therefore, seasonal animals are useful models
for studying differential patterns of gene expression related to
energy expenditure and appetite. Interestingly, numerous genes
expressed in tanycytes display a photoperiodic regulation of their
expression, confirming a crucial role of these cells in the control
of energy balance. These changes in gene expression mainly
include gene involved in thyroid hormone signaling (e.g., Dio2,
Dio3, and Oatp1c1), and retinoic acid signaling (e.g., Raldh1,
Crbp1, Ttr, and Stra6) pathways (4, 69).

First, the photoperiodic control of metabolism by tanycytes
mainly relies on their ability to locally regulate thyroid hormone
bioavailability in the metabolic hypothalamus through the
regulation of deiodinases (Dio2 and Dio3) expression (72, 73).
Thyroid hormone (triiodothyronine or T3) is a regulator of
energy balance and lipid metabolism, though peripheral and
central effects (74): many studies have shown that a decrease
in T3 reduces food intake and promotes the catabolism of
abdominal adipose tissue, whereas T3 hypothalamic infusion
inhibit the reduction of appetite and loss of weight that normally
occurs under short photoperiod (70). Moreover, T3 regulates the
responses of neuropeptide Y (NPY)-containing neurons in the
arcuate nucleus to food deprivation (30). Initially synthesized as
a prohormone, L-thyroxine (or T4) is converted by DIO1 and 2
to the active hormone, triiodothyronine (or T3), which can be
then inactivated by DIO3 to the inactive form called T2. In the
mediobasal hypothalamus, tanycytes are the main locus for Dio2
andDio3 expression (72, 73). They also express the organic anion
transporting polypeptide 1C1 (Oatp1c1) and monocarboxylate
transporter 8 (MCT8, Slc16a2 gene) (75), which are involved in
the uptake of T4 and T3. The hypothesis is that the prohormone
T4 is taken up by tanycytes from the circulation or the CSF via
MCT8 and OATP1C1, DIO2 then converts T4 to the active T3,
which can diffuse into the surrounding hypothalamic nuclei and
act on neurons involved in the regulation of metabolism (76).
Interestingly, these genes are differently regulated in tanycytes.
One of the most profound changes in Dio2 and Dio3 expression
occur in numerous seasonal rodents: under short photoperiod,
a downregulation of Dio2 and upregulation Dio3 have been
observed in hamster and rat tanycytes (77, 78), leading to
a decrease in the bioavailability of T3 in the hypothalamus

TABLE 1 | Gene expression modulation in tanycytes and associated functions in

the regulation of energy balance.

Gene Tanycytes Functions Condition Regulation

Vegf β Barrier plasticity Fasting Up

Hif1 ? Barrier plasticity Fasting Up

Ocln α1 Barrier plasticity Fasting Up

Cldn1 β and

ventral α2

Barrier plasticity Fasting Up

Slc2a1 β Transport Fasting Up

Gck All Glucose sensing Fasting Down

Dio2 All T3 bioavailibity Long day,

Fasting

Up

Dio3 All T3 bioavailibity Long day Down

Oatp1c1 All T3 bioavailibity Long day Up

Slc16a2 All T3 bioavailibity Long day,

Fasting

Up

Gpr50 All T3 bioavailibity Long day Up

Nmur2 All T3 bioavailibity Long day Up

Aldh1a1 All Retinoic acid signaling Long day Up

Ttr All Retinoic acid signaling Long day Up

Crbp1 All Retinoic acid signaling Long day Up

Stra6 All Retinoic acid signaling Long day Up

crabp2 All Retinoic acid signaling Short Day Down

Rarres All retinoic acid

signaling/Neurogenesis

Long day Up

rar/rxr All Retinoic acid

signaling/Neurogenesis

Short Day Down

Trhde β2 TRH secretion T3 infusion Up

Cntf All Neurogenesis High fat diet Up

Fgf10 β Neurogenesis Fasting Up

Slc1a3 α Neurogenesis Short Day Down

Nes All Neurogenesis Short Day Down

Vim All Neurogenesis Short Day Up

Built from Langlet (3), Bolborea and Dale (4), Langlet et al. (10), Goodman and Hajihosseini

(33), Salgado et al. (64), Lewis and Ebling (69), Murphy and Ebling (72), and Severi et al.

(73). ? Tanycyte subtype is unknown.

and consequently in a decrease of appetite (68). Moreover,
tanycytes may also integrate a number of other signals in
addition to photoperiodic information in order to regulate
hypothalamic thyroid hormone bioavailability. For example, food
deprivation increases Dio2 and Slc16a2 mRNA in β tanycytes
of rats, potentially allowing a global increase in T3 levels in
the hypothalamus to stimulate food intake (79, 80). Different
mechanisms have been proposed to explain these variations
in gene expression. The main neuroendocrine mechanisms
underlying these metabolic changes rely on the regulation of
melatonin secretion by the pineal gland according to changes
in the nocturnal duration (81). Indeed, different studies showed
that changes in melatonin secretion alter the release of paracrine
factors from the pars tuberalis, which in turn regulates gene
expression in tanycytes, notably those encoding DIO enzymes
(82). Different paracrine factors modulating tanycyte gene
expression have been described including the b subunit of
thyroid stimulating hormone (Tshb) (83), and the neuropeptide
Neuromedin U (Nmu) (84). TSH receptor and NMU receptor
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are expressed in tanycytes and their activation induce Dio2
expression (85). Interestingly, NMU receptor (Mnur2) are
photoperiodically regulated in the hypothalamus of F344 rats,
with a highest level during long days (86). Some other receptors
have also been shown to be expressed in tanycytes, differently
regulated according the day length, and involved in the regulation
of Dio2 expression. A first candidate is FGFR1c, a receptor
for a family of growth/endocrine factors (including FGF2 and
FGF21), involved in the regulation of energy homeostasis (87)
and expressed in tanycytes (88). The selective inhibition of
this receptor by local infusion of neutralizing antibodies into
the third ventricle of Siberian hamsters reduced food intake
and body weight as well as Dio2 expression in tanycytes
during long days (when Dio2 expression is normally high and
animals gain weight), but not during short days (when Dio2
expression is low and animals lose weight) (89). GPR50, a
receptor having homology with themelatonin receptors although
it does not bind melatonin, is also functionally linked to seasonal
metabolic regulation, especially in the context of adaptive
thermogenesis and torpor (90). Present in tanycytes (91, 92),
Gpr50 expression is downregulated in the Djungarian hamster
under short photoperiods (93), when these animals are prone
to display torpor. Moreover, Gpr50 knockout (KO) mice display
a state of torpor when fasted or treated with 2-deoxyglucose
(90): this effect appear to be mediated via thyrotropin-releasing
hormone (TRH) given that it is reversed by treatment with TRH
receptor agonists (90). Interestingly, tanycyte Dio2 expression
was constitutively elevated in fedGpr50KOmice (90), suggesting
that GPR50 indirectly modulates T3 handling in tanycytes
what may therefore influence thermogenesis (74). Additionally,
thioredoxin-interacting protein (Txnip) expression is induced
in tanycytes of Gpr50 KO mice during fasting, what may
be critical to regulate energy expenditure and fuel use, and
may consequently induce a torpid state (94). Besides the role
of GPR50 during fasting, GPR50 KO mice are also resistant
to a high-fat diet, suggesting a role in metabolic regulation
(95). While further studies are needed to confirm that, this
hypothesis is reinforced by the fact that GPR50 significantly alters
transcriptional responses to leptin signaling (90) and that TXNIP
specifically regulates leptin sensitivity in NPY neurons (96).

Besides thyroid hormone signaling, the retinoic acid signaling
pathway in tanycytes also regulates seasonal metabolic changes.
Indeed, there is extensive evidence in both hamsters and
F344 rats that transporters, binding proteins and synthetic
enzymes involved in this pathway display seasonal alterations
of expression in tanycytes (97, 98). For instance, the expression
of the enzymes synthesizing retinoic acid (retinaldehyde
dehydrogenase 1 and 2, Raldh1, and Raldh2) is reduced in
tanycyte F344/N rats during short days, and this process is
reversed by treatment with thyroid hormone (99). Furthermore,
transporters for retinoic acid including retinoic acid gene 6
homolog (Stra6), transthyretin (Ttr), and cellular retinoic acid
binding protein 1 (Crbp1), are downregulated in tanycytes of
F344 rats and Siberian hamsters under short photoperiod (86,
93, 98). Interestingly, these changes are blocked by pinealectomy,
highlighting the importance of melatonin in this process. This
transcriptional regulation of genes involved in retinoic acid
signaling is potentially highly significant given that retinoic acid

regulates tanycyte proliferation and their ability to generate new
cells in the hypothalamus.

Collectively, these studies show that tanycytes respond to
photoperiodic information and to nutritional information by
modulating genes involved in thyroid hormone and retinoic acid
signaling pathway to modulate their own function but also the
activity of neighboring appetite-regulating neurons.

Tanycytes Control TRH Neurosecretion
The ME has been primarily described as a neurosecretory
circumventricular organ. Indeed, it contains neurosecretory
axons that either travel towards the neurohypophysis in order
to release their contents into the general circulation or reach
the ME fenestrated vessels to deliver their neurohormones
into the hypothalamo-hypophysial portal system. Whereas, β1
tanycytes dynamically interact with the axon terminals of the
GnRH neurons that control the hypothalamic-pituitary-gonadal
axis (5, 27), β2 tanycytes interact with other neuroendocrine
neuronal populations, in particular with the terminals of TRH
neurons that control the hypothalamic-pituitary-thyroid axis
(76), suggesting that tanycytes may play a pivotal role in the
control of TRH release.

TRH is released in the pituitary portal circulation and then
targets thyrotrope cells in the anterior pituitary to stimulate the
secretion of thyroid-stimulating hormone (TSH). In turn, TSH
stimulates the thyroid gland to synthesize and secrete the thyroid
hormone T4, that will be converted to T3 byDIO1 andDIO2 to be
active (see previous paragraph). Interestingly, tanycytesmodulate
TRH secretion by, at least, three different ways. First, tanycytes
being the main mediators of the DIO2-depending conversion of
T4 to T3 within the mediobasal hypothalamus, T3 released by
tanycyte endfeet would be taken up by neighboring TRH axon
terminals and retrogradely transported to their cell bodies in the
PVH (100) to inhibit TRH transcription (101, 102). Therefore,
the modulation of Dio2 expression in tanycytes during energy
imbalance or seasonal cycles may influence TRH transcription.
Secondly, tanycytes express TRH-degrading ectoenzyme (Trhde,
pyroglutamyl peptidase II), an enzyme that inactivates TRH in
the extracellular space, suggesting that tanycytes could directly
regulate TRH levels before its passage into the pituitary portal
circulation (103). Interestingly, the expression of Trhde in β2
tanycytes is upregulated following systemic administrations of T4

(103), forming a negative feedback loop to control the circulating
levels of TRH. Trhde expression is also upregulated during
fasting, leading to the downregulation of the hypothalamus-
pituitary-thyroid axis in this metabolic state (104). Finally, the
activation of TRH receptor 1 increases intracellular calcium in
β tanycytes through Gαq/11 proteins, leading to the outgrowth
of the tanycyte processes enwrapping TRH neuroendocrine
terminals, and an upregulation of the activity of TRHDE, limiting
TRH release into the pituitary portal circulation (28). However,
if this calcium signaling modulates Trhde expression has not
been investigated.

Tanycytes Act as Neural Stem Cells in
Response to Dietary Cues
Tanycytes, regarded as putative remaining radial glial cells in the
adult brain, have maintained their capacity to proliferate in the
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postnatal brain and in a lesser extend in the adult brain. Indeed,
many studies showed that α and β tanycytes act as progenitor
cells—in vivo and in vitro—able to differentiate into both neurons
and glia, including astrocytes and other tanycytes (4, 32, 33).

As mentioned previously, tanycytes express a variety of neural
stem/progenitor cell markers (17, 40, 47, 105–109) such as Nes,
Vim, Sox2, Fabp7, Slc1a3,Musashi-1, Gfap, Notch1, Notch2,Hes5,
Lhx2, Rax, UGS148, and Prss56. Interestingly, tanycytes are
heterogeneous with regard to the expression of these progenitor
cell markers, their proliferative capacities, and the fate of their
progeny. For instance, α tanycytes mainly proliferate to renew
part of the tanycyte population, and generate astrocytes and a few
neurons (40, 110), whereas FGF10+ tanycytes (corresponding to
β tanycytes) mainly produce neurons (17). This heterogeneity
also occurs over time: young postnatal tanycytes give birth
to neurons that are mostly found in the ME (16), whereas
adult tanycytes generate neurons and, to a lesser extent, glial
cells that are mostly found in the arcuate, ventromedial,
dorsomedial, lateral and posterior nuclei (110). These differences,
which result from the different transcriptomic profile between
tanycyte subtypes, may be due to a different embryological
origin. Indeed, tanycytes lining the lateral walls of the ventricle
derive from the sonic hedgehog (Shh)-expressing floor-plate,
and retain Shh expression in adulthood (111). Shh exerts
numerous actions during the development of the central nervous
system, ranging from proliferation to cell fate of new born
cells (112). Therefore, better characterization of the molecular
heterogeneity of tanycytes is more than ever necessary to clarify
our understanding of the complexity of the hypothalamic niche.

The link between this proliferative capacity and energy
balance is mainly based on the hypothesis that tanycytes could
contribute to the plasticity and remodeling of hypothalamic
neural (including tanycytes, astrocytes, and neurons) networks
controlling energy balance. Indeed, neurons born from β

tanycytes during the early postnatal period respond to fasting
with an increased in c-fos expression (16). Another study showed
that neurons born from β tanycytes during the prepubertal
period respond to leptin administration by the phosphorylation
of STAT3 in the ARH (17). Moreover, studies have shown that
blocking hypothalamic neurogenesis (37, 115) induces obesity,
suggesting its important role for the control of energy balance.
However, a contrasting study showed that β2 tanycytes increased
their proliferation in young mice under high-fat diet, and
that blocking neurogenesis in ME is protective against high-
fat diet induced weight gain (16). These differences may once
again result from different mechanisms observed in different
tanycyte subtypes, or the implication of sex-specific factors (116).
Alternatively, these differences may also be explained by the
fact that neural stem cells other than tanycytes are present in
the mediobasal hypothalamus and involved in the regulation of
metabolism (37, 115).

The adaptive response of tanycyte neurogenesis to energy
imbalance to induce neural network plasticity may involve the
modulation of tanycyte neural stem cell marker expression.
Ciliary neurotrophic factor (Cntf ) and its receptor (Cntfr)
are known to stimulate neurogenesis in hypothalamic feeding
centers, yielding leptin-responsive NPY and POMC neurons and

a reduction of food intake and body weight (117). Interestingly,
Cntf and Cntfr are mainly expressed by ependymal cells and
tanycytes in the hypothalamus (42), and their expression is
upregulated in response to high fat diet (71).

Another physiological context that affects hypothalamic
neurogenesis is seasonality. In sheep, the Sox2-expressing
tanycyte layer appears thicker during short photoperiod and
hypothalamic cell proliferation is observed (118, 119). Moreover,
the expression of neural stem cell markers including Nes, Vim,
Gfap, and Dcx increase in the hypothalamus compared to long
photoperiod (118, 119), confirming an increase in neurogenesis.
T3 and retinoic acid being modulated by photoperiod and able to
modulate neurogenesis (120, 121), whether their bioavailability
affects adult hypothalamic neurogenesis in relation to feeding is
an important question for future research.

Perspectives Regarding Gene Expression
Dynamics in Tanycytes
Many questions are pending regarding tanycyte gene expression
dynamics in response to energy imbalance. What other genes
are modulated in the regulation of tanycyte functions? What
are the consequences of tanycyte gene expression modulation
on neuronal activity? A comprehensive list of modulated genes
would be useful to fully understand the role of tanycyte in the
reestablishment of energy homeostasis. Although some studies
begin to focus on it—such as the two scRNAseq studies described
previously where the authors reveal energy status-sensitive
populations (23, 24)–, further works will be necessary to decipher
tanycyte gene expression dynamics and their consequences in the
regulation of energy imbalance.

MOLECULAR MECHANISMS UNDERLYING
GENE EXPRESSION DYNAMICS
IN TANYCYTES

How to Modulate Gene Expression?
Gene expression is a multistep process that involves gene
transcription (e.g., chromatin remodeling, transcription factors,
and co-regulators), mRNA processing (e.g., capping, splicing,
and polyadenylation), mRNA degradation, transport and
translation (e.g., RNA interference, RNA-binding proteins).
Each of these processes is controlled by a complex series of
biochemical events occurring in different locations within the
cell, as well-illustrated in the literature (122–124). Despite
that, transcriptional regulation, and in particular the control of
transcriptional initiation, constitutes the primary regulation site,
and much attention has been focused on this process (122).

Metabolic circulating factors, including hormones and
nutrients, are able to influence several processes in organisms,
including gene expression (18, 125). By impacting gene
expression in different tissues, metabolic factors allow the
organism to acclimate to its new environment and to ensure
energy homeostasis (126). There is a growing awareness for a
direct involvement of these metabolic signals in transcriptional
regulation control, through three main processes (Figure 2)
(127, 128). (1) Nutrients and hormones (e.g., leptin, ghrelin,
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FIGURE 2 | Gene expression control by hormones and nutrients. Transcription factors and nuclear receptor are activated by extracellular signals, such as hormones,

which may directly induce a transcriptional response to changes in metabolic state. In addition, nutrients are metabolized by the cells. Some components of

intermediary metabolism are cofactors or co-substrates of chromatin-modifying enzymes, which may affect chromatin structure and gene expression. Finally, some

metabolic enzymes also act as regulators of chromatin and transcription factors (113, 114). TF, transcription factors; CRE, cis-regulatory element.

insulin, glucose) are able to activate signaling pathway leading
to the binding of specific transcription factors to specific
DNA sequences in order to initiate transcription. (2) On
another hand, vitamins, hormones, and metabolites (e.g.,
steroid hormones, thyroid hormones, retinoic acid, and
vitamin D3) can directly influence gene transcription by
binding nuclear receptors: though this direct pathway, the
receptor itself acts as a transcription factor. (3) Finally, central
components of nutrient intermediary metabolism (e.g., acetyl-
CoA) are cofactors or co-substrates of chromatin-modifying
enzymes (e.g., histone deacytylases, methyltransferases,
acetyltransferases): their concentrations therefore constitute
a potential regulatory interface between the metabolic and
chromatin states.

Although the regulation of gene expression by nutrients
and hormones is well-documented in numerous peripheral
tissues, such molecular mechanisms in tanycytes are
poorly described.

Signaling Pathways Modulated by
Hormones and Nutrients in Tanycytes
Being at the interface between the blood and the brain, tanycytes
are in a privileged position to integrate multiple metabolic
inputs which could modulate their gene expression. Indeed,
multiple studies described tanycytes as sensors of these metabolic
circulating factors, including glucose, amino acids, leptin, and
ghrelin. Several studies have shown that these metabolic factors
are able to activate different signaling pathways in tanycytes.

Leptin mediates its effect through the activation of several
signaling pathways, including Januskinase/Signal transducer and
activator of transcription (JAK/STAT) (129). This signaling
cascade leads to phosphorylation of the STAT3 transcription
factor, which dimerizes and translocates to the nucleus where
it regulates the expression of a variety of genes involved in
cell growth, angiogenesis, or inflammation (130, 131). For
instance, activation of STAT3 trans-activates Vegfa promoter
and increases Vegfa expression through HIF1 transcription
factor (132, 133). In the hypothalamus, and in particular in
tanycytes, JAK/STAT pathway serves as the primary leptin
signal transduction pathway (129, 130). In vitro, tanycytes
express a number of splice variants of ObR, and treatment
with leptin result in activation of some signaling pathways (e.g.,
phosphorylation of AKT, STAT3, and ERK) (11). In vivo, leptin-
induced pSTAT3 immunoreactivity first appears in β tanycyte
processes contacting ME fenestrated vessel, and then their cell
nuclei located close to the floor of the third ventricle (11).
Tanycyte STAT3 signaling is also activated by ciliary neurotrophic
factor (CNTF) (42), a factor known to cause weight loss in
obese rodents and human through leptin-like activation of the
Jak/STAT3 signaling pathway (134).

MAPK/ERK signaling which can be induced by leptin and
ghrelin is also active in tanycytes (11, 12). It has been shown
that activating ERK pathway through EGF treatment allows the
liberation of tanycyte-endocytosed leptin and the restoration
of its central anorectic effect (11). TSH also increases ERK
phosphorylation in primary tanycyte cultures (135).
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As other glial cells, calcium signaling is crucial in tanycytes.
Induced by different stimuli including glucose (13), amino
acids (15), ATP (13), non-metabolizable glucose analogs (14),
TRH (28), the increase in intracellular calcium in tanycytes
is able to propagate as calcium waves from one tanycyte
to another through gap junctions (13, 44). These calcium
waves may synchronize gene expression in tanycytes and/or
tanycyte subgroups. While these different signaling pathways
involved in the control of energy balance are present in
tanycytes, nothing is so far known about the consequences
of their activation on tanycyte or tanycyte subtype-specific
gene expression.

Transcription Factors Mobilized
in Tanycytes
Recent findings show that the specification and differentiation of
hypothalamic tanycytes during development is partly controlled
by LHX2 and RAX transcription factors (107, 136). LHX2 and
RAX transcription factors are both expressed in the developing
hypothalamus and maintained in adult tanycytes (107, 137).
Following the embryonic deletion of Lhx2, ependymal cells lining
the floor of the third ventricle -presumptively tanycytes- exhibit
a hybrid ependymal cell/tanycyte identity (107). In particular,
they lose the tanycyte-specific expression of Rax, and display
an ectopic expression of cuboid ependymal cells-specific Rarres2
(107). Moreover, they retain radial morphology while becoming
multiciliated. In contrast, postnatal loss of function of Lhx2
results only in loss of tanycyte-specific gene expression (107). If
these transcription factors play a role in tanycyte neurogenesis in
response to energy imbalance is still unknown.

In the context of seasonal cycles, the expression of
nuclear transcription factor NF-κB (nuclear factor kappa-light-
chain-enhancer of activated B cells) has been shown to be
decreased in rat tanycytes under long photoperiod, which
could modulate the expression of numerous inflammatory
genes (138).

Epigenetic Regulations in Tanycytes
The structural state of chromatin is another critical point in gene
expression regulation. Wrapped around eight histone protein
cores, DNA can be tightly packed, leading to gene repression.
In contrast, decondensed chromatin makes DNA accessible
to the transcriptional machinery, promoting gene expression.
Fluctuations between open and closed chromatin partly occur
through histone modifications (e.g., acetylation, methylation,
ubiquitination). In the context of energy balance, metabolites
are cofactors or co-substrates of histone-modifying enzymes
affecting by this way gene expression. Some metabolic enzymes
also act as regulators of chromatin [see review (113, 138)]. In
photoperiod-sensitive F344 rats, histone deacetylase 4 (Hdac4,
a class of chromatin modifying enzymes) expression increases
in tanycytes during long days, partly due to TSH stimulation.
Interestingly, specific inhibitors showed that HDAC4 represses
target genes of NF-κB and thyroid hormone receptor, that could
limit inflammation and thyroid action in the hypothalamus
during long days (138).

Perspectives Regarding Gene Expression
Regulation in Tanycytes
What are the transcription factors, nuclear receptors and co-
substrates of chromatin-modifying enzymes involved in the
modulation of tanycyte gene expression? Which other stimuli
may influence tanycyte gene expression and functions? Besides
the initiation of transcription, which steps in gene expression
process (e.g., translation) are modulated by energy imbalance
in tanycytes? Many questions remain to be answered but
science now offers more powerful techniques which will allow
considerable progress in this area. In particular, chromatin
remodeling, DNA accessibility and non-coding RNA are now
measurable on FACS-isolated tanycytes. To continue research
efforts in this direction will help to address many of the
unresolved questions concerning tanycyte functions and how
they may relate to human health and disease.

CONCLUSION REMARKS

It is now well-established that tanycytes and tanycyte subgroups
play diverse, yet complimentary, metabolic functions, ranging
from sensing, shuttling, and release of nutrients and hormones
within the hypothalamus, in order to influence neural appetite
networks. Displaying a huge molecular and functional
heterogeneity, the exhaustive elucidation of their different
molecular signature will help our understanding of these diverse
physiological functions. Recent advances in gene expression
profiling opened a new research area where there is much to
learn in the future.

Moreover, the study of nutrients and hormones as regulators
of gene expression in tanycytes is clearly a key field to dig in
order to fully understand their role in the regulation of energy
metabolism. Although such regulation is well-documented in
peripheral tissues, it stays poorly described in the brain, and
in particular in tanycytes. The impact of metabolic signals on
gene transcription is likely not involved in short-term control
(i.e., seconds to minutes), but rather in longer-term adaptive
responses (i.e., hours to days). By changing the expression of
key proteins that are involved in tanycyte metabolic function
and cellular processes such as metabolism, these molecular
modulations would allow tanycytes to face changes in nutritional
status and to adequately respond to them.

Ultimately, genetic manipulation of tanycyte function
will offer a helpful tool for modulating energy balance
in order to tackle eating disorders such as obesity
and anorexia.
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