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Abstract

The Pacific Equatorial dry forest of Northern Peru is recognised for its unique endemic biodi-

versity. Although highly threatened the forest provides livelihoods and ecosystem services

to local communities. As agro-industrial expansion and climatic variation transform the

region, close ecosystem monitoring is essential for viable adaptation strategies. UAVs offer

an affordable alternative to satellites in obtaining both colour and near infrared imagery to

meet the specific requirements of spatial and temporal resolution of a monitoring system.

Combining this with their capacity to produce three dimensional models of the environment

provides an invaluable tool for species level monitoring. Here we demonstrate that object-

based image analysis of very high resolution UAV images can identify and quantify keystone

tree species and their health across wide heterogeneous landscapes. The analysis exposes

the state of the vegetation and serves as a baseline for monitoring and adaptive implemen-

tation of community based conservation and restoration in the area.

1. Introduction

The Pacific Equatorial dry forest of Northern Peru (and South Western Ecuador) is recognised

as a unique dry forest ecosystem, rich in endemic flora and biodiversity [1]. The region is a

vital and unique ecosystem within the Latin American biome of seasonally dry tropical forest

and that is one of the most threatened, and yet understudied and very poorly surveyed, tropical

forests worldwide with less than 10% of the original extent remaining regionally [2]. The Equa-

torial dry forest of Peru also provides a wide range of livelihoods and ecosystem services to

local communities [3]. However, agro-industrial expansion, over-exploitation of natural

resources (for firewood and agriculture land) and climatic extremes (e.g., ENSO events) has

left forest relicts and a mosaic of associated arid land vegetation which are now highly threat-

ened and vulnerable [4]. Furthermore, over the last ten years the forest has been experiencing

die-back of its keystone species: the Algarrobo (Prosopis pallida) upon which communities and

livelihoods have historically depended [5]. This is likely due to the combined impact of

drought, associated climate change and defoliating plagues, especially Enallodiplosis discordis
(Diptera: Cecidomyiidae). The Algarrobo has been the lynch-pin of rural livelihoods as a
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multipurpose tree [6] providing an annual rich harvest of nutritious pods that are used for

food and especially for animal forage, as well as a foodstuff for human consumption. Of partic-

ular note is that the Algarrobo pods are an essential forage component that allows the ranching

of animals on the very poor soils with limited water that prevails in this area. Conversely, other

species such as Sapote (Colicodendron scabridum) and Overo (Cordia lutea) appear to be thriv-

ing, possibly due to atmospheric CO2 enrichment and increasing temperatures [7], especially

during summer rains with the free nitrogen released from Algarrobo die-back [7].

A highly complex and dynamic ecosystem now exists that requires close monitoring to

quantify change and respond effectively with adaptation strategies in order to manage the

decline in Algarrobo-dependent biodiversity and sustain community livelihoods. In this con-

text a monitoring system needs to be capable of the following: (i) identifying individual tree

species across the landscape; (ii) mapping species association and plant community whilst

assessing plant health and (iii) quantifying population dynamics in response to ongoing land

management and climate change. Such monitoring is essential from a scientific perspective

(e.g.to target and design restoration and reforestation efforts to preserve and restore the native

forest relict), but must also be able to communicate to stakeholders the best actions (such as

changes in seed banking, reforesting options, irrigation and livestock management) to main-

tain resilience of ecosystem services. Specifically, the monitoring system must provide spatial

data on the principal keystone species, Algarrobo (including on their current mortality rates),

as well as on Sapote other dominant species and do so in a timely fashion.

This detailed ecosystem assessment has traditionally been carried out through field survey,

but collection of field data is costly in time, labour and resources [8] and so remote sensing has

been much advocated as an approach, as it can characterise an ecosystem in an efficient, sys-

tematic, repeatable and spatially exhaustive manner [9]. Remote sensing based ecosystem

assessments can be conducted at a range of spatial scales, from global [10–13] to more localised

studies [14–19]. However, discriminating between species and quantifying individual plants

using remote sensing requires specific acquisition parameters (e.g., data at a sufficient resolu-

tion) and processing approaches. Very high spectral resolution (hyperspectral) data have been

successful in the identification of canopy tree species [20–23]. Alternatively, very high spatial

resolution data is perhaps more accessible and has the potential to be a viable tool for species

determination [24–26]. Further, since species identification can be greatly improved by

employing the three dimensional information of the vegetation, technologies affording three

dimensional measurements (e.g., light detection and ranging (LiDAR) technology) have been

widely used [27–30]. However, in all these cases, the costs and availability of the technology

would be financially and structurally prohibitive for most conservation efforts [31], yet the

potential of remote sensing to support conservation effort has been recognised [32] (Rose

et al., 2014). In this paper, we investigate the effectiveness of remote sensing from unmanned

aerial vehicles (UAVs) which have the potential to provide accurate and fast analysis and mon-

itoring of ecological features at a cost [33] that can be accessible to most conservation applica-

tions and researchers in developing countries [34].

The use of UAVs as a remote sensing approach is now gaining traction. These type of sys-

tems are especially well suited to and most commonly used for precision agriculture where the

technology is developing fast [35,36] but they have also been employed in different ecological

[33], environmental [37] and conservation [34] applications where UAV systems have been

identified to have the potential to revolutionize these fields [33]. Low altitude flights can easily

provide the sub-meter spatial resolution that allows individual plants to be identified [38].

Also, different sensing payloads can deliver multispectral images, ranging from the visible

(RBG) band, to the near infrared (NIR) through to the thermal infrared and microwave [39]

although often, because of the low-cost requirements and limited weight capabilities of these

Species identification from UAV images using object based image analysis
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systems, modified consumer digital cameras are used [40], with enhancement to their spectral

resolution by using or removing filters to provide RBG and NIR bands [41]. Three dimen-

sional information can be derived from overlapping images taken with uncalibrated con-

sumer-grade cameras using newly developed algorithms [42], in particular structure from

motion [43,44], providing extra valuable information on vegetation structure and condition.

Moreover, the system can be deployed on demand, providing temporal flexibility to respond

to specific needs such as seasonal or climatic circumstances (e.g., an El Niño event) or to moni-

tor interventions (e.g. tree planting or cattle exclusion) [45].

Despite the promise offered by using UAVs, obtaining meaningful ecological information

from the captured data remains challenging and so far has predominantly relied on visual

interpretation of the imagery acquired, particularly when it comes to quantifying number of

individuals [33]. This can be very time consuming and become unfeasible in larger areas with

large number of individuals. Further, traditional pixel-based image analysis techniques have

limitations when processing such high resolution datasets [46,47] where image targets (such as

individual trees) are larger than the pixel size. Combining pixels into groups to form objects

could be a way forward to analysing this type of data. Additional spectral information con-

tained in an object (e.g. mean spectral values, variance, mean ratios. . .) can be taken into

account along with added spatial and contextual information for the objects (distance, shapes,

size, texture, etc.). The inclusion of this extra information is critical when uncalibrated con-

sumer-grade digital cameras are used as these imaging sensors acquire images that have high

spatial resolution but lack radiometric quality [48]. Thus object-based image analysis (OBIA)

techniques have demonstrated great potential to automatically extract information from very

high resolution images [49,50], including those captured by UAVs [51,52].

In this paper we present an efficient and affordable approach to identify and quantify indi-

vidual trees across the dry forest, as well as mortality rates of its keystone species. We seek to

add weight to the growing evidence on the real potential of UAV’s for plant conservation, with

the view that this could form the foundation of a monitoring system across this particular

landscape.

2. Materials and methods

2.1. Study area

The community forest (comunidad campesina) of San Francisco de Asis (CCSFA) in the Lam-

bayeque region in Northern Peru was the focus of investigation (Fig 1). Full permission to

carry out UAV flights and botanical collections in the area as part of this study was granted by

the president of San Francisco de Asis Community forest. The CCFA is delimited by a low

mountain range and it is one of a series of arid slopes and a dry lower watershed basin on the

western side of the Andes. Rainfall is very low and rarely exceeds 400 mm (except during some

El Niño events), generally falling between December to April. UAV data were captured for an

80 ha area (centred on 79˚ 38’W, 6˚ 20’ S, datum WGS84) within the proposed CCSFA com-

munity reserve.

The arboreal vegetation associated with the study area is dominated principally by Prosopis
pallida (Algarrobo) with Colicodendron scabridum (Sapote), and Cordia lutea (Overo) as a

shrub which occurs ubiquitously along the network of ephemeral run-off streams that trans-

verse the bajada (Fig 2). Vallesia glabra (Cun cun) occurs as a Prosopis pallida sub canopy

shrub, and amongst this vegetation, at low density occur Cynophalla flexuosa (Sune)—2–5

individuals per ha, Grabowskia boerhaaviifolia (Canutillo or Palo negro) occasionally and Par-
kinsonia praecox (Palo verde)—4–10 individuals per ha. At very low density on the lower plain

at less than one tree per 5 ha are Loxopterigium huasango (Hualtaco) and Bursera graveolens
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(Palo santo), and relict large columnar cactus Armatocereus aff. cartwrightianus and Neorai-
mondia arequipensis).

In this study and for the purpose of identification from UAV images the focus will be on

the dominant species. Each of these plant species have a morphology that could help in any

identification using remotely sensed data, such as that captured by an UAV. As such, there are

several important plant features that can be used for identification of each of the species of

interest (Fig 3):

Algarrobo (Prosopis pallida).: This is a non-deciduous tree of up to 15 meters high with a

very distinctive star shaped crown when viewed from above. This distinctive shape is modified

as a result of the dieback affecting this keystone species.

Overo (Cordia lutea) that could get misclassified as Prosopis pallida when observed from

above but can easily be distinguished as it is deciduous and only up to 2 meter high. It grows

along runnels forming a distinctive reticulated pattern

Sapote (Capparis scrabrida): This evergreen tree is very distinctive with compact and round

or sub oval shaped crown with large sclerophyllous leaves. It tends to grow partitioned and iso-

lated, this feature is exaggerated in this site through the use of the dense shade for cattle shel-

tering the extreme midday heats.

Fig 1. Study site and country map: Country map shows the Peruvian region of Lambeyeque. Main map

for context, UAV flight is highlighted in black, overlaid with a Landsat Panchromatic image.

https://doi.org/10.1371/journal.pone.0188714.g001
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Fig 2. Target species: (a) Alive Algarrobo (b) Dead Algarrobo (c) Sapote (d) Overo.

https://doi.org/10.1371/journal.pone.0188714.g002

Fig 3. Target species from the UAV image.

https://doi.org/10.1371/journal.pone.0188714.g003
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2.2. Datasets: Remote sensing with UAV and supporting ground data

The UAV deployed was the fixed-wing eBee system (https://www.sensefly.com/). This autono-

mous system is operated by a propeller activated by an internal electric motor. It requires hand

launch for take-off and landing is either linear or circular in a relatively clear area (i.e. bare

ground or grass). Its efficient aerodynamics allows for long flight durations and high speeds. It

can cover up to 12 Km2 in a single flight and by altering the flying altitude can be used to

acquire very high resolution images (i.e. up to 1.5 cm). The imaging sensor used on board was

a Canon S110 RE, a customised very light automatic consumer-grade digital camera providing

blue, green and red-edge band data. The red-edge band data is obtained by adding an optical

red-light-blocking filter in front of the sensor, resulting in red-edge, green and blue images

[41]. It has a resolution of 12 MP with a ground resolution at 100m of 3.5 cm/px. The sensor

size is 7.44 x 5.58 mm with a pixel pitch of 1.86 um. The UAV was deployed during the dry sea-

son (November) to ensure maximum discrimination between deciduous and evergreen vege-

tation. The flight mission was planned using eMotions software over images imported from

Google Earth (Google Earth, 2011) and SRTM DEM [53]. Flight altitude was set up to 260m to

provide a ground resolution of approximately 8 cm over the study area and images acquired at

75% forward overlap and 80% side overlap. The ground resolution of 8 cm was chosen to pro-

vide ultra-high resolution (both in the resultant point cloud and mosaics), but also to cover a

large enough area to include established control plots and demonstrate the benefits of UAV

monitoring. The high level of overlap allows 3D reconstruction of point clouds to a higher

accuracy, allowing objects in each image to be observed in at least 5 other images and thus

affording structure from motion analysis.

Temporally coincident to the UAV flights, four experimental plots were measured. These 1

Ha (100m x 100m) plots were evenly distributed spatially across the study site (Fig 4) recording

the presence and species of every mature tree with (> 25 cm girth at 50 cm high) along with

the average crown spread. For every Algarrobo tree the “degree of health” was also recorded on

a 1 to 3 scale (1: healthy tree, 2: infected tree, 3: dead tree). For the shrub layer, presence of

Overo was recorded where it covered an area of more than 4 square meters (2 x 2 m). In addi-

tion, a discontinuous transect throughout the length of the flight (2 Km length by 0.4 Km

wide) was surveyed, recording the species of every tree found.

2.3. Pre-processing of remotely sensed data

The raw UAV- derived remotely sensed data were processed using eMotion’s Flight Data Man-

ager and Postflight terra (Pix4D) software to produce a geo-referenced orthorectified 3 wave-

band image mosaic at 8.3 cm spatial resolution (UTM 17S WGS84) and two 3D-derived

elevation layers: a digital elevation model (DEM), a representation of the elevation of the

ground surface or bare-earth, and digital surface model (DSM) which includes the elevation of

both natural and built features. Both layers are delivered as grids with a resolution matching

that of the orthorectified mosaic. Both were then used to derive a canopy height model (CHM)

of the study area.

2.4. Species mapping from UAV data

Mapping of the target species (Algarrobo, Sapote and Overo), as well as mortality rates of the

keystone Algarrobo was undertaken in two steps. The first was to identify individual trees by

delineating crowns and the second was to use the individual tree crown as the basic unit for

species identification [54]. Object-based image analysis provided the tools to do just this by

allowing the isolation of individual homogeneous objects in the image corresponding to one

particular tree crown [47]. Unlike most studies in which crowns are delineated in one single

Species identification from UAV images using object based image analysis
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segmentation process, crown delineation here is achieved by the iteration of segmentation and

classification of subsequent segments working at two different levels. A first level aims to iso-

late individual trees from tree clusters across the landscape using contextual information. At a

more detailed second level, individual crowns are identified within these tree clusters using

two different approaches according to vegetation types. This allowed for a more efficient meth-

odology focusing processing efforts only where it is most needed, as well as using the best

suited methodology for each specific vegetation type. Fig 5 and Table 1 include the methodol-

ogy workflow and main processing parameters.

Crown delineation. Level 1 (vegetation or contextual level): Firstly a multiresolution seg-

mentation algorithm (using eCognition software) was used to create the basic image objects at

a scale that allows for objects to be relatively homogeneous whilst capturing the full scene vari-

ability. These “object candidates” [55] will be transformed by further processing into meaning-

ful objects (individual tree crowns). Vegetation is then discriminated from the background by

thresholding available band ratios (from Blue, Green and Red Edge bands). Green vegetation

is best discriminated using a band ratio, deviation from the normalised vegetation index (1)

whiles the non-photosynthetic vegetation (deciduous and dead vegetation) using a combina-

tion of the blue and green bands (2).

1. GV (Green Vegetation) = (RE–Green) / (RE + Green)

2. NPV (Non-Photosynthetic vegetation) = (Blue–Green) / (Blue + Green)

Objects classified as vegetation were then combined and reclassified as either isolated trees

(individual tree crowns) or tree clusters according to contextual object features (extent and

Fig 4. UAV flight (red edge) over the study area and plot distribution (from top to bottom: Plots 1, 3, 4,

2). Background image: panchromatic World View image.

https://doi.org/10.1371/journal.pone.0188714.g004
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shape). Vegetation objects smaller than the minimum mapping unit (4m2) are not considered

for further analysis. Tree clusters were then need to be further analysed (level 2, see below) to

extract individual trees within them.

Level 2 (de-clustering): Most tree crown delineation studies are built around the identifica-

tion of treetops, assuming that they are at a maxima (most often using CHMs) and that they

correspond to the geometric centre of the tree crown [56]. This is normally the case in conifer-

ous trees and can be extended to evergreen vegetation but deciduous tree crowns (and this is

Fig 5. Methodology work flow.

https://doi.org/10.1371/journal.pone.0188714.g005
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also the case for defoliated evergreen vegetation) are relatively flat and with multiple branches

that can be identified as individual trees [54]. This, added to the challenges presented by drone

derived elevation data in deciduous trees prevents the use of CHM local maxima to identify

hardwood tree tops. In this case, tree centres are identified using NPV local maxima. Green

vegetation was very clearly identified in the elevation model therefore a more traditional CHM

local maxima was used to identify tree tops.

Once tree tops have been identified, a region growing algorithm was used to delineate the

respective tree crowns [57]. A further step using contextual information was then needed to

refine certain tree crowns, such as infested Algarrobo which were in certain cases identified as

two different trees (dead branches adjacent to branches with different levels of defoliation).

The feature “relative border to” (measuring the relative border length that an object shares

with neighbour objects) was particularly useful for this purpose.

Species identification. Once the crowns have been delineated, individual trees have addi-

tional spectral information as opposed to single pixels (eg. mean values, maximum and mini-

mum, variance. . .) along with contextual information and specific object features that were to

Table 1. Summary of processing parameters.

Level Operation Algorithm/Object metrics Parameters Value

L 1 Multiresolution segmentation Layer weights 1 (B) 1 (G) 1 (RE) 1 (CHM)

Shape

scale parameter

Compactness

Thresholding of vegetation indices NPV >0.053

GDVI >0.03

Refinement Merge Region Vegetation

Remove objects

Merge Region

Find enclose by class

Merge Region

Thresholding of Object Features Roundness <0.9

Area <30,000 pixels

L 2 Identify seeds (NPV) Find local extrema Search range 20

Extrema type Maximum

Feature Mean DSM

Identify seeds (GV) Find local extrema Search range 50

Extrema type Maximum

Feature NPV

Grow from seeds Grow region

Contextual Refinement Relative border to

Find enclose by class

Remove objects

Species. Classification (Sapote) Assign class GDVI >_0.08

Species. Classification (Alive Algarrobo) Assign class GDVI < 0.08

Species. Classification (Dead Algarrobo) Assign class Area >_10,000 pixels

NPV > 0.053

CHM >0.4

Species. Classification (Overo) Assign class Area < 10,000 pixels

NPV > 0.053

CHM < 0.4

https://doi.org/10.1371/journal.pone.0188714.t001
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be used for species discrimination. In our case the most useful features for species discrimina-

tion was; mean values of band ratios, mean, maximum and standard deviation of CHM, shape

and size, as well as contextual information such as “relative border to”. Training information

for classification used data collected in a transect along the flight (based on visual interpreta-

tion), whilst further plot data was used for validation. The final classification scheme aimed to

discriminate amongst four classes: Sapote, Overo, Alive Algarrobo and Dead Algarrobo.

In terms of accuracy assessment of the final species map there were two main objectives.

The first was to determine the accuracy in the estimates of number of trees mapped (tree detec-

tion) and the second was to determine the level of confidence for the identification of individ-

ual species (species classification). The assessment was implemented at a plot level, as a non-

site specific measurement, avoiding the need to match individual tree location [58]. Data

recorded in the four plots taken at the time of the flight were used as reference. Only trees with

an average crown spread greater than 4m2 were considered (matching the minimum mapping

unit). Algarrobo with “degrees of health” 1 and 2 were considered Alive Algarrobo whereas

“degrees of health” of 3 were considered Dead Algarrobo With regard to quantification, only

trees were taken into consideration, Overo, as a bush, was identified but not quantified. Error

matrix derived measurements along with detection rates were employed to assess the accuracy

of the classification and the tree location respectively. Further assessments such as determining

the quality of tree crown delineation (i.e. the boundary of the tree crowns) could be imple-

mented but while the actual delimitation of the crown boundaries has a direct influence in the

accuracy of both tree detection and species classification it is not a focus of this study.

To examine the species composition in the study area we summarised the numbers of trees

per species, numbers of trees, crown cover and mortality rates of Algarrobo, across the study

area, using 50 x 50m cell sizes (area of 2500 m2). This was processed in ArcGIS 10.4 (ESRI

2016), deriving the cells using fishnet and summary statistics using spatial overlay (centroids

of the crowns queried against the cells) and zonal statistics.

3. Results

The distribution of species composition across the landscape (Fig 6) reveals the predominance

of Algarrobo at 69% of delineated tree canopies (i.e., at 21.5 trees per Ha) as opposed to Sapote

at 31% of the delineated trees (Overo was mapped but not quantified) (Table 2). At the time of

the UAV deployment it is evident that 35% of the mapped Algarrobo trees were already dead

(Table 2). When reviewing the spatial distribution of species (Fig 7), it is evident that Overo, is

densest along runnels, whilst Sapote, dominates in the south of our study area. Algarrobo
shows little trend, but what is evident is the clustering of the dead trees in the north of the area.

There could be multiple reasons for this, such as the disease advancing from north to south

but also the area to the north is the most disturbed (in terms of cattle and human disturbance)

which may help propagate the plague.

The high degree of confidence in this mapping is supported by the accuracy assessment sta-

tistics produced. With respect to number of trees delineated, an overall detection rate of 95.3%

was obtained (Table 3). When examining detection success per tree species it is evident that

there is a general underestimation, except for the alive Algarrobo where there is an overestima-

tion. This is most likely caused by distinct alive branches in diseased trees being recorded as a

separate tree. Detection rates were used to adjust the final number of trees (by applying per-

centage of detected trees to the final map figures). With respect to accuracy of species identifi-

cation of those delineated trees an overall accuracy of 94.10% was obtained (Tables 4 and 5).

Optimal classification results are yielded by Sapote with a 100% user’s accuracy, although a

lower producer’s accuracy (88.16%) was obtained, mainly due to alive Algarrobo trees being
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PLOS ONE | https://doi.org/10.1371/journal.pone.0188714 November 27, 2017 10 / 21

https://doi.org/10.1371/journal.pone.0188714


classified as Sapote. This is very much related to crown delineation errors; if the crown is

delimited in such way that includes non-vegetation pixels (such as background) the average

GDVI values of the tree object would be lower and therefore the tree assigned to a different

Fig 6. Distribution of species composition in and around Plot 1: A. red edge derive image from UAV mosaic. B

Results from crown delineation with species identification.

https://doi.org/10.1371/journal.pone.0188714.g006
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class. The dead Algarrobo class presents a similar accuracy statistic behaviour (i.e., a high user’s

accuracy and lower producer’s accuracy) and this is caused mainly by Dead Algarrobo trees

being classified as Overo. This can be explained by inaccuracies in the elevation data; if not

enough elevation points are found in the point cloud for the object tree, it will not be recog-

nised as a tree but as a bush and therefore assigned to Cordea lutea class (Fig 8). In addition,

some of the dead Algarrobo were identified as alive Algarrobo generally caused by Vallesia sp.

plants growing under the Algarrobo canopy increasing GDVI values and resulting in the tree

being classified as alive. This situation causes different accuracy statistics in the two remaining

classes, Alive Algarrobo and Overo, where high producer’s accuracy than user’s accuracy was

obtained. Most of the reference Alive Algarrobo were identified correctly whereas trees classi-

fied as Algarrobo were indeed Sapote.

4. Discussion and conclusions

The high degree of accuracy with which the target species were mapped across this landscape

as well as mortality rates of the keystone species Algarrobo, demonstrates how useful a moni-

toring approach using a UAV would be for conservationists working in this area. Although

much up front work is need to deploy the UAV, the actual flying time and image acquisition

was very fast; covering the area in less than 20 mins.

Of particular note, is that although there are currently many studies reporting advances in

the use of UAVs [37,59,60], this study has demonstrated that the simple and cheap consumer

grade sensor carried by the system (Canon S110 RE), with its limited spectral resolution, still

afforded accurate mapping of the parameters required here. However, when using modified

consumer digital cameras as multispectral sensors we need to be aware of certain limitations of

these systems to monitor vegetation. Spectral sensitivity and radiometric distortions of the

camera optics have an influence in the radiometric and spectral quality of the images acquired

[61]. Even if the camera is calibrated, attempting to remove radiometric distortions, theses

cameras are sensitive to fairly broad wavelength ranges which also overlap considerably in det-

riment of traditional multispectral analysis. Furthermore the Red Edge is acquired with the

loss of the red band which also limits the range of band indices that can be applied. Still, data

derived from this modified cameras provide extremely valuable information for monitoring

vegetation if the appropriate image analysis techniques are used. In addition to the ultra-high

resolution data, the ability of the system to provide three dimensional information (derived

using structure from motion) was useful for vegetation characterization but the contribution

was highly dependent on the quality of the point clouds produced. Different studies report on

accuracies comparable to those derived by LiDAR systems [62,63]. However, as others have

found, there were challenges when generating digital canopy height models of deciduous trees

[64]. It was evident that point clouds were dense for evergreen trees with compact canopies

but less so for deciduous or defoliated tress where fewer tie points were found in standing

branches which could be confused with background points (Fig 8). As a result 3D data was

useful when delineating and discriminating evergreen species but not so conclusive for

Table 2. Number and density of trees in the study area.

Number

of trees

Adjusted number of trees Number

of trees per Ha

% Trees % Dead

Sapote 743 784 9.8 31

Algarrobo (alive) 1331 1122 14.0

Algarrobo (dead) 504 601 7.5 69 35

TOTAL 2578 2507 31.3

https://doi.org/10.1371/journal.pone.0188714.t002
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deciduous trees. However, the methodology approach used in this study allowed for the com-

bined use of 3D and spectral information depending on the nature of the vegetation where

spectral information was found more useful in dealing with deciduous trees. Nevertheless the

Fig 7. Landscape metrics for targeted species with 50 x 50 m cells (2500 m2). (a) Number of Overo per cell. (b) Number

of Sapote per cell. (c) Number of c per cell. (d) Number of trees per cell. (e) Crown coverage in m2 per cell. (f) Percentage of

dead Algarrobo per cell.

https://doi.org/10.1371/journal.pone.0188714.g007
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use of 3D information is essential when trying to discriminate Dead Algarrobo tress from

Overo bushes.

Fundamental to this study was the capture of ultra-high spatial resolution data, the ability

to derive 3D data, as a result of structure from motion, and extending the spectral resolution of

the camera sensor by way of a filter. Although UAVs are relatively easy to deploy, there is the

caveat that understanding how they should be deployed with respect to flight planning to cap-

ture the optimal data for pre-processing and then subsequently the methods for processing

and analysing the data captured for an application are key to successful mapping and monitor-

ing. General pixel based quantitative analysis (relation between pixel values and target radi-

ance, time series analysis, quantification of surface parameters, data comparison across time

and scale) is less suitable than object based approaches where spatial and contextual informa-

tion is also taken into account. The high resolution of the 3 band orthorectified data, such that

the features to be mapped are larger than the pixel [65], and derived CHM were well suited to

the employment of OBIA for mapping the species of individual trees. Previous studies delin-

eating crowns have used a range of different methodologies, predominantly by applying edge

detection [66], watershed segmentation [67] or region growing [68] algorithms, but these have

been on remote sensing data captured by other platforms. These include multispectral very

high resolution (VHR) satellite imagery [54], airborne LiDAR data [66] or a combination of

both [69]. Such studies have normally focused on either temperate forests [54,70] or monospe-

cific tropical environments [71] with relatively simple tree crown structures. Comparatively lit-

tle research has tried to tackle the complexity of tropical forests with intrinsic interspecific low

spectral separability and variable physical parameters [69]. Just a handful focus on these drier

environments such as savannah woodlands [67], but so far these methodologies have not yet

been applied to dry forests with the added complexity of trees presenting different levels of

infestation by a fungal disease. Thus, this study is one of the first studies to demonstrate how

OBIA can be successful in analysing data captured by UAVs, particularly the derived 3D mod-

els and multispectral imagery from uncalibrated consumer grade digital cameras. This study

has also illustrated that the subsequent species classification process post-crown delineation

has also benefited from the use of OBIA where information on the trees as objects including

contextual information, statistical parameters based on spectral information (such as mean

values, standard deviations. . .) provides an advantage over the use of traditional pixel based

approaches when identifying individual species [72,73].

Table 3. Accuracy assessment: Detection rates.

Classified Reference Difference %

Sapote 72 76 -4 94.73684

Algarrobo (alive) 59 51 8 115.6863

Algarrobo (dead) 73 87 -14 83.90805

Total 204 214 -10 95.3271

https://doi.org/10.1371/journal.pone.0188714.t003

Table 4. Accuracy assessment: Error matrix.

Reference Data

Capparis scabrida Cordia lutea Prosopis pallida (alive) Prosopis pallida (dead) Row Total

Classified Data Capparis scabrida 67 0 0 0 67

Cordia lutea 1 225 1 9 236

Prosopis pallida (alive) 8 1 49 4 62

Prosopis pallida (dead) 0 1 1 74 76

Total 76 227 51 87 441

https://doi.org/10.1371/journal.pone.0188714.t004
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The results obtained here are extremely encouraging. They demonstrate that object-based

image analysis is an effective image processing technique to analyse very high resolution data

allowing for the identification of individual tree species and composition across a heteroge-

neous landscapes. It is also apparent that from an operational perspective, the relative ease of

deploying the SenseFly eBee system across this landscape, in combination with the relative

accessibility of using this type of UAV (i.e., costs, training, etc) means that repeat data capture

(temporal resolution) should be achievable. Indeed, the need for rapid deployment and repeat

data capture is particularly acute across this landscape as Algarrobo has throughout Peru been

suffering dieback with the loss of foliage through the combined condition of drought, climate

change and defoliating plagues. As a result the Algarrobo of our study area, are in a state of

rapid decline and mortality, reaching alarming figures of a 35% mortality rate. There is an

urgent need of action to reverse this trend putting in place community based conservation

activities and restoration initiatives to ensure the survival of Algarrobo forests. Furthermore,

extreme events (such as ENSO) are occurring more frequently [74] and their impact on the

forest requires monitoring. However, to truly develop a UAV-based monitoring system that is

flexible and allows for automation of workflow where possible spectral data derived from the

UAV sensors should be calibrated ensuring long term data quality [75] as well as data compa-

rability through time and space [76]. Additionally to fully exploit the multispectral capability

of the system using consumer grade digital cameras, post-flight combination of data from

Table 5. Accuracy assessment.

Reference Totals Classified Totals Number Correct Producers Accuracy Users Accuracy

Capparis scabrida 76 67 67 88.16% 100.00%

Cordia lutea 227 236 225 99.12% 95.34%

Prosopis pallida (alive) 51 62 49 96.08% 79.03%

Prosopis pallida (dead) 87 76 74 85.06% 97.37%

Totals 441 441 415

Overall Classification Accuracy 94.10%

https://doi.org/10.1371/journal.pone.0188714.t005

Fig 8. Point cloud showing higher density for evergreen trees as opposed to deciduous or defoliated

tress.

https://doi.org/10.1371/journal.pone.0188714.g008
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different sensors should be considered allowing for a wider range of multispectral bands

enhancing the analytical capability (such as vegetation indices) of the system and therefore

being able to capture subtle differences in infestation levels. This would in turn raise the need

of accurate ground control points and minimal time delay between flights [33].

The aforementioned improvements in the system are feasible however the present analysis

has exposed the state of the vegetation and served as a baseline for future monitoring allowing

to further focus on the health (i.e. levels of infestation) of Algarrobo. Moreover, once estab-

lished such a UAV-based monitoring system it could be extended to compute extra individual

tree information of great value for many ecological studies [77]. Measures of canopy extent

(crown width, crown cover, foliage projected cover. . .) and tree heights values can be easily

computed once the right crown delineation algorithm is in place [78], furthermore, tree height

and crown width are known to correlate with other tree based metrics such as DBH [69,79].

These tree structural attributes are fundamental for assessing above grown biomass, carbon

stocks and for the understanding of ecosystem functions which are essential in support of

many conservation activities and the provision of ecosystem services [78]. To be able to do

this, as well as identify further species would represent an exciting development for the fields

of remote sensing, ecology and conservation [80]. With respect to this landscape in particular,

it is clear that what is required of a monitoring system, i.e., provision of spatial data on the

principal keystone species, including on their health, in a timely fashion on demand, should

indeed be possible. The data generated via this study allows for the isolation of areas needing

conservation management and planning, for example targeting areas of healthy trees for seed

collecting, and conversely those areas needing assistance in restoration and intervention.

As for the generality of the methodology used, the forest of the study area is at the dry end of

the spectrum for tropical dry forest where rainfall is very low resulting in a vegetation type with

low number of species. Disturbances in the area have also caused an open structural vegetation

formation where tree crowns are in many cases isolated and have developed freely to their

mature form but also in tree clusters where crowns from individual trees are interconnected.

The methodology used in this study, working at different levels (isolated trees and tree clusters)

allows for this approach to be used in different structural vegetation types, either in closer for-

mations such as forests receiving more rainfall where tree canopies are completely interconnec-

ted, or in very open formation such as savannahs (e.g. Brazilian cerrado). In more species rich

vegetation types such as cerrado, the approach here would still be valid but would benefit from

higher spectral resolution, either from an upgrade of UAV sensors or post-flight combination

of data in order to fully exploit the multispectral capability for species identification.
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3. Lerner Martı́nez T, Ceroni Stuva A, González Romo CE. Etnobotánica de la comunidad campesina”-

Santa Catalina de Chongoyape” en el Bosque seco del área de conservación privada Chaparrı́-Lam-
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