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A B S T R A C T   

COVID-19, a novel identified coronavirus disease due to Severe Acute Respiratory Syndrome coronaviruses 2 
(SARS-Cov-2) infection, has posed a significant threat to public health worldwide. It has been reported COVID-19 
keeps substantial nucleotide similarity and shares common receptor, Angiotensin-converting enzyme 2 (ACE2) 
with Severe Acute Respiratory Syndrome coronaviruses (SARS-Cov). Here, we investigated the gene expression 
of ACE2 and identified associated pathways of SARS-Cov as a useful reference for a deepening understanding of 
COVID-19. The results indicated the ACE2 was overexpressed in human airway epithelial cells (HAEs), especially 
at 72 h after SARS-Cov infection. We found ACE2 might regulate immune response through immunological 
activation-associated pathways in the process of in both SARS-Cov and SARS-Cov-2 infection, where the acti-
vation of B cells, macrophages, helper T cells 1 (Th1 cells) and the inhibition of Foxp3 + regulatory T (Treg) cells 
and CD8 + T cells were found to be prominent. Finally, significant correlation between ACE2 and JAK-STAT 
signaling pathway was identified which indicate that JAK-STAT signaling pathway might involve in the 
downstream action of the overactivation of ACE2. These findings are expected to gain a further insight into the 
action mechanism of COVID-19 infection and provide a promising target for designing effective therapeutic 
strategies.   

1. Introduction 

After several viral pneumonia cases were reported from Wuhan, 
China, in December 2019, a novel coronavirus, COVID-19 was identified 
based on the sequencing results of respiratory samples and named by the 
World Health Organization (WHO) on February 11, 2020 (Organization, 
2020). With high infectiousness, COVID-19 spread rapidly and posed a 
high risk to the whole world. As of June 11, 2020, 84,652 definite pa-
tient cases have been reported (including 79,888 cured cases) and 4645 
cases died from COVID-19 from 31 provinces in China according to the 
latest official report. Moreover, outside of China, 7,382,290 definite 
patient cases have been reported, including 413,583 deaths in 215 
countries, most notably in America, Brazil, Britain and Spain. Acute 
respiratory distress syndrome (ARDS) and sepsis resulted from severe 
infection by COVID-19 were the major causes of death (Huang et al., 
2020). It’s indicated by the phylogenetic analysis for the complete viral 

genome of COVID-19 that the new virus had 89.1% nucleotide similarity 
with SARS-like coronaviruses (Wu et al., 2020). Moreover, the SARS- 
CoV-2 has been identified as the pathogen of COVID-19 and the SARS- 
CoV-2 ribonucleic acid (RNA) has been used to detect COVID-19 
(Cheng and Shan, 2020; Yu et al., 2020). However, the potential path-
ogenic mechanism of COVID-19 is still unclear and there is a lack of 
effective prevention or treatment for COVID-19 infection. 

Only when combined with cell surface receptors, could this virus 
enter the target cells for further replication, which was the prerequisite 
of coronaviruses infection (Li, 2016). ACE2 had been known as a cell 
surface protein on cells in the heart, blood vessels, kidney, especially 
lung AT2 alveolar epithelial cells (Richardson et al., 2020). More 
importantly, it was identified as the receptor for SARS-Cov and human 
coronavirus NL63 (HCoV-NL63) (Li et al., 2007). Xu et al. also found 
ACE2 could serve as the receptor for COVID-19 through modeling the 
spike protein (Xu et al., 2020). In addition, Zhou et al. confirmed COVID- 
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19 used ACE2 as the cell entry receptor from virus infectivity studies in 
HeLa cells from humans, pig, Chinese horseshoe bats and civets (Zhou 
et al., 2020). Hence, ACE2 played an essential role in the process of 
COVID-19 infection. 

Based on the fact that COVID-19 remains substantial nucleotide 
similarity with SARS coronavirus and they share the same cell entry 
receptor ACE2, analysis of ACE2 expression and biological function in 
SARS-Cov would be of great reference value for the study of COVID-19 
infection. In this study, we demonstrated the expression features of 
ACE2 in coronavirus infection and identified associated pathways of 
COVID-19 using gene expression profiles from public database using 
bioinformatics approaches. Moreover, all these results were further 
validated in other datasets of lung tissues and cells infected by SARS- 
Cov-2. We are the first that investigated the correlation between ACE2 
and JAK-STAT signaling pathway to shed light on the potential patho-
genesis of COVID-19 infection and provide hints to improve on thera-
peutic strategies. 

2. Materials and methods 

2.1. Data collection and preprocessing 

Four eligible microarray datasets (GSE47960, GSE47961, GSE47962 
and GSE47963) were downloaded from GEO database (https://www.nc 
bi.nlm.nih.gov/geo/) with the following selection criteria: a) keywords 
of “SARS” or “coronavirus”; b) Using lung tissue or airway epithelial 
cells as research objects; c) Datasets contained a minimum of 10 samples 
and inclusion of >5,000 genes in the GEO platform. The microarray 
datasets comprised 174 HAEs samples which were divided into 85 

samples dealt with mock infections as the control subgroup and 89 
samples dealt with SARS coronavirus infection as the SARS subgroup. 
Moreover, each subgroup was further divided into 9 groups based on the 
time point at 0, 12, 24, 36 48, 60, 72, 84 and 96 h after infection 
(Supplementary Table 1). To increase the accuracy and reliability of the 
immune infiltration, we also downloaded another high-throughput 
sequencing datasets containing 16 SARS-Cov-2 infected and 5 healthy 
lung tissues from GSE150316 to conduct immune infiltration analysis. 
Further, another RNA sequencing dataset (including 14 SARS-Cov 
infected, 14 SARS-Cov-2 infected and 8 mock infected human Calu-3 
cells) was acquired from GSE148729 to validate the conclusion. 

The series matrix files of four gene expression profiles were down-
loaded from GEO and the k-nearest neighboring (KNN) imputation al-
gorithm was applied to impute the few missing values through the 
“Impute. Knn” function of “impute” package (Suyundikov et al., 2015). 

Fig. 1. Expression features of ACE2 in HAEs after SARS-Cov infection. A. the expression of ACE2 in SARS-Cov and control groups; B. Different expression of ACE2 
between SARS-Cov and control groups based on time phases. C. Different expression of ACE2 in SARS-Cov groups based on time phases. D. Different expression of 
ACE2 in the control group based on time phases. 

Table 1 
Results of GSEA of high-expression ACE2 in SARS groups.  

KEGG pathway NES NOM p value 

Cytosolic DNA sensing pathway  2.46  0.00 
Toll like receptor signaling pathway  2.39  0.00 
Rig I like receptor signaling pathway  2.28  0.00 
Cytokine-Cytokine receptor interaction  2.20  0.00 
Chemokine signaling pathway  1.96  0.00 
Cell cycle  1.58  8.49E-03 
JAK-STAT signaling pathway  1.60  8.55E-03 
Nicotinate and nicotinamide metabolism  1.65  2.18E-02 
Natural killer cell mediated cytotoxicity  1.45  2.78E-02 
Homologous recombination  1.64  2.93E-02 
Oocyte meiosis  1.42  4.49E-02  
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Fig. 2. Results of GSEA and GSVA for high-expression ACE2 in SARS-Cov infection. A-G. GSEA showing the related biological potential role of ACE2 in SRAS, 
including (A) Cytosolic DNA sensing pathway, (B) Toll like receptor signaling pathway, (C) Rig I like receptor signaling pathway, (D) Cytokine-Cytokine receptor 
interaction, (E) Chemokine signaling pathway, (F) JAK-STAT signaling pathway and (G) Natural killer cell mediated cytotoxicity. H. The heatmap showing 
enrichment of associated-pathways through GSVA in SARS-Cov groups among different time phases. 

J. Luo et al.                                                                                                                                                                                                                                      



Gene 768 (2021) 145325

4

Then we deleted the probes without a corresponding gene symbol and 
calculated the average value as the final expression value for genes 
corresponding to more than one probe. Subsequently, probes with zero 
(the lowest expression) was eliminated by a filtering process and the 
“ComBat” function of R package “sva” was used to remove known batch 
effects from microarray data (Leek et al., 2012). Finally, quantile 
normalization within and between arrays on all samples was conducted 
using “normalizeWithinArrays” and “normalizeBetweenArrays” func-
tion and the probe IDs were converted into gene symbols based on the 
annotation file for probes of the platform. In addition, the counts files of 
lung tissues and human Calu-3 cells were filtered with low expression 
and normalized by the DEseq2 package (Love et al., 2014). 

2.2. Signal-gene GSEA and GSVA 

To investigate the potential role of ACE2 in SARS-Cov infection, we 
divided the SARS subgroups into two groups with high or low expression 
levels of ACE2 based on Candidate-Gene Scores, calculated as described 
in other studies (Kirou et al., 2004, 2005; Feng et al., 2006). The Mean 
and SD levels of ACE2 in the control (Mean-control and SD-control) were 
calculated for the standardization of expression levels of ACE2 for each 
infected sample. Then the standardized expression levels of each sample 
were reckoned as following calculation formula: 

Candidate-Gene Scores (ACE2) i= (ACE2 i SARS – Mean-control)/(SD- 
control), where i = number of the SARS-Cov samples, ACE2 i SARS =

expression levels of ACE2 in each SARS-Cov sample. 
Subsequently, the threshold of Candidate-Gene Scores was identified 

through double normal distribution model from R packages “mixtools”. 
The GESA v4.0.3 software was used for Gene Set Enrichment Analysis 
(GSEA) of ACE2 in SARS-Cov groups [37]. The parameters were set as 
following: number of permutations = 1000, min size for excluding sets 
= 15, max size for excluding sets = 500, the pathways with p value <
0.05 were identified significant. We then conducted gene set variation 
analysis (GSVA) by “GSVA” package (Hanzelmann et al., 2013) and used 

annotation gmt file as the reference gene sets from MSigDB v7.0 
(https://www.gsea-msigdb.org/gsea/msigdb/) (Liberzon et al., 2011). 

2.3. Immune infiltration analysis 

To further evaluate the immune cell infiltration features of normal 
lung tissues and SARS-Cov-2 infected samples, we used the “ssGSEA” 
method of “GSVA” package to transform the gene expression profiles 
into immune infiltration files based on immune annotation gmt file 
including 29 immune cell types or functions (Barbie et al., 2009; He 
et al., 2018). Then the samples were redeployed into immune-associated 
groups through average-neighbor clustering. The heatmap of immune 
infiltration was constructed using “pheatmap” R package and the com-
parison of ACE2 and the components of immune cells among subgroups 
with different extent of immune response was performed using Kruskal- 
Wallis test. 

2.4. Correlation analysis 

For validating the mechanism of ACE2 modulating immune response 
in SARS-Cov infection, we performed Pearson correlation between ACE2 
expression and key genes of JAK-STAT signaling pathway in SARS-Cov 
and SARS-Cov-2 infected samples and control, and used an R package 
“ggstatsplot” to perform the data visualization (https://CRAN.R-project. 
org/package=ggstatsplot). Moreover, Finally, those genes with signifi-
cant positively correlated with the expression of ACE2 were compared 
between SARS-Cov and SARS-Cov-2 infected samples and control again 
using Wilcoxon test. 

3. Results 

3.1. Expression features of ACE2 in coronavirus infection 

To evaluate the temporal feature of ACE2 expression after 

Fig. 3. Results of ACE2′s immune infiltration characterization in normal lung and SARS-Cov infection. A The heatmap showing the degree of immune infiltration 
between SARS-Cov-2 infected and control lung tissue including 29 immune cells and responses. B. Different expression of ACE2 based on groups of SARS-Cov-2 
infection and control (B). C-G. Infiltration of immune cells between SARS-Cov-2 and control group including macrophages (C), B cells (D), CD8 + T cells (E), 
Th1 cells (F) and Treg cells (G). 
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coronavirus infection, we analyzed the dynamic change of expression 
levels of ACE2 in distinct infection time phases. The expression of ACE2 
in SARS-Cov groups, as expected, was significantly elevated compared 
with the control (Fig. 1A, p < 0.001). Interestingly, the expression level 
of ACE2 was not significantly altered at early stage (<72 h) of infection 
but markedly upregulated at 72, 84 and 96 h after infection (Fig. 1B, p <
0.001). We further analyzed the expression levels of ACE2 in different 
time groups in control and SARS-Cov group respectively. Notably, the 
expression of ACE2 didn’t significantly increased at any time in the 
control while dramatically increased at 72 h after SARS-Cov infection 
compared to previous times and reminded a high level after 72 h 
(Fig. 1C, p < 0.001; Fig. 1D, p > 0.05). 

3.2. Functional enrichment analysis of ACE2 in coronavirus infection 

To further investigate the biological potential role of ACE2 in SARS- 

Cov infection, we divided the SARS-Cov subgroups into two groups with 
high or low expression levels of ACE2 based on Candidate-Gene Scores. 
As shown in Supplementary Fig. 1A, the Candidate-Gene Score 2.4 was 
set as the threshold for division based on double normal distribution 
model. As expected, single-gene GSEA analysis indicated high- 
expression ACE2 was mainly enriched in pathways of immunological 
activation including cytosolic DNA sensing pathway, toll like receptor 
signaling pathway, rig i like receptor signaling pathway, cytokine- 
cytokine receptor interaction, chemokine signaling pathway, JAK- 
STAT signaling pathway and natural killer cell mediated cytotoxicity 
(Table 1, Fig. 2A–G). Moreover, ACE2 was significantly associated with 
process of virus replication such as cell cycle, homologous recombina-
tion and oocyte meiosis (Table 1). Subsequently, gene set enrichment 
score analyzed by GSVA and the heatmap of pathways in SARS-Cov 
showed enrichment scores increased over infection time, maintaining 
with a high level after 72 h. 

Fig. 4. Correlation analysis between ACE2 and JAK-STAT signaling pathway in SARS-Cov infected HAEs. A. The scatter diagrams showing significant positively- 
associated factors with ACE2 in JAK-STAT signaling pathway. B Expression of associated factors of JAK-STAT signaling pathway in SARS-Cov infection. 

J. Luo et al.                                                                                                                                                                                                                                      
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3.3. Immune infiltration characterization in normal lung and coronavirus 
infection 

In order to further present immune infiltration features, we con-
ducted ssGSEA analysis between SARS-Cov-2 infected and healthy lung 
tissues (Supplementary Table 3). The heatmap of immune infiltration is 
exhibited in Fig. 3A and the different degree of immune cell infiltration 
was clearly displayed between SARS-Cov-2 and control group. 
Furthermore, the high-expression of ACE2 was identified in SARS-Cov-2 
infected groups (Fig. 3B). To further demonstrate the role of different 
immune cells in SARS-Cov-2 infection, main immune cells of adaptive 
immune response were compared between infected and control sub-
groups. After SARS-Cov-2 infection, high immune cell infiltration was 
predominantly linked with macrophages, B cells and Th1 cells while 
low-level infiltration was mainly associated with CD8 + T cells and Treg 
cells (Fig. 3C–G). 

3.4. Correlation analysis between ACE2 and JAK-STAT signaling 
pathway 

Considering the JAK-STAT signaling pathway was instrumental in 
inflammatory networks (Chen et al., 2011), we further explored the 
correlation analysis between ACE2 and key genes related to JAK-STAT 
pathway in airway epithelial cells with or without infection respec-
tively. Interestingly, cytokines including I/II interferon family 
(including IFN-β1, IFN-γ1, IFN-γ2, IFN-γ3 and IFN-ε) and interleukin 
family members (such as IL7, IL 12A and IL15) manifested significantly 
positively correlation with ACE2 in SARS-Cov groups (Fig. 4A, Table 2) 
while uncorrelated or less correlated with ACE2 in the control (Sup-
plementary Fig. 1C). As for main components in JAK-STAT pathway, we 
found JAK2, STAT1, STAT2, STAT4 and STAT5A were significantly 
positively correlated with ACE2 in the SARS-Cov infetion while other 
factors (JAK1, JAK3, STAT3, STAT5B and STAT6) were uncorrelated or 
negatively correlated with ACE2. In addition, we also conducted com-
parison of the expression of these components between the infected and 
control. In accordance with the results of correlation analysis, IFN-β1, 
IFN-γ1, IFN-γ2, IFN-γ3, STAT1, STAT2 and STAT5A were still up- 
regulated in SARS-Cov group (Fig. 4B). However, the expression of 

JAK1, JAK2 and JAK3 were not significantly altered between healthy 
and SARS-Cov (Supplementary Fig. 1B). Further, members of the I/II 
interferon family, interleukin family and JAK-STAT signaling members 
also demonstrated similar positive correlation with ACE2 in human 
Calu-3 cells after SARS-Cov and SARS-Cov- 2 infection (including IFN- 
β1, IFN-γ1, IFN-γ2, IFN-γ3, IL18, JAK1, TYK2, STAT1, STAT2 and 
STAT6), consistent with the results of SARS-Cov infection of HAEs 
(Fig. 5A; Fig. 6A). In addition, the expression of several essential roles in 
this pathway (such as IFN-β1, IFN-γ1, IFN-γ2, IFN-γ3, STAT1 and 
STAT2) also dramatically increased in human Calu-3 cells with SARS- 
Cov and SARS-Cov-2 infection (Fig. 5B; Fig. 6B). Notably, the expres-
sion of JAk1, IL7 and IL12A was also up-regulated in Calu-3 cells after 
infection, which is different from that in HAEs. To better understand the 
relationship of these components, a schematic model of coronavirus 
infection was exhibited in Fig. 7. 

4. Discussion 

Although substantial clinical retrospective studies have clarified the 
clinical features of COVID-19, there is still lack of explicit molecular 
mechanism and effective treatment for COVID-19 infection. In this 
study, a total of six serial gene expression files of HAEs, human Calu-3 
cells and lung tissues were conjointly analyzed and we validated the 
high-expression levels of ACE2 in SARS-Cov and SARS-Cov-2 infection, 
coincided with previous studies (Gui et al., 2017). Moreover, compari-
son among time phases indicated the expression of ACE2 dramatically 
increased and remained a high level at 72 h after SARS-Cov infection, 
suggesting that there was a comparable incubation period before ACE2 
drastically upregulated after the infection of COVID-19 and its rela-
tionship with clinical latency needs further investigation. 

It has been reported that ACE2 was associated with adaptive immune 
responses and participated in regulating the produce of cytokines asso-
ciated with ARDS which induced by coronavirus infection (Rockx et al., 
2009; Fischer et al., 2017). Similarly, in our study, results of single-gene 
GSEA and GSVA also revealed ACE2 was related to the pathways of 
immunological activation such as cytokine-cytokine receptor interac-
tion, chemokine signaling pathway, JAK-STAT signaling pathway and 
natural killer cell mediated cytotoxicity, consistent with above studies. 

Table 2 
Results of Correlation analysis between ACE2 and JAK-STAT pathway in SARS-Cov infected HAEs.  

Group Symbol Correlation p value Group Symbol Correlation p value 

SARS IL15  0.63 4.16E-11 Control IL15  0.60 1.10E-09 
SARS IL29  0.67 8.30E-13 Control IL29  − 0.38 3.18E-04 
SARS IL6  − 0.14 2.06E-01 Control IL6  0.05 6.78E-01 
SARS IL23A  0.05 6.50E-01 Control IL23A  0.67 2.12E-12 
SARS IL7  0.46 6.61E-06 Control IL7  0.39 2.55E-04 
SARS IL12A  0.27 9.88E-03 Control IL12A  0.31 4.48E-03 
SARS IL28B  0.71 4.03E-15 Control IL28B  0.05 6.67E-01 
SARS IL28A  0.73 6.31E-16 Control IL28A  − 0.02 8.50E-01 
SARS IFNA16  0.08 4.51E-01 Control IFNA16  0.27 1.16E-02 
SARS IFNA10  − 0.11 3.12E-01 Control IFNA10  − 0.05 6.62E-01 
SARS IFNE  0.43 2.49E-05 Control IFNE  − 0.26 1.70E-02 
SARS IFNA6  − 0.14 1.93E-01 Control IFNA6  0.19 8.10E-02 
SARS IFNB1  0.68 3.04E-13 Control IFNB1  − 0.34 1.68E-03 
SARS IFNA5  − 0.03 8.07E-01 Control IFNA5  − 0.27 1.33E-02 
SARS IFNA21  − 0.07 5.26E-01 Control IFNA21  0.26 1.66E-02 
SARS IFNA4  − 0.15 1.71E-01 Control IFNA4  − 0.51 5.19E-07 
SARS JAK2  0.66 1.39E-12 Control JAK2  0.69 3.93E-13 
SARS JAK3  − 0.40 1.22E-04 Control JAK3  − 0.21 5.93E-02 
SARS JAK1  − 0.31 3.47E-03 Control JAK1  − 0.39 2.11E-04 
SARS TYK2  − 0.16 1.38E-01 Control TYK2  − 0.22 4.46E-02 
SARS STAT1  0.84 6.22E-25 Control STAT1  0.52 2.55E-07 
SARS STAT2  0.84 4.14E-25 Control STAT2  0.20 6.10E-02 
SARS STAT3  − 0.13 2.37E-01 Control STAT3  − 0.47 4.79E-06 
SARS STAT4  0.30 3.99E-03 Control STAT4  0.42 5.63E-05 
SARS STAT5A  0.24 2.15E-02 Control STAT5A  − 0.01 9.22E-01 
SARS STAT5B  − 0.29 6.21E-03 Control STAT5B  − 0.40 1.42E-04 
SARS STAT6  − 0.13 2.40E-01 Control STAT6  − 0.49 1.93E-06  

J. Luo et al.                                                                                                                                                                                                                                      
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In addition, we also found the elevated ACE2 was associated with virus 
replication through the pathway of cell cycle, homologous recombina-
tion and oocyte meiosis (He et al., 2010; Gillespie et al., 2012), also 
reported in He’s study(He et al., 2020). 

Previous researches have certified coronavirus could activate innate 
immunity system (Frieman et al., 2008) and cause T-cell response 
irregular through stimulating T-cell apoptosis(Zhou et al., 2014). In this 
study, the comparison of immune cells between SARS-Cov-2 infection 
and control showed the increase of antigen presenting cells (macro-
phages and B cells) and the decrease of CD8 + T cells, suggesting acti-
vation of innate immunity response by enhancing the capacity of 
presenting antigen and releasing inflammatory factors. Moreover, Treg 
cells were exert an essential role to maintain immune homeostasis by 
inhibiting various inflammatory responses (Belkaid and Tarbell, 2009) 
and Treg cell ablation could lead to multiple autoimmune syndrome 
(Kim et al., 2007). Notably, experimental evidence from animal models 
indicated lack or dysfunction of Treg cells was accompanied with 
sharply augmented Th1 responses and activation of IFN-γl-dependent 
immune responses (Siebler et al., 2003; Lu et al., 2010). Interestingly, 
the expression of Treg cells significantly decreased while Th1 cells 
dramatically increased in SARS-Cov-2 infection, which in consistent 
with an adjusted immunity and overactivated inflammation during the 

process of SARS-Cov-2 infection. However, whether the overexpression 
of ACE2 is related to the infiltration of immune cells needs further 
investigation. 

The JAK-STAT signaling pathway was reported widely involved in 
the regulation of massive inflammatory responses and promotes cell 
migration and apoptosis (Chen et al., 2011). Besides, The JAK-STAT 
signaling pathway was the major downstream pathway of the activa-
tion type I IFNs after virus infection and dysfunction of JAK-STAT 
pathway was also major patterns for immune escape of virus from 
normal immune surveillance (Ma and Suthar, 2015; Nelemans and 
Kikkert, 2019; Li et al., 2020). However, the relation between high 
expression of ACE2 and JAK-STAT pathway in coronavirus infection has 
few been reported. In our study, we found significant association be-
tween ACE2 and components (including JAK2, STAT1, STAT2, STAT4 
and STAT5A), which indicating ACE2 activation in SARS-Cov infection 
was associated with high levels of type I and II IFNs and STAT family. 
These results indicated the elevated ACE2 expression might activate 
JAK-STAT signaling pathway to modulate the immune response after 
SARS-Cov infection. More importantly, above relation between ACE2 
and IFN-JAK-STAT signaling was further validated in another different 
cell line with SARS-Cov and SARS-Cov-2 infection, directly indicating 
the close connection of ACE2 and JAK-STAT signaling during the process 

Fig. 5. Correlation analysis between ACE2 and JAK-STAT signaling pathway in SARS-Cov infected human Calu-3 cells. A. The scatter diagrams showing significant 
positively-associated factors with ACE2 in JAK-STAT signaling pathway. B Expression of associated factors of JAK-STAT signaling pathway in SARS-Cov infection. 
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Fig. 6. Correlation analysis between ACE2 and JAK-STAT signaling pathway in SARS-Cov-2 infected human Calu-3 cells. A. The scatter diagrams showing significant 
positively-associated factors with ACE2 in JAK-STAT signaling pathway. B Expression of associated factors of JAK-STAT signaling pathway in SARS-Cov-2 infection. 

J. Luo et al.                                                                                                                                                                                                                                      
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of COVID-19 infection. 
However, there still are some limitations in our study. Despite of the 

common cell surface receptors ACE2 and 89.1% nucleotide similarity 
with SARS-Cov, there might be different in potential mechanism of 
COVID-19 virus infection. Besides, the sample size in our study is still 
limited and need enlarged studies to support our results. Furthermore, 
concrete relation between COVID-19 and JAK-STAT signaling pathway 
in pathogenesis of COVID-19 infection remains to be verified through 
subsequent animal models or cell experiments. 

In conclusion, we observed the expression of ACE2 dramatically 
increased and remained a high level at 72 h after SARS-Cov infection. 
The activation of innate and adaptive immune responses might partic-
ipate in the progression of SARS-Cov-2 infection, which accompanied 
with marked infiltrated immune cells, including B cells, macrophages 
and Th1 cells and reduced present of Treg T cells and CD8 + T cells. JAK- 
STAT signaling pathway, in particular, the downstream of type I/II IFNs 
might to be involved in the related action mechanism of COVID-19 
infection. These findings are expected to shed light on the potential 
pathogenesis and provide hints to improve on therapeutic strategies for 
COVID-19 infection. 
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