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This review examines the immunity, immunopathology, and
contemporary problems of vaccine development against
sexually transmitted Chlamydia trachomatis. Despite improved
surveillance and treatment initiatives, the incidence of C.
trachomatis infection has increased dramatically over the past
30 years in both the developed and developing world. Studies
in animal models have shown that protective immunity to C.
trachomatis is largely mediated by Th1 T cells producing IFN-g
which is needed to prevent dissemination of infection. Similar
protection appears to develop in humans but in contrast to
mice, immunity in humans may take years to develop. Animal
studies and evidence from human infection indicate that
immunity to C. trachomatis is accompanied by significant
pathology in the upper genital tract. Although no credible
evidence is currently available to indicate that autoimmunity
plays a role, nevertheless, this underscores the necessity to
design vaccines strictly based on chlamydial-specific antigens
and to avoid those displaying even minimal sequence
homologies with host molecules. Current advances in C.
trachomatis vaccine development as well as alternatives for
designing new vaccines for this disease are discussed. A novel
approach for chlamydia vaccine development, based on
targeting endogenous dendritic cells, is described.

Introduction

Chlamydia trachomatis is the most common sexually transmit-
ted bacterial infection in the world with more than 92 million
new cases reported per annum and with more than two-thirds of
these occurring in developing countries.1,2 Pelvic inflammatory
disease (PID), ectopic pregnancy, and infertility are the major
adverse clinical outcomes of public health importance.3,4

Chlamydia control programs aimed at reducing the incidence,
prevalence and morbidity of disease have been implemented in
many developed countries. These programs involve the screening
and detection of infected individuals, antimicrobial treatment
and partner notification. Over the past 30 y the incidence of sex-
ually transmitted chlamydia has dramatically increased in various
countries including the USA,5,6 Canada,7 Sweden,8 Norway, and
Finland.9 In addition, the World Health Organization (WHO)
has identified high levels of transmission in Sub Saharan Africa
and South East Asia.2 Whether this increase correlates with a net
increase in chlamydia disease or whether it is the result of more
wide-spread screening and improved diagnosis is controversial. It
is clear however, that the highest rates of chlamydia world-wide
occur among young adults, particularly women aged 15–24 y old
from lower socio-economic backgrounds.10

Sexually transmitted C. trachomatis infects the endocervical
epithelia of women and the urethral epithelia in men.3 Infection
remains subclinical in a large proportion of infected individuals
(70–90% of women; 30–50% of men) who can still transmit
infection.3 Among untreated women, C. trachomatis can ascend
along the endometrial epithelium to the fallopian tubes where it
can establish persistent infection causing pelvic inflammatory dis-
ease (PID) (Fig. 1). Symptoms of PID range from none to severe
abdominal pain, fever, dyspareunia, prolonged menstruation,
and inter-menstrual bleeding.

Studies in humans and animal models have identified some
correlates of anti-chlamydial immunity. However, recent studies
have also demonstrated that immune responses to chlamydial
infection can be a significant source of pathology and disease.
Vaccine development will need to ensure that immunisation does
not cause exacerbation of inflammatory mechanisms which may
lead to further tissue and organ damage.11-15

A safe and reliable vaccine is considered to be the best approach
to reduce global prevalence of C. trachomatis infection. While con-
siderable progress has been made in recent years, an efficacious C.
trachomatis vaccine remains elusive. Identification of correlates of
immunity studies in both animal models and human studies, and
clarification of protective immune mechanisms to infection, have
impaired progress. The discovery of a number of new C. trachoma-
tis and C. muridarum vaccine candidate antigens (Table 1) are
encouraging and has inspired renewed efforts to design a human
vaccine. However, suitable adjuvants that help stimulate T cell-
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mediated immunity against intracellular bacteria are lacking. Like-
wise, a vaccine delivery system to induce and sustain the immune
response to C. trachomatis is needed. Research in cancer immuno-
therapy and experimental vaccines for intracellular infections pro-
vides valuable insight for the design of a new vaccine against C.
trachomatis infection. Vaccines that target endogenous immune
cells, such as dendritic cells (DCs), have shown a significant
enhancement of T-cell immunity in cancer.16 This review exam-
ines various aspects of chlamydia immunity and immunopathol-
ogy in the context of current vaccine development and explores
the possibility of utilizing a DC targeting approach to design new
C. trachomatis vaccines.

Immunity to C. trachomatis

The last two decades have seen significant progress in the
understanding of immunity to C. trachomatis genital infection. It
is now known that mice or guinea pigs can resist reinfection 30–
60 d after primary infection, but these animals can be reinfected
after 75 d, although the severity of disease is reduced.17,18 How-
ever, the dynamics of susceptibility and host resistance to C. tra-
chomatis infection in humans, as compared with animal models,
differ substantially. Epidemiological studies, for example, show
that under natural conditions T-cell immunity develops slowly
perhaps reflecting the silent nature of C. trachomatis infection.19

Chlamydia-Specific T cell Immunity

In both mice and guinea pigs, immunity to C. trachomatis is
characterized by the development of antigen specific T-cells and
antibodies. Antibodies are detectable within 10–14 d after infec-
tion. In mice, antibodies produced are long-lasting and can be
detected in serum 300 d after infection.18,20 The presence of
chlamydia-specific antibodies, however, does not correlate with
resolution of infection in humans and, in fact, seem to be more
correlated with increased morbidity.21,22 Nevertheless, studies in
mice have shown that anti-chlamydia antibodies are more impor-
tant in the control of re-infection rather than primary infec-
tion.23,24 Specifically, B-cell deficient mice with no detectable
antibody responses successfully resolved genital infection with C.
muridarum .23 However, mice depleted of both CD4C T cells
and CD8C T cells, expressing normal anti-chlamydia antibody
responses, successfully resisted reinfection.24

Studies in mice consistently show that development of immu-
nity to genital C. muridarum depends on chlamydia-specific
CD4C T cells and that production of IFN-g by these cells is
required to inhibit chlamydia growth. Gene knockout studies in
mice have shown that mice lacking CD4C T cells or lacking
IFN-g are impaired to control infection,25,26 but immunity can
be restored by adoptive transfer of CD4C Th1 cells.27 A more
recent report showed that CD4C T cells are necessary and

Figure 1. Model of C. trachomatis immunity and pathology. Following cervical infection, an early acute inflammatory response occurs, characterized by
secretion of pro-inflammatory cytokines and recruitment of immune cells. Cytokine production by immune cells synergizes with ongoing immune
responses that ultimately controls infection but also may cause pathology. C. trachomatis can ascend via the endometrium to the upper genital tract. As
a consequence, local pro-inflammatory mediators and cytokines are produced. In an attempt to control the infection, Chlamydia-specific T cells and
corresponding cytokines infiltrate the oviduct. These inflammatory responses, if persistent, may lead to fibrosis, scarring, and reproductive sequelae.
Abbreviations: MMP, matrix metalloproteinases; SIgA, secretary immunoglobulin A; EBS, Chlamydia elementary bodies; MIP2, macrophage inflammatory
protein-2.
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sufficient for protection against chlamydial reinfection in murine
genital mucosa.28 CD4C and CD8C T cells accumulate in the
upper genital tract of guinea pigs29 and macaque monkeys30 fol-
lowing C. trachomatis genital infection. Presence of both cell
types correlated with resistance to reinfection. Furthermore, a
study in humans showed that CD4C and CD8C T cells are
recruited to the cervix of women with C. trachomatis infection
and that these cells disappeared following antibiotic treatment.31

Although these studies suggest that CD4C and CD8C T cells
may be involved in the control of C. trachmatis infection, the
importance of those cell populations have been clearly defined
only for CD4C T cells in the mouse where they are essential for
protection.

T-Cell Effector Mechanisms

IFN-g produced by T cells is critical to control chlamydia
genital infection. In vitro cell culture of human cells have shown
that IFN-g activates infected cells to restrict intracellular growth
of C. trachomatis by inducing the tryptophan-catabolizing
enzyme, indoleamine 2,3-dioxygenase (IDO). Without trypto-
phan, C. trachomatis cannot survive. Thus, mutant cell lines
responsive to IFN-g but deficient in IDO activity, efficiently sup-
port C. trachomatis growth.32 Likewise, infected cells cultured in
medium with incremental levels of exogenous tryptophan indi-
cated that chlamydial growth requires presence of this essential
amino acid.32,33 C. trachomatis strains isolated from the human
urogenital tract can synthesize tryptophan if provided exogenous
indol. Therefore, it is possible that indol produced by the micro-
biota of the female genital tract (FGT) could serve as a source for
indol, thus circumventing or diminishing the protective effect of
IFN-g.34,35 Additional antimicrobial mechanisms of C. tracho-
matis have also been documented such as the production of nitric
oxide and oxygen free radicals by phagocytes, both of which
inhibit the chlamydial growth following phagocytosis.36 In con-
trast to human epithelial cells, mouse epithelial cells lack IDO,
and IFN-g mediated suppression of C. trachomatis growth is
thought to be due to a family of IFN-g inducible p47 GTPases.37

Moreover, in mice, recent experimental evidence has demon-
strated that chlamydia specific CD4C T cell clones can inhibit
the growth of C. muridarum in epithelial cells by degranulation-
dependent mechanisms that appear to directly lyse chlamydial
cells.38 Thus, although IFN-g inhibits chlamydia growth, the
specific effector mechanisms differ substantially in mice com-
pared to in humans. This has implications for vaccine develop-
ment, as results from the mouse model may not be directly
extrapolated to humans and a vaccine developed in mice may
require further testing in non-human primates prior to human
clinical trials.

Immunity and Duration of Infection

A relevant question in the natural history of C. trachomatis
infection is the amount of time the infected host needs to control
an untreated infection. In guinea pigs and mice, primary

infection lasts a few weeks before anti-chlamydial immunity and
resolution of infection develops naturally.39 In humans however,
the duration of infection can be much more extended. A review
of human epidemiological studies on C. trachomatis infections
reported that in the short-term intervals (weeks) between initial
screening and follow-up, spontaneous resolution rates were
between 11% and 44%.40 In a long-term study of 82 women
with untreated C. trachomatis cervical infection, it was demon-
strated that 54% spontaneously resolved infection at one year,
82% at two years, 91% at three years, and 95% at four years.19,41

Similarly, another follow-up cohort study has reported that only
45% of C. trachomatis positive women cleared infection after
one-year.41 From these studies, it is not known for certain if
those long duration infections were unresolved infections or if
they were re-infections. Nevertheless, under natural conditions,
immunity to C. trachomatis infection in humans appears to take
months to develop. Protracted development of immunity in
humans may be due to a number of factors such as low virulence
properties of the bacteria at the time of infection,42 host immu-
nosuppressive abilities of the microbe (reviewed in ref. 4),
enhanced survival of chlamydia outside cells,43 and ability to per-
sist intracellularly.44,45

Once infected, as many as 85–90 percent of C. trachomatis
infections in men and women remain asymptomatic.3,46 At least
one third of asymptomatic infected women present local signs of
infection.3 The reason for the low virulence of C. trachomatis is
not well understood. C. trachomatis contains a lipopolysaccharide
(LPS) of reduced potency at triggering activation of host immu-
nity. For example, C. trachomatis LPS is at least 100 times less
potent at activating blood leukocytes than LPS from Salmonella.
The reduced LPS response may explain, in part, why genital tract
infection remains mostly asymptomatic. In addition, C. tracho-
matis downregulates MHC class I and II genes induced by IFN-
g.47 Together, these observations suggest that by inducing immu-
nosuppressive mechanisms on the host and by not inducing or
stimulating sufficient immune responses, C. trachomatis has
evolved effective mechanisms for survival which should be con-
sidered in the design of prophylactic vaccines.

Human Immunity

For ethical reasons, studies addressing the dynamics of anti-
chlamydial immunity in humans have been difficult to develop.
Once diagnosed, patients infected with C. trachomatis are
required to be promptly treated. Nevertheless, evidence from epi-
demiological observations has shown that immunity in humans
does develop slowly over time. Both the prevalence and intensity
of infection among young women are significantly higher than
those observed in older women, suggesting development of age
acquired immunity.48 Furthermore, women with reduced CD4C

T cell counts, due to human immunodeficiency virus (HIV)
infection, possess an increased risk for developing C. trachomatis
PID, indicating that CD4C T cells are necessary to control infec-
tion in humans.49 C. trachomatis infection rates are inversely cor-
related with duration of the disease in female commercial sex
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workers.50 In this context, sex workers whose immune cells
respond to C. trachomatis heat shock protein 60 by producing
IFN-g in vitro, showed reduced risk of acquiring C. trachomatis
infection at follow-up.51 Although studies to date are suggestive
that Th1 responses correlate with protection, a recent study pro-
vides evidence that Chlamydia-specific Th2 responses may be
key to controlling infection in humans.52 This possibility
requires further investigation.

Immunopathology to C. trachomatis

Innate immunity and pathology
Several studies in animal models and in humans have shown

that the first contact of C. trachomatis with host cells during
infection leads to secretion of pro-inflammatory cytokines
including TNFa, IL-8, IL-1a, and GM-CSF.11,53,54 These cyto-
kines, which are required to trigger the immune response, can
cause collateral tissue damage.15,31,53-55 For example, production
of IL-1 by infected fallopian tube organ cultures have been associ-
ated with destruction of fallopian tube epithelia in vivo.11 Signals
derived from Toll-like receptor 2 (TLR2) have also been impli-
cated in pathology. For example, mice without TLR2 do not
develop significant pathology in the oviduct following C. murida-
rum infection.56 Moreover, plasmid-cured C. muridarum
mutants that retain the ability to infect the murine genital tract
were unable to trigger TLR2-mediated signaling and did not
develop oviduct pathology.57 Recent observations demonstrate
that mice lacking TLR2 do not develop significant pathology in
the upper genital tract following infection with C. muridarum.58

Most chlamydial isolates contain chlamydial plasmids. These
plasmids have been found to play a significant role in chlamyd-
ial-associated pathology in primate ocular tissues.59 In mice, C.
muridarum organisms lacking chlamydial plasmids do not cause
significant pathology in the upper genital tract.60

Matrix metalloproteinases (MMPs) play an important role in
cellular turnover and extracellular matrix remodelling in the
female reproductive tract.61 Various members of the MMPs,
including MMP9, MMP13, MMP10, and others expressed by
endometrial cells of mice infected with C. muridarum have been
implicated in tissue damage in the mouse endometrium.62 Sup-
porting the effect of MMPs in pathogenesis is the fact that inhibi-
tion of MMPs with captopril protected mice against chronic
disease by C. muridaum.63 In humans, expression of MMP9 by
fallopian tube cells infected with C. trachomatis was associated
with epithelial tubal scarring.64 Remarkably, the presence of high
levels of a-defensins, antimicrobial peptides produced by acti-
vated neutrophils, were linked to endometritis in C. trachomatis
infected women.65 Thus, C. trachomatis infection upregulates a
large number of innate inflammatory mediators within the repro-
ductive tract, and the presence of these mediators have been asso-
ciated with a poorer clinical outcome. The interactions of these
mediators and how the inflammatory responses might be modi-
fied therapeutically, to limit the tissue damage, require further
study.

Acquired immunity and pathology
Although the most potent host defense mechanism against C.

trachomatis is based on T-cell immunity, human studies have
shown correlation between anti-chlamydial T cell immunity and
pathology in the FGT. For example, IFN-g levels were signifi-
cantly higher in cervical washes of women with recurrent chla-
mydial infection as compared with IFN-g levels observed in
women with primary infections.66 These high IFN-g levels were
also associated with infertility.67 Another study showed that cer-
vical cells isolated from C. trachomatis infected women secrete
IL-1, IL-6, IL-8, and IL-10 in vitro, a cytokine profile more com-
patible with disease exacerbation rather than immunity.68 In this
context, high levels of IL-10 in cervical washes of C. trachomatis
infected women were linked to infertility.55

Further studies in animals infected with sexually transmitted
chlamydia have shown association of T cell-immunity and
pathology in the upper genital tract.12,13,15,69 For example, in
macaques, cytotoxic CD8C T cells and other immune cells infil-
trate tubal tissue implants infected with C. trachomatis. Infiltrated
cells expressed Th1 type cytokines including IFN-g, IL-2, and
IL-6 and accumulation of fibrotic tissue. Moreover, studies con-
firmed the presence of these CD8C T cells in the fallopian tubes
and their association with pathology in primates and guinea pigs
following infection with C. trachomatis.13,69

Chlamydia-specific CD4C T cells have also been implicated in
pathology. Protective CD4C T cells were found to preferentially
migrate to the upper genital tract of C.muridarun infected mice
and their presence was associated with both immunity70 and
tubal pathology in the genital tract.70,71 Interestingly, a recent
study has demonstrated that IL-17, produced by Th17 cells, can
promote modest immunity in mice infected with C. murida-
rum.72 However, further studies are needed to examine the role
of Th17 cells in C. trachomatis infection. Together, these observa-
tions suggest that a complex interplay of immune responses influ-
ence both immune protection and pathology in sexually
transmitted C. trachomatis infections. Antigens in C. trachomatis
subunit vaccines should be rigorously examined for specificity, so
that potential cross-reactivity can be avoided.

Vaccine Development

Over the past 20 y, significant advances have been made in the
development of a C. trachomatis vaccine. Firstly, studies in mice
and epidemiological observations in humans, consistently show
that cellular immunity to genital chlamydia infections depends
on chlamydia-specific T cells producing IFN-g and anti-chla-
mydia antibodies.23,24,73 Secondly, a number of protective T cell
antigens have now been identified (Table 1)4,74-85 (reviewed in
ref. 86). Immunization of laboratory animals has shown that
these antigens are recognized by chlamydia-specific T cells pro-
ducing IFN-g and partially protected animals following immuni-
zation.4,75 Importantly, a study has demonstrated that the
chlamydial major outer membrane protein (MOMP) antigen
alone is insufficient to induce the necessary protection, however
MOMP and a second antigen, outer membrane protein 2
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(OMP2), can substantially increase resistance to reinfection.83

This suggests that a vaccine is likely to be based on several, rather
than single, protective antigens. Third, it is becoming clear that
immune responses in the mucosa occur at local lymph nodes
(LNs) and that effector cells migrate via blood to mucosal infec-
tion sites.87,88 Finally, both locally produced IgA as well as sys-
temic IgG are required to control infection in the genital tract,89

although only IgG antibodies have been reported to have protec-
tive effects against C.muridarum in the mouse.90

Vaccine Adjuvants

A major problem for a C. trachomatis vaccine is the lack of
suitable non-toxic adjuvants that efficiently promote Th1 type of
immunity. Immunization of mice with MOMP DNA without
adjuvants,91or MOMP with classical adjuvants such as
Freund’s81 showed moderate levels of T cell responses. However,
immunization with MOMP incorporated into Vibrio cholera
ghosts (rVCGs),92,93 or Immune Stimulating Complexes
(ISCOMS)94 as adjuvanted delivery technologies, induced robust
Th1 responses and protected mice against subsequent chlamydial
infection.4 Likewise, transcutaneous immunization of mice with
MOMP incorporated in the delivery system, lipid C, a novel
lipid-based matrix originally developed for oral immunization,
induced partial protection of both genital and respiratory infec-
tions with C. muridarum.95 Interestingly, intranasal immuniza-
tion with antigen chlamydial protease-like activity factor (CPAF)
and IL-12 as an adjuvant, resulted in significantly high levels of
anti-IgG2a and anti-IgA antibodies in bronchoalveolar lavage
and vaginal fluids. Immunized mice developed Th1 immunity
against CPAF, and immunized animals significantly reduced bac-
terial shedding following challenge and accelerated resolution of
infection as compared with non-immunized controls.96 Overall,
these observations showed that vaccine adjuvants are remarkably
effective at triggering and sustaining Th1 immunity, leading to
increased resistance to infection challenge.

The potential of TLRs-derived adjuvants
TLRs are specialized recognition receptors expressed by

immune cells and most DCs. TLRs recognize pathogen-associ-
ated molecules known as PAMPs, expressed by pathogens. Bind-
ing of TLRs to their PAMP ligands activates DCs, by triggering
the NF-kB signaling pathway, resulting in transcription of pro-
inflammatory mediators including chemokines, adhesion mole-
cules, matrix metalloproteases, nitric oxide synthase, several
enzymes and Th1 type cytokines such as IL-12; all of which con-
tribute to the development of Th1 immunity.97 For example,
experimental vaccines against Salmonella Typhimurium,98 Toxo-
plasma gondii,99 and Leishmania major100 have employed CpG-
containing oligodeoxynucleotide (CpG-ODN), a TLR9 agonist,
as adjuvant in laboratory animals. Immunized animals develop
remarkably high levels of Th1 immunity and become resistant to
secondary infections. CpG-ODN has been employed in experi-
mental vaccines against C. muridarum and C. caviae in guinea

pigs and in Balb/C mice. These immunization studies showed
that CpG-ODN induced potent Th1 type immunity and partial
resistance against chlamydial infection.82,101 CpG-ODN, and
polyinosinic: polycytidylic acid (poly I:C), a TLR3 agonist, are
presently undergoing human clinical trials in immunotherapies
against cancer.102,103 For example, phase I trials of a vaccine
against ovarian tumor employing poly I:C as adjuvant, shows
rapid induction of immune response based on antibodies CD8C

and CD4C against ovarian tumor.104 Another efficient TLR-
mediated adjuvant is monophosphoryl lipid A, a TLR4 agonist,
which is currently used in human papilloma virus (HPV) and
human hepatitis B virus (HBV) vaccines in humans.105 In sum,
TLR-derived adjuvants are strong inducers of DCs activation
and Th1 immunity and are prime adjuvant candidates for a
future chlamydia vaccine.

Targeting Dendritic Cells (DCs): A Novel Approach
for a C. trachomatis Vaccine

Caldwell and collaborators immunized mice with DCs pulsed
with heat-killed chlamydia. Immunized mice developed a potent
Th1 immunity and resisted chlamydial genital infection.106

Brunham and co-workers have employed DCs pulsed with chla-
mydial immunopeptides in immunizations by adoptive transfer.
Immunized mice developed Th1 protective immunity and par-
tially resisted chlamydial lung and genital infections.75 These
data show that DCs can be effective inducers of anti-chlamydial
immunity and therefore, are attractive tools to design novel T-
cell vaccines, including a C. trachomatis vaccine.

DCs are professional antigen presenting cells (APCs) with a
unique capacity to stimulate na€ıve T cells. DCs differentiate
from bone-marrow CD34C proliferating progenitors and colo-
nize most peripheral tissues as immature non-dividing cells.107

DCs have been found in mucosal tissue108 and are recruited to
cervical mucosa during C. trachomatis infection.4,109 The diverse
functions of DCs in immunity depend in part on the state of
maturation. Mature DCs optimally prime and induce expansion
of both CD4C and CD8C T cells producing IFN-g. 107 Matura-
tion of DCs occurs following detection of microbial PAMPs by
TLRs on DCs.107 Maturing DCs express high levels of the NF-
kB family of transcription factors that induce expression of
MHC class I and II antigens and co-stimulatory molecules
CD80, CD86, CD40, as well as enhanced secretion of IL-12 and
IFN-a;110 all of which contribute to promote Th1 type of
immunity.

Murine DCs Subgroups for Vaccine Targeting

Two main groups of DCs relevant to vaccine targeting have
been characterized in the mouse. The first subgroup relevant to
vaccine targeting expresses the inhibitory receptor, dendritic cell
receptor 2 (DCR2). Antigens delivered to DCR2 DCs are proc-
essed in the MHC class II antigen pathway and presented to
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CD4C T cells.111 A second DCs subgroup expresses the endo-
cytic mannose receptor DEC-205, which is a 205-kDa protein
containing C-type lectin domains. Antigens phagocytized by
DCs via DEC-205 are presented to both CD4C T cells and to
CD8C T cells.112 Remarkably, vaccines delivered via DEC-205
DCs have been shown to be 100–1000 times more efficient at
priming peptide-specific CD4C and CD8C T cells than a peptide
given in Complete Freund’s Adjuvant (CFA).16,113,114 Addition-
ally, vaccines targeting DEC-205 dendritic cells have been tested
in experimental vaccines for intracellular infections caused by
Leishmania major115 and HIV,116 with significant high levels of
both CD4C and CD8C T cell immunity produced.115

Potential Human DCs for Vaccine Targeting

Various human DC markers have been identified. The C-type
lectin domain family 9 member A (Clec9A), encodes a type II
membrane protein expressed by human blood DCs. In the
mouse, Clec9A DCs homologs promote CD4C and CD8C T
cell responses.117 An equivalent of the mouse DEC-205 receptor,
has been identified in humans and antibodies to human DEC-
205 have been developed.118 In vitro, targeting of human DCs
expressing DEC-205 results in induction of CD4C and CD8C T
cells.118 Similarly, the human homolog of mouse DCR2,
(DCIR), has been identified on human plasmacytoid DCs
(pDCs). Antigens targeted to pDCs via DCIR in vitro are effi-
ciently presented to T cells.119 The DC-specific intercellular
adhesion molecule-3-grabbing non-integrin (DC-SIGN) is
another marker expressed on a subset of human DCs. DC-SIGN
is abundantly expressed on immature DCs and downregulated
during DC maturation.120,121 Recent immunization studies
showed that DC-SIGN dendritic cells promote induction of anti-
gen-specific CD4C and CD8C T-cell responses in DC-SIGN
transgenic mice.122 Together, these results show that simulta-
neous discovery of complementary DC groups in the mouse and
in humans, can facilitate translation of immunization results
from mice to humans. Furthermore, targeting DCs with C. tra-
chomatis vaccines in the presence of safe TLR-mediated adjuvants
such as Poly:IC promise to greatly enhance Th1 type of immu-
nity and resistance to chlamydial infection.

Future Directions

A number of challenges remain before an efficacious vaccine
against C. trachomatis can be formulated. The immune regula-
tion of the FGT, which is highly influenced by sex hormones, is
poorly understood. Thus, targeting T cell vaccines to the FGT
without causing collateral pathology is a major concern. Related
to this problem is the fact that a suitable adjuvant that vigorously
promotes human T cell-mediated immunity is lacking. Experi-
mental chlamydial vaccines have employed Freund’s adjuvant,
Vibrio cholera ghosts, and immuno-stimulating complexes, some
of which have been tested in human clinical trials.123 Current
testing of TLR mediated adjuvants is encouraging. CpG oligonu-
cleotide, poly I:C as well as monophosphoryl lipid A, are pres-
ently used in human vaccines or in clinical trials for other
infections.102,103,105 Hence, it is feasible that human C. tracho-
matis vaccine trials employing these or new adjuvants and avail-
able candidate antigens could commence in the foreseeable
future.

DCs have emerged as attractive targets to develop novel chla-
mydia vaccines. The diverse functions of DCs in immunity and
their unique ability to prime na€ıve T cells represent excellent
opportunity to design novel chlamydia vaccines in the future.
Vaccines targeting endogenous DCs with chlamydia antigens
promise to induce and expand both CD4C and CD8C T cells
producing IFN-g, with the potential to efficiently control C. tra-
chomatis infection.124 An ideal future C. trachomatis vaccine
would contain various chlamydia antigens targeted to endoge-
nous DCs and a TLR-derived adjuvant as a source of DC matu-
ration signal that would promote optimal DC processing and
presentation of T-cell antigens. Targeting specific receptors on
DCs requires recombinant antibody molecules and construction
of these antibodies is not always feasible. Similarly, TLR-derived
adjuvants can be toxic for host cells and chemical modifications
are needed before they can be employed in humans. These chal-
lenges, which are currently being addressed in various experimen-
tal vaccines, will need to be considered when designing a
chlamydia vaccine targeting DCs in humans.
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