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Abstract: The primary goals of rice breeding programs are grain quality and yield potential im-
provement. With the high demand for rice varieties of premium cooking and eating quality, we
developed low-amylose content breeding lines crossed with Samgwang and Milkyqueen through
the marker-assisted backcross (MABc) breeding program. Trait markers of the SSIIIa gene referring
to low-amylose content were identified through an SNP mapping activity, and the markers were
applied to select favorable lines for a foreground selection. To rapidly recover the genetic background
of Samgwang (recurrent parent genome, RPG), 386 genome-wide markers were used to select BC1F1

and BC2F1 individuals. Seven BC2F1 lines with targeted traits were selected, and the genetic back-
ground recovery range varied within 97.4–99.1% of RPG. The amylose content of the selected BC2F2

grains ranged from 12.4–16.8%. We demonstrated the MABc using a trait and genome-wide markers,
allowing us to efficiently select lines of a target trait and reduce the breeding cycle effectively. In
addition, the BC2F2 lines confirmed by molecular markers in this study can be utilized as parental
lines for subsequent breeding programs of high-quality rice for cooking and eating.

Keywords: rice; cooking and eating quality; recurrent parent; genetic background recovery; molecu-
lar breeding; MABc; SNP

1. Introduction

Rice (Oryza sativa L.) is a vital worldwide agricultural product. It is one of the world’s
leading staple crops, as more than half of the world’s population relies on the significant
source of calories and protein daily [1]. Indeed, the demand for the improved eating
quality of rice is continuously increasing around the globe because it is the most important
factor in determining the market price [2]. The improvement of grain quality and yield
potential is the primary goal of rice breeding programs. The main components of rice grain
quality include appearance, eating, cooking, milling, and nutritional qualities. These rice
grain values are determined by their physical–chemical properties and other socio-cultural
factors [3].

Milled rice is composed of protein (6.6–7.1%), crude fat (0.3–0.5%), crude fiber (0.2–0.5%),
starch (80–82%), and moisture content (12–13%), with starch being the major component
of Japonica rice. Starch is a polymeric carbohydrate in which glycoside bonds link a large
number of glucose units. In particular, starch in rice consists of amylose and amylopectin [4].
The physical and chemical characteristics of starch and the taste of milled rice varieties
depend on the amylose and amylopectin ratio [5]. Rice with a higher amylose content
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has a coarse, dry texture after cooking, whereas rice with a higher amylopectin content is
shiny, sticky, and soft [6,7]. Amylose is synthesized by granule-bound starch synthase I
(GBSSI) that is responsible for the biosynthesis of extra-long branch chains of amylopectin,
synthesized by soluble starch synthases (SSs), starch-branching enzymes (SBEs), and starch-
debranching enzymes (DBEs) [4,8,9]. There are 10 SS isoenzymes (SSI, SSIIa, SSIIb, SSIIc,
SSIIIa, SSIIIb, SSIVa, SSIVb, GBSSI, GBSSII) in rice [10,11]. According to Fujita [12], SSIIIa-
deficient rice mutants showed that B2 to B4 chains with an amylopectin polymerization
degree of 30 or higher were reduced by 60% compared to wild-type rice and that amylose
content and the amount of extra-long chains with a polymerization degree of 500 or more
were increased by 1.3- and 12-fold, respectively. In addition, it was reported that the
structure of starch granules was small and round-shaped, with less crystallization.

Recent research on rice cooking and eating quality has focused on understanding the
genetics and genomics of starch biosynthesis and variations such as a starch branching
enzyme, wx gene mutation, and soluble starch synthase III genes. Cooking and eating
quality is primarily determined by four main physicochemical properties: amylose content
(AC), gel consistency (GC), gelatinization temperature (GT), and protein content (PC) [13].
AC is widely demonstrated to be the most crucial factor affecting cooking and eating
characteristics and is negatively related to taste palatability, including transparency, viscos-
ity, and rice milling quality [14]. GT is positively correlated with physical characteristics
responsible for cooking time and the ability to absorb water during cooking. Rice grains
with high GT require more water and cooking time than rice with low or medium GT [7].
GC is an index used to distinguish the cooked texture of high-amylose rice varieties and
is analyzed by measuring the cold paste viscosity of cooked milled rice flour. Rice with
a soft gel consistency is highly preferred among consumers [13]. Protein content (PC) is
negatively correlated to peak viscosity (PV) and hot paste viscosity. Reducing protein
content (PC) in rice may increase its peak viscosity [15].

Molecular breeding, such as marker-assisted selection (MAS), could overcome con-
ventional breeding limitations and allows the pyramiding of multiple valuable genes into
a single cultivar rapidly and efficiently [16,17]. A marker-assisted backcross selection can
recover up to 99% of the recurrent-parent genome in just three backcross cycles, whereas
conventional breeding may take up to six backcrossings [18]. The first step of MABc
(marker-assisted backcrossing) is selecting individual plants with alleles of the target gene
from a donor parent [19–21]. In this step, applying trait markers that are tightly linked to
the target gene is essential. Otherwise, recombination occurs between markers and target
genes, which happens when the markers are no longer associated with the target gene,
resulting in selecting untargeted genes [20,22]. The second step is recovering the genetic
background of a recurrent parent using genome-wide markers. Two to three markers per
100 cM in an early generation are recommended to conduct rapid genetic background recov-
ery. Applying markers that are well distributed over the whole genome is another key for
the success of genetic background recovery [21]. In this study, a Kompetitive allele-specific
PCR (KASP) marker was used, which is a polymerase chain reaction-based (PCR) technol-
ogy using fluorescence for single nucleotide polymorphism (SNP) and small insertion and
deletion (InDel). KASP markers have the advantage of a low error rate and a relatively low
cost compared to other SNP genotyping platforms such as TaqMan systems [23]. KASP
markers are used for various crop breeding, such as pigeon bean [24], chickpea [25], and
Indica rice [26]. In Korea, KASP markers were used in the genetic relationship analysis of
Korean rice varieties [27] and various quantitative trait loss (QTL) mapping studies such as
pre-harvest sprouting resistance and selecting resistant varieties [28].

The objectives of this study were (1) to detect an SNP for a foreground selection for the
backcross population by comparing the genome sequences between Samgwang (18.1% AC)
and Milkyqueen (12.2% AC), and (2) to develop breeding lines with low amylose content
by applying MABc breeding programs to backcross populations between Samgwang and
Milkyqueen using KASP markers.
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2. Results
2.1. Evaluation of Characteristics Related to Cooking and Eating Quality in Parents

To evaluate the cooking and eating quality of the Samgwang and Milkyqueen parent
plants, we investigated amylose content, protein content, moisture content, whiteness,
cooking and texture characteristics, and viscosity characteristics. Koshihikari and Baegjinju,
were used as check varieties, because Koshihikari, as a non-glutinous check variety that
is known as one of the good cooking and eating varieties [29], was used to compare with
Samgwang, and Baegjinju as a semi-glutinous check variety that was one of a similar variety
with a semi-glutinous trait of Milkyqueen [30] was used to compare with Milkyqueen. The
results are described as follows.

2.1.1. Characteristics Related to Cooking and Texture

The cooking and texture characteristics of Samgwang, Koshihikari, Milkyqueen, and
Baegjinju are shown in Table 1. Hardness, a desirable attribute to compress rice when
chewing, was evaluated. Samgwang (36.03) and Koshihikari (31.75) were slightly harder
than Baegjinju (24.07) and Milkyqueen (21.17). This result demonstrates that Milkyqueen
has a lower hardness than Baegjinju and will be softer when chewing. Adhesiveness,
which refers to the tenacity of rice, was evaluated. The adhesiveness of Koshihikari (63.44)
was higher than that of Samgwang (55.74), and the adhesiveness of Baegjinju (60.94) was
higher than that of Milkyqueen (57.90). Springiness is how well a rice grain will physically
spring back to its original shape after being deformed by partial compression [31]. The
springiness of Koshihikari (34.56) was slightly higher than that of Samgwang (30.92),
and the springiness of Baegjinju (26.35) and Milkyqueen (26.21) were similar. Regarding
stickiness, Koshihikari (69.56) was higher than Samgwang (48.01), and Baegjinju (76.10)
was higher than Milkyqueen (60.03).

Table 1. Characteristics of texture and eating quality in Koshihikari, Samgwang, Baegjinju and
Milkyqueen.

Variety Hardness Adhesiveness Springiness Stickiness

Koshihikari 31.75 ± 5.73 63.44 ± 2.37 34.56 ± 4.26 69.56 ± 3.49
Samgwang 36.03 ± 0.26 55.74 ± 2.47 30.92 ± 0.94 48.01 ± 3.42
Baegjinju 24.07 ± 3.68 60.94 ± 5.73 26.35 ± 2.95 76.10 ± 3.25

Milkyqueen 21.17 ± 4.36 57.90 ± 3.36 26.21 ± 1.82 60.03 ± 4.85

F-value 8.572 ** 1.094 6.233 * 3.099
* p < 0.05; ** p < 0.01.

2.1.2. Characteristics Related to Eating Quality

The eating quality-related characteristics of Koshihikari, Samgwang, Baegjinju, and
Milkyqueen, such as amylose content, protein content, moisture content, and whiteness,
are shown in Figure 1. Samgwang (18.1%) and Koshihikari (18.0%) had a similar amylose
contents, which was within the amylose content range for good cooking (18–20%) of non-
glutinous rice. Meanwhile, Milkyqueen was much lower, at 12.2%, and Baegjinju (9.1%)
was even lower than that of Milkyqueen, showing that the amylose content range is around
9–10% for good cooking semi-glutinous rice [32]. The protein content of rice is known
to be inversely proportional to the taste of rice and proportional to the viscosity when
cooking. In addition, the higher the protein content, the more transparent and harder rice
grains are, so cooking needs more water and time [33]. The protein content of the four
varieties was similar to the range of Japonica rice (5.91–7.89%), but the protein contents of
Milkyqueen (6.3%) and Baegjinju (6.7%) were higher than those of Koshihikari (5.2%) and
Samgwang (5.6%) [34]. The moisture content ranged from 10.5 to 14.5%, with an average of
12.2%. Whiteness is an index indicating the whiteness of rice grains, and Koshihikari and
Milkyqueen showed similarly with higher values of 44.6% and 43.9%, respectively, than
Samgwang (31.5%) and Baegjinju (22.7%).
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Figure 1. Characteristics related to eating qualities, amylose content (AC), protein content (PC), mois-
ture content and whiteness, were measured in Koshihikari, Samgwang, Baegjinju and Milkyqueen
varieties.

2.1.3. Viscosity Characteristics by RVA

When starch is heated above gelatinization temperature with sufficient water, the
starch particles absorb water and swell several tens of times, increasing in volume and
viscosity [35]. Since the gelatinization temperature has a positive correlation with the
cooking time, rice varieties with a high gelatinization temperature take more water and
a longer time to cook. A low or medium gelatinization temperature is required for high-
quality rice varieties, and Japonica rice consumers prefer varieties with a low gelatinization
temperature [36]. Koshihikari (72.78) and Samgwang (72.24) have similar amylose contents
and similar gelatinization temperatures (Table 2). Baegjinju (69.43) and Milkyqueen (71.43)
have lower gelatinization temperatures compared to Koshihikari (72.78) and Samgwang
(Table 2). This result is aligned with the previous studies [37,38] that non-glutinous rice has
a higher content of amylose, a denser starch structure, and a higher gelatinization initiation
temperature than glutinous rice.

Table 2. Pasting properties in Koshihikari, Samgwang, Baegjinju, and Milkyqueen.

Variety GT *
(◦C)

Viscosity (RVU)

PV § HPV ¶ Breakdown CPV † Setback

Koshihikari 72.78 ± 0.70 392.42 ± 9.90 175.79 ± 15.18 227.04 ± 11.46 265.92 ± 11.71 −136.92 ± 9.44
Samgwang 72.24 ± 0.34 269.08 ± 4.92 168.14 ± 6.74 112.59 ± 18.86 265.98 ± 9.33 −19.75 ± 13.73
Baegjinju 69.43 ± 0.45 172.78 ± 8.46 127.25 ± 5.78 127.25 ± 5.78 77.64 ± 4.64 −95.14 ± 3.97

Milkyqueen 71.43 ± 0.11 299.15 ± 8.68 208.83 ± 8.68 90.32 ± 19.25 294.33 ± 7.95 −14.42 ± 13.27

F-value 38.831 *** 147–951 ** 51.268 *** 59.717 *** 365.712 ** 108.545 ***

* GT; Gelatinization temperature, § PV; Peak viscosity, ¶ HPV; Hot paste viscosity, † CPV; Cool paste viscosity. ** p < 0.01; *** p < 0.001.
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Peak viscosity between heating and holding cycles refers to the moisture capacity
of starch, and the higher the peak viscosity, the weaker the gelatin that is formed [39].
Koshihikari (392.42) showed a higher peak viscosity than Samgwang (269.08), which means
that Koshihikari is softer when it is gelatinized (Table 2), and it is different in hardness
in cooking and texture characteristics. Baegjinju (172.78) showed a lower peak viscosity
than Milkyqueen (299.15), showing the difference in hardness in cooking and texture
characteristics. If heating is continued after reaching peak viscosity, amylose in the starch
particles is eluted and broken, resulting in a decrease in viscosity, and hot paste viscosity
(minimum viscosity after peak) is reached. Breakdown viscosity (peak viscosity minus hot
paste viscosity) is associated with the stability of processing. The lower the breakdown
viscosity value, the stronger the resistance to heat and gel breaking, and it is better for
processing. The different varieties were ranked by breakdown viscosity: Koshihikari
(227.04), Baegjinju (127.25), Samgwang (112.59), and Milkyqueen (90.32), indicating that
Milkyqueen was the most favorable for processing.

Cooling gelatinized starch by heating causes amylose molecules to become eluted
and entangled and then form a delusional structure. The space is filled with broken starch
particles, strengthening the structure and increasing the viscosity [40]. The maximum
viscosity is called a cool-paste viscosity. Therefore, the higher the amylose content, the
faster the structure is formed, and the cool paste viscosity increases [41]. Consistent with the
difference in amylose content, Koshihikari (265.92) and Samgwang (260.97) showed similar
cool-paste viscosity, and Baegjinju (77.64) showed a low cool-paste viscosity (Table 2).
However, Milkyqueen (294.33) offers the highest cool-paste viscosity despite being a
middle glutinous rice, suggesting that aging is important after cooking. Setback viscosity
is a value obtained by subtracting the peak viscosity from the cool-paste viscosity. It means
that the higher the setback viscosity value, the faster the starch’s aging occurs, which is
a positive relationship with amylose content like the cool-paste viscosity. The order of
lower setback viscosity is Koshihikari (136.92), Baegjinju (−95.14), Samgwang (19.75), and
Milkyqueen (14.42), indicating that Koshihikari is the slowest and Milkyqueen is the fastest
to age after cooking (Table 2).

2.2. Whole-Genome Re-sequencing Analysis and Variant Discovery for Foreground Selection

We mapped re-sequencing data to SNP to discover genes of interest associated with
cooking and eating quality through the genome comparison of Samgwang and Milkyqueen
(Supplementary Figure S1). Milkyqueen is a variety grown by mutagenesis through the
treatment of N-methyl-N-nitrosourea (MNU) in Koshihikari. Sequencing reads of selection
and filtering were performed on paired-end sequencing reads of Samgwang, Milkyqueen,
and Koshihikari according to variants calling pipeline for genome reassembly. As a result,
125,623, 108,446, and 140,887 homozygosity SNPs were identified from the genomes of
Samgwang, Milkyqueen, and Koshihikari, respectively. As a result of SNP mapping for
each chromosome, the mutation site was identified in the lower part of chromosome 8,
consisting of 747 genes. Among them, 706 genes were identified as functional genes by
an ORF Finder and assessing amino acid similarity, and SNPs were identified in the CDS
region of 268 genes. SNPs responsible for amino acid mutations and trait variations were
identified in 135 genes (Supplementary Table S2). The SSIIIa gene responsible for the starch
synthesis metabolism was discovered in this SNP mapping, and this gene was used for the
foreground selection of the backcross breeding process.

2.2.1. Foreground Selection in BC1F1 and BC2F1

Next-generation sequencing (NGS) was performed to select functional SNPs in the
foreground selection in BC1F1 and BC2F1 populations. The SSIIIa gene structure, the
location of identified SNPs, and the amino acid variation are shown in Figure 2. To verify
the SNP, PCR was performed twice prior to NGS analysis. After performing PCR by
synthesizing the first primer with a size of 661 bp based on the location of the target SNP
in the SSIIIa gene, a second primer with a size of 202 bp at the target SNP location was
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prepared using the first PCR product, and PCR was carried out. Table 1 shows the designed
first and second primers’ information. As a result of performing NGS analysis of BC1F1
(210) and BC2F1 (196) individuals, it confirmed that the separation ratio of homozygote
(G/G): heterozygote (G/A) was 1:1 in BC1F1 and BC2F1 generations as expected (Table 3).
The SNP genotype in the starch synthase IIIa gene was identified through SNP mapping
between high amylose content varieties (G/G genotype): Samgwang (18.2%), Koshhikari
(18.1%), Gopum (19.6%), Dongjin (20.3%), Ilpum (18.9%); and low amylose content varieties
(A/A genotype): Milkyqueen (12.9%), Baegjinju (9.1%), Seolbaek (10.0%), Josaengheugchal
(5.4%), Hangangchal1 (5.0%). The varieties with an A/A genotype revealed low amylose
contents (5.0~12.9%) compared with those with high amylose content (18.1~20.3%) varieties.
With foreground selection using the SNP of the SSIIIa gene, 93 individuals were selected,
followed by recurrent parent genetic background selection.
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Table 3. Statistical analysis for genotyping results of foreground selection with backcross populations
of BC1F1 and BC2F1 from the cross between Samgwang and Milkyqueen.

Population. Generation
Number of Plants χ2 Value

(1:1)Total Homo (G/G) Hetero (G/A)

Samgwang ×
Milkyqueen

BC1F1 210 110 100 0.48 ns

BC2F1 196 94 102 0.33 ns

d.f = 1: χ2 (0.05,1) = 3.84. ns: not significant.

2.2.2. Background Selection in BC1F1 and BC2F1 Generation

A total of 773 KASP markers were developed to discern Japonica rice varieties (Supple-
mentary Figure S2) and were evaluated to identify the polymorphic markers of Samgwang
and Milkyqueen for further background selection. A total of 368 KASP markers were
selected, excluding markers that were not amplified or showed hetero genotypes. We
applied the second round of marker selection to identify SNPs that were evenly distributed
across 12 chromosomes at about 5 Mb intervals within a chromosome resulting in 96 KASP
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markers (Figure 3). The comprehensive information of 96 KASP markers is provided in
Supplementary Table S3. Among the lines with recurrent parent genome recovery ratios
ranging from 84 to 89% (Figure 4A, Supplementary Figure S3), seven lines with favorable
phenotypes were selected in BC1F1 (Figure 4B). Six lines (beside SM-46) were similar to
the agronomic traits of Samgwang, a recurrent parent (Table 4). The selected BC1F1 lines
were backcrossed with Samgwang to generate the BC2F1 population. Using the same
96 KASP markers, genotyping of the BC2F1 population was conducted. The result of the
genome recovery ratio of the recurrent parent is shown in Figure 5A. We identified 17 lines
with a 90–93% recovery ratio, 19 for 93–95%, 25 for 95–97%, and 25 for 97–99% in BC2F1
(Supplementary Figure S3). Seven lines with favorable phenotypes and recurrent parent
genome recovery in the range of 97.4–98.9% were selected as candidate lines for high
cooking and eating quality (Figure 5B).

Figure 3. Chromosomal position of 96 KASP markers for background selection that showed SNP polymorphism between
Samgwang and Milkyqueen as selected at an interval of about 5 Mb in each chromosome.
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Table 4. Agronomic traits of the selected BC1F1 lines as compared with parents.

Population Line Plant Height
(cm)

Culm
Length (cm)

Panicle
Length (cm)

No. of
Tillers

Parent
Samgwang 95.2 ± 4.6 64.8 ± 6.0 19.7 ± 1.5 9 ± 3
Milkyqueen 92.6 ± 2.9 69.9 ± 5.4 18.4 ± 0.4 10 ± 2

BC1F1

SM-30 95.8 71.0 22.2 9
SM-43 93.8 72.4 18.4 7
SM-46 101.6 72.2 18.4 16
SM-79 90.2 64.0 20.4 6
SM-82 91.8 68.0 20.6 7
SM-85 91.4 71.6 21.8 9
SM-88 92.6 64.0 20.8 6
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Figure 5. (A) Genotyping results of 93 BC2F1 plants with 96 KASP markers for the background
selection in the backcross population between Samgwang and Milkyqueen. (B) Phenotype of seven
BC2F1 lines with highest genome recovery rate of the recurrent parent, Samgwang.

2.3. Agronomic Traits of the Selected Lines in the BC2F2 Generation

Seventy seeds of the selected lines (G/A) in BC2F1 were analyzed and the segregation
of P1 (G/G): heterozygote (G/A): P2 (A/A) was detected as the segregation ratio of 1 (15):
2 (39): 1 (16) by a χ2-test (p = 0.05) as expected in BC2F2 (Supplementary Table S4).

The agronomic traits such as plant height, culm length, panicle length, and the number
of tillers of the selected individuals in BC2F2 generation were investigated, as shown
in Table 5. Plant height ranged from 100.2 to 115.2 cm, similar to the recurrent parent
(112.3 cm). Culm length was 84.2 to 88.8 cm, similar to the recurrent parent (85.6 cm).
Therefore, it confirmed that the individuals with a high genome recovery rate selected by
KASP markers correlated well with phenotypes of the recurrent parent, Samgwang. The
amylose content of Samgwang was 18.5%, and Milkyqueen was 12.6%. The seven selected
BC2F2 seeds showed a distribution of amylose content range of 12.4–16.8% (Table 5). As a
result, it confirmed that a breeding material with the favorable trait (low-amylose content)



Plants 2021, 10, 804 10 of 18

having a high genome recovery ratio of the recurrent parent could be developed by a
marker-assisted backcross breeding process efficiently (MABc).

Table 5. Agronomic traits of the selected BC2F2 lines in comparison with parents.

Population Line Plant Height
(cm)

Culm Length
(cm)

Panicle Length
(cm) No. of Tillers Amylose

Content(%)

Parent
Samgwang 112.3 ± 4.6 85.6 ± 2.4 21.9 ± 1.6 10.6 ± 1.8 18.5 ± 2.1
Milkyqueen 102.2 ± 3.0 74.6 ± 3.7 16.4 ± 1.1 8 ± 1.2 12.6 ± 1.3

BC2F2

SM35-3 100.2 83.6 19 10 12.4 ± 5.2
SM35-8 114.6 85.6 19.8 10 16.8 ± 5.2

SM35-22 114.2 86 17.6 11 14.2 ± 2.2
SM35-35 113.6 84.2 18 13 15.9 ± 7.5
SM35-36 116 82.9 17.4 13 15.1 ± 6.6
SM35-54 112.2 88.8 17.6 11 14.1 ± 4.7
SM35-60 115.2 85.6 18.2 14 14.2 ± 4.2

2.4. Viscosity Properties of the Selected Lines in BC2F2 Generation

Viscosity characteristics were investigated for 15 lines in which Samgwang’s genome
recovery rate was 97% or higher with the target SNP of the SSIIIa gene derived from
Milkyqueen (Table 6). The gelatinization initiation temperature of 15 lines was similar to
each other, with the highest viscosity between Samgwang and Milkyqueen. The breakdown
viscosity of all lines was higher than Milkyqueen. The final viscosity was also lower than
Milkyqueen. The setback viscosity was lower than Milkyqueen but showed a tendency
to be higher than Samgwang. Interestingly, the SM35-3 line showed a medium amylose
content with low gelatinization initiation temperature but a low peak and breakdown
viscosity. Moreover, since the final viscosity is low, the aging of starch is unlikely to happen.
The SM35-8 line has the highest breakdown viscosity and the lowest setback viscosity,
explaining that the processing stability is high and the aging of starch is slow. This line
will be useful for developing high cooking and eating quality rice varieties. According to
the analysis of the viscosity characteristics of the selected systems, it demonstrates that the
highest viscosity is higher than or similar to that of Samgwang, and the final and setback
viscosities are similar to or lower than that of Samgwang so that the texture is smooth,
aging does not appear well, and progress is slow. This result reconfirmed that MABc is the
recommended breeding technology to develop breeding lines efficiently and effectively.
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Table 6. Viscosity properties of the selected BC2F2 lines in comparison with parents.

GT* (◦C)
Viscosity (RVU)

Population PV § HPV ¶ Breakdown CPV † Setback

Mean ± SD t Mean ± SD t Mean ± SD t Mean ± SD t Mean ± SD t Mean ± SD t

Samgwang 72.5 ± 0.4 −6.22 **
228.4 ± 9.5

3.396 **
139.0 ± 9.7 −1.114 ns 94.2 ± 4.9

10.666 ***
210.9 ± 5.7 −5.399 ***

−17.4 ± 3.7 −21.986 ***
Milkyqueen 76.6 ± 1.04 205.9 ± 6.2 146.5 ± 6.1 59.4 ± 2.7 240.4 ± 7.4 34.4 ± 1.5

SM35-02 70.80 210.25 124.50 85.75 210.42 0.17
SM35-03 70.73 206.09 125.96 80.13 204.21 −1.88
SM35-05 71.25 246.42 135.17 111.25 216.63 −29.79
SM35-08 73.63 249.92 136.38 113.54 217.29 −32.63
SM35-20 72.83 245.88 137.17 108.71 222.04 −23.84
SM35-21 72.43 232.00 139.79 92.21 222.80 −9.21
SM35-31 72.15 241.38 136.50 104.88 215.75 −25.63
SM35-35 71.53 244.58 142.96 101.63 224.00 −20.59
SM35-36 72.20 245.25 144.04 101.21 224.00 −21.25
SM35-39 72.15 225.92 144.50 81.42 231.92 6.00
SM35-40 72.10 237.25 155.67 81.58 238.17 0.92
SM35-54 71.93 239.84 140.88 98.96 224.96 −14.88
SM35-55 72.08 226.50 126.25 100.25 205.04 −21.46
SM35-60 72.13 228.88 131.88 97.00 210.17 −18.71
SM35-62 71.40 232.17 139.50 92.67 221.08 −11.08

* GT; Gelatinization temperature, § PV; Peak viscosity, ¶ HPV; Hot paste viscosity, † CPV; Cool paste viscosity. ** p < 0.01; *** p < 0.001; ns, not significant.
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3. Discussion

Rice is the world’s most essential food resource and the smallest genome size among
crop species such as corn, soybean, and wheat. It has far superior genetic and breeding
research achievements, making it a suitable crop to conduct genetic research. Research
on the quality improvement of rice is mainly focused on improving the composition of
amylose and amylopectin [42], amylose content [43], gel consistency [44], and gelatinization
temperature [45] in Japonica rice. However, studies on the genes responsible for quality
and taste in the genomic analysis are rarely conducted. Conventional breeding technology
is not suitable for quality improvement in rice; thus, new molecular breeding technology is
essential to develop high-quality rice varieties. In this study, we demonstrated the process
of MABc using KASP markers by selecting low amylose content lines to recover the genetic
background of the recurrent parent as quickly and efficiently as possible.

The starch properties rely on the physicochemical composition of amylose and amy-
lopectin, which play an important role in determining the cooking and eating quality. SSIII
is a soluble starch synthesis enzyme, and in SSIIIa, it is mainly expressed in endosperm and
is responsible for the synthesis of long-chain amylopectin [46]. Previous studies have found
that the content of long-chain amylopectin with polymerization of 30 or more decreased by
about 60% after knock-out SSIIIa and has a slight effect on GT [12]. SSIIIa has been reported
to affect AC in different populations [47] and contribute to the synthesis of short-chain,
the elongation of A and B1 chains, and the formation of B1 and B2 long chains of amy-
lopectin [48]. Studies using mutant or anti-sense inhibition showed that SSIIIa was involved
in determining the rice quality and endosperm amylopectin structure, respectively [49].
Therefore, we used the SSIIIa as our target gene to identify the SNP marker for foreground
selection for cooking and eating quality improvement of middle-glutinous rice through the
SNP mapping of Samgwang and Milkyqueen. In this study, we have considered that the
parents and the check varieties showed variations in amylose content by high AC (GG) and
low AC (AA) types, this SNP marker can be used to select the amylose content with wx for
the foreground selection. The line selection based on the genotype of KASP markers were
successful in the BC1F1 and BC2F1 generations with the recovery ratios of recurrent parent
genome (RPG) in the range of 97~99.1%. We adapted SNP markers to shorten the breeding
cycle for background selection, and KASP markers were our technology choice. SNPs
for KASP markers associated with cooking and eating quality were discovered through
whole-genome re-sequencing analysis followed by genetic mapping. Once we developed
SNP markers, the applications of these markers can be extended to other purposes such
as distinguishing genetically close lines, mapping agronomically favorable genes, and
analyzing germplasm diversity, etc.

Marker-assisted backcross (MABc) is a breeding technique that shortens the breeding
generations it takes for offspring obtained using backcross to recover to recurrent parents
through selection using molecular markers [50]. The conventional backcross process
takes more than six or seven generations, but MABc can reduce the breeding cycle by
shortening it to at least three or four generations [20]. MABc is selected using molecular
markers (foreground selection), not only the progeny with the donor parent’s heterozygous
properties but also the backcross generations with a high genome recovery ratio of the
recurrent parent, using several chromosomal-specific molecular markers (background
selection). It has been successfully applied to various crops, including rice, soybeans,
rye, and others, and contributes to developing new varieties successfully [51]. Recent
advances in single-plex single nucleotide polymorphism (SNP) genotyping techniques
such as TaqMan, SimpleProbe, and Kompetitive Allele-Specific PCR have enabled MABc to
use functional SNPs. Currently, a KASP (Kompetitive Allele-Specific PCR) assay is being
used in various crops due to its low cost and locus specificity and efficiency [52]. The KASP
assay is based on fluorescence resonance energy transfer (FRET) in the SNP genotype of
allele-specific oligo elongation [53].

In this study, out of 773 KASP markers tested in two parents, 368 polymorphic
markers were identified. For background selection analysis, out of 368 KASP markers,
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96 KASP markers were selected at about 5 Mb intervals per chromosome, which were
evenly distributed on 12 rice chromosomes. The recovery ratio of the recurrent parent
genome (RPG) was analyzed using these 96 markers. Twenty-five lines were selected,
which were in the range of 97–99.1% of the RPG recovery ratio, and eventually, seven lines
with favorable phenotypes were selected in BC2F1. In the investigation of agricultural
traits using these markers, it was judged that most traits recovered the Samgwang traits
well due to the high genome recovery ratio through backcrossing between Samgwang and
Milkyqueen, resulting in a degree similar to those of the parent variety of Samgwang. A
distribution of amylose content was revealed in the BC2F2 seeds from the selected lines,
with a range of 12.4–16.8%, implying that the selection by MABc in this study can be used
as additional breeding materials for developing high eating quality rice varieties. Since this
study performed MABc on BC1F1 and BC2F1 plants in the early generations of backcrossing,
the target individuals were selected in a relatively short breeding cycle. We believe the
lines of starch mutants for high cooking and eating quality can be used as new breeding
materials to develop high-quality rice varieties for eating in any rice breeding program.

4. Materials and Methods
Plant Materials

Two Korean rice varieties were used, Samgwang [54] and Milkyqueen [55], for devel-
oping a backcross population, and two varieties, Koshihikari and Baegjinju, were used as
check varieties. They were cultivated and harvested according to the standard cultivation
method of the Rural Development Administration (RDA) in Korea [56] in an experimental
paddy field at Chungbuk National University in 2019–2020. Seeds were dried until a
moisture content of 13% was achieved, and the hulls were removed using a roller husking
machine. The brown rice was polished using a polishing machine (MC-90A, Toyoseiki) to a
grinding rate degree of 90%. For viscosity analysis, a 100-mesh screen (Cyclotec Sample Mill,
Tecator Co., Sweden) was used to make rice flour out of 15 g of milled rice. The analyses of
cooking and eating traits were applied with three biological and technical replicates.

5. Cooking and Eating Quality Characteristics of Milled Rice
5.1. Analysis of Amylose and Protein Contents

Amylose and protein contents were measured in a non-destructive method using the
Infratec 1241 Grain Analyzer (FOSS, Hilleröd, Sweden). They were investigated in three
replicates for each treatment [57]. Near-infrared spectroscopy is a device that measures the
concentration of components such as moisture, protein, fat, and carbohydrates by shooting
electromagnetic waves of 780–2500 nm wavelengths into a sample and measuring their
absorbance. This instrument has the advantage of being fast and non-destructive and can
measure several components simultaneously [58].

5.2. Characterizations of Cooking and Eating Texture

Milled rice samples (30 g) were cooked for 30 min and cooled for 25 min using a cooler.
Cooked milled rice (10 g) was placed on an experimental plate and used to investigate
cooking taste characteristics by a full cup method [59]. A TensiPresser Analyzer (My Boy,
TAKETOMO Electric Incorporated, Tokyo, Japan) was used to investigate cooking and
eating quality and measure hardness, adhesiveness, springiness, stickiness, and thickness.

5.3. Rapid Visco Analysis (RVA)

Rice flour (3 g) was blended with 25 mL of distilled water in an aluminum canister
and transferred to a Rapid Viscosity Analyzer (Model RVA-4, Newport Scientific Ltd.,
Warriewood, Australia). An RVA analysis condition was started at 50 ◦C for one minute
and heated to 95 ◦C at the rate of 12 ◦C per minute. The temperature was set to remain at
95 ◦C for two minutes and cool to 50 ◦C for seven minutes. The paste viscosity properties
were gelatinization temperature (◦C), peak viscosity (RVU), hot paste viscosity (RVU), cool
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paste viscosity (RVU), and breakdown (highest viscosity–lowest viscosity) and setback
(cool paste viscosity–highest viscosity) were derived.

6. MABc Breeding Process

Samgwang, as a female parent, was crossed with Milkyqueen as a male parent to
develop the F1 generation. F1 plants were backcrossed to Samgwang as a recurrent
parent to generate BC1F1 and BC2F1 generations. KASP markers were applied to each
generation for the foreground and background selection. Of the 210 total individuals at
BC1F1, 93 plants were selected through the foreground selection. The genetic background
of those 93 individuals was screened, and seven selected individuals were advanced to the
BC2F1 population. At BC2F2, 15 individuals were selected with the same foreground and
background selection performed at the BC2F1. Eating quality-related traits were measured
for these 15 BC2F2 seeds.

7. Molecular Marker Analysis
7.1. Semi-Nested PCR Analysis for Foreground Selection

Whole-genome re-sequencing of Samgwang and Milkyqueen was carried out using
HiSeq 2500 Sequencing System (Illumina, San Diego, CA, USA), and short-read sequences
were aligned using the Bowtie program. Assembly and mapping were performed using
CLC Main Workbench Software (QIAGEN, Hilden, Germany). Mutation analysis was
performed by comparison with the reference rice genome sequence of the IRSGP1.0 (Inter-
national Rice Genome Sequencing Project). The foreground selection marker was designed
in the range of up to 1000 bp, including the mutation region of the OsSSIII gene (Supple-
mentary Table S1). DNA was extracted from leaves of the BC1F1 and BC2F1 populations to
select individuals with target genotypes, and deep-sequencing was performed based on
semi-nested PCR using the method in Chi [60].

7.2. KASP Marker Analysis for Background Selection and Investigation of Agronomic Traits

The 773 KASP markers developed for Korean Japonica rice cultivars [27] were used
to select lines with a high genome recovery ratio of the recurrent parent for the BC1F1
and BC2F1 populations between Samgwang and Milkyqueen. Out of 773 KASP markers,
386 polymorphic KASP markers were identified between two parents using the KASP
marker analysis system at the Seed Industry Promotion Center of the Foundation of Agri.
Tech. Commercialization and Transfer (FACT) (Gimje, Korea). The markers showing
heterozygote genotypes were excluded for further analysis. Ninety-six markers located at
a 5 Mb intervals on 12 rice chromosomes were selected to analyze the recovery ratio of the
recurrent parent genome in BC1F1 and BC2F1. Genetic graphical mapping was performed
using a MapChart program (version 2.32) based on the physical location of the KASP
markers on chromosomes [61]. The agronomic traits such as plant height, culm length,
panicle length, and the number of tillers were phenotyped based on a standard method
of RDA, Korea [56] in the lines selected in the BC1F1 and BC2F1 generations. In addition,
amylose content and viscosity characteristics were investigated as eating quality-related
traits using 15 BC2F2 lines with a recovery rate of 97–99.1% of the recurrent parent genome.

8. Statistical Analysis

Statistical analysis of the investigated cooking and eating quality characteristics was
performed using the SAS program (SAS Institute Inc., Cary, NC, USA). Basic statistics such
as mean and deviation of each trait data were analyzed, and the distribution of variation
by trait was investigated. Significance (p < 0.05) was tested by analyzing variance, and
significant differences were compared and analyzed by performing Duncan’s Multiple
Range Test.
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9. Conclusions

The goals of rice breeding programs are the improvement of grain quality and yield
potential. With the high demand for rice varieties of premium cooking and eating quality,
we developed low-amylose content breeding lines through the marker-assisted backcross
(MABc) breeding program from the cross between Samgwang (18.1% AC) and Milkyqueen
(12.2% AC). Seven BC2F1 lines with targeted traits were selected, and the genetic back-
ground recovery range varied within 97.4–99.1% of RPG. The amylose content of the
selected BC2F2 grains ranged from 12.4–16.8%. We demonstrated the MABc using trait
and genome-wide markers, allowing us to efficiently select lines of a target trait and re-
duce the breeding cycle effectively. In addition, the BC2F2 lines confirmed by molecular
markers in this study can be utilized as parental lines for subsequent breeding programs of
high-quality rice for cooking and eating.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10040804/s1, Figure S1: Distribution of SNPs between Samgwang and Milkyqueen,
Kosihikari in the 12 rice chromosomes. The X-axis represents the physical distance along each
chromosome in base-pair (bp) unit. The Y-axis indicates the common logarithm of the number of
SNPs, Figure S2: 773 KASP markers were used for analysis of marker effectiveness between parents,
Samgwang and Milkyqueen, Figure S3: Frequency distribution of the genome recovery rate (%) of
the recurrent parent in BC1F1 population, Figure S4: Frequency distribution of the genome recovery
rate (%) of the recurrent parent in BC2F1 population, Table S1: Information about markers used
in foreground selection, Table S2: Genes identified with SNP and amino acid variation in mutant
region between Samgwang and Milkyqueen, Table S3: Genotype information of 96 KASP markers
for background selection. Table S4: Statistical analysis for the segregation ratio of the selected lines
in BC2F1 was detected as the segregation ratio of 1:2:1 by a χ2-test (p = 0.05) as expected in BC2F2
between Samgwang and Milkyqueen.
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