
International  Journal  of

Environmental Research

and Public Health

Article

Prenatal Phthalates Exposure and Cord Thyroid Hormones:
A Birth Cohort Study in Southern Taiwan

Po-Chin Huang 1,2,3, Pao-Lin Kuo 4 , Wei-Hsiang Chang 5,6, Shu-Fang Shih 7, Wan-Ting Chang 1

and Ching-Chang Lee 6,8,*

����������
�������

Citation: Huang, P.-C.; Kuo, P.-L.;

Chang, W.-H.; Shih, S.-F.; Chang,

W.-T.; Lee, C.-C. Prenatal Phthalates

Exposure and Cord Thyroid

Hormones: A Birth Cohort Study in

Southern Taiwan. Int. J. Environ. Res.

Public Health 2021, 18, 4323. https://

doi.org/10.3390/ijerph18084323

Academic Editor: Woo-Sung Kwon

Received: 3 March 2021

Accepted: 16 April 2021

Published: 19 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan;
pchuang@nhri.edu.tw (P.-C.H.); wtchang2@nhri.edu.tw (W.-T.C.)

2 Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
3 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 406040, Taiwan
4 Department of Obstetrics and Gynecology, Medical College, National Cheng Kung University,

Tainan 701, Taiwan; paolinkuo@gmail.com
5 Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University,

Tainan 701, Taiwan; whchang@mail.ncku.edu.tw
6 Research Center of Environmental Trace Toxic Substances, College of Medicine,

National Cheng Kung University, Tainan 701, Taiwan
7 Department of Health Administration, College of Health Professions, Virginia Commonwealth University,

Richmond, VA 23284, USA; shihs2@vcu.edu
8 Department of Environmental and Occupational Health, Medical College, National Cheng Kung University,

Tainan 701, Taiwan
* Correspondence: cclee@mail.ncku.edu.tw; Tel.: +886-6-274-4412

Abstract: Background: The regulation of thyroid hormones in the early stages of gestation plays
a crucial role in the outcome of a pregnancy. Furthermore, thyroid hormones are fundamental for
the fetal development of all organs, including endocrine hormone changes in uterus. Endocrine
disrupting chemicals have been shown to have an effect on thyroid hormone homeostasis in newborns,
which affects their later development. Few studies have proposed how phthalates could alter thyroid
function through several mechanisms and the possible effects on thyroid hormone homeostasis of
phthalates on pregnant women. However, the effects of cord blood phthalates and prenatal phthalate
exposure on thyroid hormones in newborns remain unclear. Objectives: We aim to follow up on our
previous established subjects and determine the correlation between phthalate exposure and thyroid
hormones in pregnant women and newborns. Materials and methods: We recruited 61 pregnant
women from the Obstetrics and Gynecology Department of a medical hospital in southern Taiwan
and followed up. High performance liquid chromatography electrospray ionization tandem mass
spectrometry (HPLC-ESI-MS/MS) was used to analyze urine samples for five phthalate metabolites.
Serum levels of thyroid hormones were analyzed using electrochemoluminescence immunoassay
(ECLIA) method. We used Spearman and Pearson correlation coefficients to evaluate the correlation
between each phthalate metabolites in serum and the thyroid hormone levels in fetus and parturient.
Finally, multiple logistic regression was used to explore the relationship between hormones and their
corresponding phthalate metabolites in cord blood. Results: High MBP in cord blood was correlated
with negative cord serum TSH in newborns (r = −0.25, p < 0.06). By using multiple linear regression
after adjusting for potential confounders (gestational and maternal age), cord serum MBP levels
showed a negative association with cord serum TSH (β = 0.217, p < 0.05), cord serum T4 (β = 1.71,
p < 0.05) and cord serum T4 × TSH (β = 42.8, p < 0.05), respectively. Conclusion: We found that levels
of cord serum TSH and T4 in newborns was significantly negatively associated with cord serum
MBP levels after adjusting for significant covariate. The fall in TSH in newborns may potentially be
delaying their development.
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1. Introduction

Thyroid hormone is fundamental for fetal development of all organs, including en-
docrine hormone changes in uterus. Some endocrine disruptor chemicals (EDCs) have
been reported to have a possible effect on thyroid hormone homeostasis in newborns, such
as polychlorinated biphenyl (PCB), or polybrominated diphenyl ethers [1–3], persistent
organic pollutants (POP) [4] and bisphenols [5]. Permanent effects of thyroxin-related
development, like on neurons in the brain, in infants and in later childhood are observed
clinically where hypothyroidism of pregnant women occurred during pregnancy [6–12].
Previous studies had revealed possible effects on thyroid hormone homeostasis while ex-
posed to certain phthalates in pregnant women [13–15]. A few studies reported the adverse
or positive relationship between levels of cord serum phthalate metabolite and cord serum
thyroid hormone (e.g., TSH and thyroxine) [15–17], however, whether phthalate exposure
in the uterus can cause thyroid hormone alterations in newborns was debatable due to
limitations such as small sample size, spot urine or serum sample, different phthalates or
thyroid hormones observed, etc.

Phthalates are ubiquitous in daily life. They are added to plastics and many other daily
products [18,19]. From 2003 to 2007, an average of 200,000 tons of di (2-ethylhexyl)phthalate
(DEHP) and 20,000 tons of dibutyl phthalate (DBP) were used to produce consumer prod-
ucts in Taiwan [20]. Although phthalates are metabolized to their metabolites within
a few hours or days [21], the potential consequences of human exposure to phthalates
have focused on susceptible subjects, like pregnant women and fetuses [22–28]. Phthalate
metabolites are considered to be good biomarkers for evaluating phthalate exposure in
humans because of their low contamination rate in the laboratory and reliability for indicat-
ing an individual’s phthalate exposure [18,21,29]. In addition, animal and epidemiological
studies have reported that phthalate metabolites can penetrate the placenta and be retained
in the fetus [14,30–32]. Biomarkers of phthalates in different specimens were used to as-
sess the exposure of early life in the uterus, such as meocoin, serum, and amniotic fluid
samples [14,21,33].

Phthalates have also been suggested as having a possible antagonistic effect on thyroid func-
tions [34–40] and may alter thyroid hormone through the oxidative stress pathway [19,41,42].
This may be relevant to other environmental disrupter compounds [1,40,43,44]. Though
several epidemiological studies have investigated the association between phthalate metabo-
lites and maternal and cord serum thyroid hormones, there were inconsistencies in the
observed results of specific phthalates and the alterations of the phthalate-thyroid hormone
relationships [16,17,45–47]. Furthermore, little is known about the maternal phthalate
metabolites in urine, serum and cord blood samples at delivery, in relation to maternal
serum and cord serum thyroid hormones.

Therefore, the aims of this study are to investigate the relationship between phthalate
metabolites and thyroid hormones in cord serum and maternal serum samples using the
existing cohort we established.

2. Material and Method
2.1. Participants

Participants of this study were recruited from a cohort for evaluating prenatal phtha-
lates exposure (during the third trimester) to the pregnant women and newborns during
2005 to 2006 [13]. All participants were interviewed and the benefits and risks of partic-
ipating in this longitudinal project were fully explained. Of all participants who signed
the informed consent for this study, 76 pregnant women received follow-up, and urine,
serum and cord blood samples were collected in 61 of them. All samples were collected
in the third trimester before delivery. The protocol was approved by the Human Ethics
Committee of the National Cheng Kung University Hospital.
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2.2. Samples Collection

Urine samples of 20–30 mL were collected using 250 mL glass vessels and the urine
samples were immediately transferred into 12 mL amber glass bottles for phthalate mo-
noester and creatinine analysis. All urine samples were stored at −20 ◦C until analysis.
Meanwhile, we drew 8 mL blood samples via venipuncture into chemically clean glass
tubes containing no anti-coagulant. After delivery, cord blood samples were drawn by
gynecologists using 20-mL glass syringe and transferred into chemically clean glass tubes.
Maternal and cord blood were centrifuged at 2500 rpm in 45 min to obtain serum samples
and stored at −70 ◦C in amber glass bottles until analysis. To prevent possible contami-
nation of the urine and serum samples, all the glassware had been washed in methanol,
acetonitrile and acetone, and then was sealed with aluminum foil before sample collection.
Glass syringes were sterilized with ethylene oxide for the cord blood sample collection.
We used 5 mL of HPLC-grade H2O to extract all the glassware, and it was analyzed to
ensure no phthalate metabolites contamination during the preparation of the glassware.

2.3. Phthalate Metabolites Analysis

We used a previously described analytical method to determine phthalate monoester
levels in urine samples [13]. We made some modifications to the previous method in the
analytical column for serum phthalate metabolites analysis [48]. Briefly, we used high
performance liquid chromatography electrospray ionization tandem mass spectrometry
(HPLC-ESI-MS/MS), to analyze the level of urine samples for five phthalate metabolites:
monobutyl phthalat (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate
(MEHP), mono-ethyl phthalate (MEP) and monomethyl phthalate (MMP). The limits of
detection (LOD) of five phthalate metabolites were 1.4 ng/mL (MBP), 1.4 ng/mL (MBzP),
0.9 ng/mL (MEHP), 1.0 ng/mL (MEP) and 1.4 ng/mL (MMP).

2.4. Assay for Maternal Serum and Cord Serum Thyroid Hormones

Maternal serum and cord serum thyroid hormones, which include triiodothyronine
(T3), thyroxin (T4), free T4 (FT4), and thyroid stimulating hormone (TSH), were analyzed
using combined clinical chemistry and immunoassay tests (Modular Analytics Serum
Work Area; Roche Diagnostics) and an electrochemoluminescence immunoassay (ECLIA)
(Elecsys 2010 and Modular Analytics E170; Roche Diagnostics), respectively. Urinary
creatinine level was re-analyzed and re-confirmed if the level exceeded the reference range.

2.5. Physical Examination of Health Status in Newborns

Physical examination and measurements of the newborns were done and recorded
by the same pediatrician and a well-trained assistant. The measurements included the
newborns’ birth anthropometric measurements, AGD and gestational age. To obtain an
average AGD for each infant, AGD were measured twice. For female newborns, the AGD
was measured from the center of the anus to the posterior convergence of the fourchette and
to the junction of perineal skin with the rugated skin of the scrotum for male newborns [49].

2.6. Statistical Analysis

All statistical analysis was performed using SPSS 22.0 (IBM, Armonk, NY, USA).
All the measured phthalate metabolites in maternal urine, serum and cord blood were
log-transformed to approximate normal distribution. Covariate selection (e.g., age and
gestational age, cigarette smoking, sex, birth weight, etc.) was based on the results of rele-
vant studies [15,50]. We used Spearman and Pearson correlation coefficients to evaluate the
correlation between each phthalate monoester in serum and thyroid hormone levels in fetus
and parturient. We also used multiple linear regression to assess the associations among
cord serum phthalate metabolites and cord serum thyroid hormone levels in newborns,
adjusting for potential confounders in the forward stepwise regression model.
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3. Results
3.1. Demographic Characteristics of Participants and Physical Examination of Newborns

The mean age of the participants was 34.0 ± 3.5 years (range: 26–43 years). The
average gestation age at delivery was 39.0 ± 1.2 weeks. All our participants were non-
smokers, but 11 participants had been exposed to passive smoke (18.3%). None of them
were an “alcohol drinkers”, which was defined as “someone who consumed any alcohol
at all during pregnancy”. No significant differences was observed between the levels of
urinary phthalate metabolites and smoking habits and drinking. From the 76 initially
recruited pregnant women, 61 foetuses were followed until birth. Significant differences
between birth length, AGD and AGI-W were observed between male and female newborns;
birth length (p < 0.01) and AGD (p < 0.01) were longer in males than females (Table 1).

Table 1. Physical examination of health status in newborns (n = 61) a.

Newborns’ Health Status Males
(n = 31)

Females
(n = 30) p-Value b

Birth weight (g) 3250 3087
(1678–4260) (2120–3935) 0.055

Birth length (cm) 50.4 48.7
(42.0–56.0) (44.1–53.5) <0.01 *

Gestational age (weeks) 39.1 38.7
(35.3–41.7) (35.8–41.4) 0.072

AGD (mm) a 22 17
(12–36) (7–23) <0.01 *

a The anogenital distances of one female and two male newborns were not available because of conducting blood
infusion in the NICU. AGD = anogenital distance. b Wilcoxon rank sum test, * p < 0.05.

3.2. Phthalate Metabolites in Maternal Urine, Serum, and Cord Blood

The detectable rates of MBP, MEHP, MEP, MMP and MBzP in all urine samples were
100%, 100%, 98%, 52% and 19%, respectively. Median levels without creatinine adjustments
for five urinary phthalate metabolites at delivery were 114 ng/mL (25.4–1830) for MBP,
40.2 ng/mL (3.6–958) for MEHP, 36.4 ng/mL (ND-1980) for MEP, 8.3 ng/mL (ND-169) for
MMP, and 5.7 ng/mL (ND-218) for MBzP (Table 2). Amongst the five urinary phthalate
metabolites levels, MBP, MEP and MEHP were the highest, which suggests the predominant
exposure to phthalates DBP, DEHP and DEP of our participants. The proportions of MBP,
MEHP and MEP of total phthalate exposure were 59%, 18% and 16%, respectively.

Table 2. Concentrations of phthalate monoesters in urine, serum and cord blood in the third trimester before delivery
(ng/mL, n = 61).

Phthalate
Monoesters

Urine Serum Cord Blood

Median (Range) 10–90th Median
(Range) 10–90th Median

(Range) 10–90th

MBP a 114 (25.4–1830) 36.9–550.6 158.0
(59.6–1080) 64.9–413.0 256.0

(65.2–815) 97.4–604.8

MEHP 40.2 (3.6–958) 8.4–152.0 21.0 (9.2–99.2) 11.7–37.1 24.7
(11.0–665.0) 14.2–65.9

MEP 36.4 (ND b-1980) 4.6–236.8 2.8 (ND-26.5) ND-6.3 ND (ND-9.3) ND-3.4
MBzP 5.7 (ND-218.0) 1.9–49.2 ND (ND-10.1) ND-2.8 ND (ND-26.8) ND-3.6
MMP 8.3 (ND-169) 1.7–38.0 ND (ND-3.7) ND-2.4 ND (ND-13.3) ND-ND

a MBP = monobutyl phthalate; MBzP = monobenzyl phthalate; MEP = monoethyl phthalate; MEHP = mono-2-ethylhexyl phthalate;
MMP = monomethyl phthalate. b Detection limit (LOD) of phthalate monoesters were: MBP, 1.4; MBzP, 1.4; MEP, 1.0; MEHP, 0.9; MMP,
1.4 ng/mL, respectively. Half of LOD was calculated as the detected value below the LOD.
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The detectable rates of MBP and MEHP in all serum and cord serum samples were
100%, whereas MEP, MMP and MBzP were detected in less than 10% of all samples. Me-
dian levels of five phthalate metabolites in maternal serum at delivery were 158.0 ng/mL
(59.6–1080) for MBP, 21.0 ng/mL (9.2–99.2) for MEHP, 2.8 ng/mL (ND-26.5) for MEP, ND
ng/mL (ND-3.7) for MMP and ND ng/mL (ND-10.1) for MBzP (Table 2). Levels of MBP
and MEHP in maternal serum were the highest of the five metabolites measured, which con-
tributed over 95% of total phthalate exposure in pregnant women. The proportions of MBP
and MEHP of total phthalate exposure in maternal serum were 87% and 11%, respectively.

In addition, the median levels of the five phthalate metabolites in cord serum were
256.0 ng/mL (65.2–815) for MBP, 24.7 ng/mL (11.0–665.0) for MEHP, ND ng/mL (ND-9.3)
for MEP, ND ng/mL (ND-13.3) for MMP and ND ng/mL (ND-26.8) for MBzP (Table 2).
Contribution profiles of MBP and MEHP in cord serum were quite similar to those in
maternal serum. The proportions of MBP and MEHP of total phthalate exposure in cord
serum were 90% and 9%, respectively.

3.3. Thyroid Hormone Levels in Pregnant Women and Newborns

We have compared the thyroid hormone levels of our participants to that of the general
Taiwanese population, since there is no thyroid hormone reference range available for
pregnant women and newborns. From our data, it is observed that more than 90% of T3, T4
and TSH levels in maternal serum samples were within the reference range of the general
Taiwanese population. The low FT4 levels in our participants (more than 35% are lower
than the lowest level of the general population) might suggest a possible mild thyroxine
insufficiency (i.e., hypothyroidism). In addition, median levels of cord serum TSH and FT4
were higher than those in maternal serum (Table 3), whereas maternal serum T4 and T3
levels were much lower in the fetus. Although there is one outlier (hypothyroidism) which
is excluded in the following analysis, the distribution of thyroid hormones in maternal
serum and cord serum were not significantly changed.

Table 3. Concentrations of thyroid hormones in maternal serum and cord blood before delivery (n = 61).

Heading
Maternal Serum 1 Cord Blood

Median Range Median Range

TSH (µIU/mL) 2.08 0.38–6.07 7.05 1.63–289.7
T3 (ng/dL) 140.0 82.4–277.4 56.3 35.1–84.6
T4 (µg/dL) 9.6 3.6–16.9 7.66 3.65–11.7

FT4 (ng/dL) 0.99 0.33–1.31 1.13 0.49–1.45
1 Reference values for thyroid hormones in Taiwan: TSH: 0.27–4.2; T3: 84.6–202.0; T4: 5.13–14.1; FT4: 0.93–1.7.

3.4. Association between Phthalate Metabolites in Maternal Serum, Cord Serum and
Thyroid Hormones

For maternal serum samples, significantly positive correlations were observed between
levels of maternal serum T4 and FT4 (R = 0.76, p < 0.05), maternal serum T4 and T3 (R = 0.53,
p < 0.05) and levels of maternal serum T3 and TSH (R = 0.39, p < 0.05) for pregnant women.
For cord serum sample, significant positive correlation was also observed between levels
of cord serum T4 and FT4 (R = 0.62, p < 0.05), and cord serum T4 and cord serum TSH
(R = 0.35, p < 0.05) in newborns. However, no significant correlations were found between
phthalate metabolites and thyroid hormones in maternal serum samples. In addition,
a marginally significant negative trend between cord serum MBP and cord serum TSH
(R = 0.25, p = 0.058), and cord serum MBP and cord serum T4 (R = 0.23, p = 0.092) was
observed (Table 4). As cord serum MBP level increased, a decreasing trend of cord serum
TSH in newborns was also observed (Figure 1).

3.5. Regression Analysis

A multiple regression model was used to examine the association between thyroid
hormone level and phthalate metabolites in cord serum (Table 5). After adjusting for
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gestational age and maternal age (sex, cigarette smoking, birth weight and cord serum
MEHP were excluded in the stepwise forward model), cord serum MBP levels showed
a negative association with cord serum TSH (TSH: β = −0.217, p < 0.05), cord serum T4
(β = −1.71, p < 0.05) and cord blood TSH × T4 (β = −42.8, p < 0.05); however, we found a
positive correlation between cord serum MBP and cord serum FT4/T4 (β = 0.036, p < 0.01).

Table 4. Spearman correlation coefficients between thyroid hormones and phthalate monoesters in
serum samples (n = 60) a.

Maternal Serum Cord Serum

T4 T3 FT4 TSH c T4 T3 FT4 TSH c

T4 - -
T3 0.53 * - 0.15 -

FT4 0.76 * 0.20 - 0.62 * 0.25 -
TSH 0.13 0.39 * 0.16 - 0.35 * 0.03 0.21 -
MBP −0.08 −0.11 −0.14 −0.06 −0.23 + 0.11 0.10 −0.25 #

MEHP 0.01 0.19 −0.11 0.08 −0.04 0.18 0.01 −0.07
MEP −0.14 −0.17 −0.06 −0.13 −0.05 0.09 −0.07 0.05
Age b −0.10 −0.15 0.05 0.04 −0.09 −0.03 0.10 −0.04

a *: p < 0.05; #: p < 0.06; +: p < 0.10. b Current age for pregnant women and gestational age for newborns. c TSH in
cord serum and maternal serum were log-transferred.
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Figure 1. Relationship between log MBP levels and TSH levels in cord serum samples (n = 60).

Table 5. Multiple linear regression between TSH and T4 levels and their corresponding phthalate metabolites in cord serum
(n = 60) a.

Variables TSH (µIU/mL) TSH × T4 TSH × FT4 FT4/T4 T4 (µg/dL)

Estimate p Estimate p Estimate p Estimate p Estimate p

Intercept 3.49 0.010 171.4 0.004 20.6 0.001 0.123 0.006 20.4 0.017
MBPcord serum −0.217 0.044 * −42.8 0.028 * −4.49 0.075 # 0.036 0.004 ** −1.71 0.036 *
Maternal age — — — — — — −0.002 0.087 # 0.113 0.106

Gestational age −0.045 0.117 — — — — — — −0.315 −0.104
R2 0.087 0.044 0.092 0.028 0.054 0.075 0.171 0.005 0.115 0.046

a All the parameters were log-transformed. Estimate values are beta coefficients except for R2; # p < 0.10. * p < 0.05. ** p < 0.01. —, Excluded
from stepwise forward model.
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4. Discussion

In this study, we found a correlation between higher exposure levels of cord serum
phthalate and alterations in cord serum thyroid hormones in newborns. Despite having
small sample size, the association between higher cord serum MBP level and low cord
serum TSH and cord serum T4 remained after controlling for other variables in multiple
regression model.The urinary phthalate metabolites levels in this study are consistent with
our previous study [13], where we found that Taiwanese women (2005–2006) are exposed
to a higher level of phthalates than the average American pregnant women [25], whereas
their levels dropped dramatically after the 2011 DEHP scandal [15,42].

Some toxicological studies have shown possible thyroid hormone antagonist activities
of certain phthalates, such as DBP and DEHP in adult animals [34,36,37,41]. Little infor-
mation is available about phthalate exposure in the uterus and its effects on fetal thyroid.
A two-generation study was conducted to evaluate the synergetic effect of PCB and DEP on
adrenal and thyroid glands in rats. Follicular shrinkage, loss of thyroglobulin and fibrosis
of the interfollicular epithelium was found in both treated parental and F1-generation male
and female rats [38]. Another animal study has observed the morphological changes of the
thyroid gland through the effect of DEHP [40].

Some possible mechanisms explaining how phthalates may alter thyroid hormones
have been studied in experimental studies. Assessment of T3-antagonist activity using a
thyroid hormone assay of three phthalates including BBzP and DBP done by a previous
study showed TH-antagonist activities in vivo [37]. In addition, an investigation into
the effects of six phthalates on transcriptional activity of sodium/iodide symporter (NIS)
showed that DBP appeared to downregulate the human NIS promoter [43]. This suggested
that phthalates such as DBP and DEHP could modulate transcriptional activity to induce
thyroid hyperactivity and decrease the concentration of thyroxin. Besides, DEHP can
perturb thyroid hormone homeostasis and reduce thyroid hormone levels through the
activated Ras/Akt/TRHr pathway in thyroid-disrupting effects of DEHP [41].

Epidemiological studies [13–15,45,47,50] have shown possible effects on thyroid hor-
mone homeostasis in humans. Some studies have reported that certain phthalate metabo-
lites, such as MBzP, were inversely associated with cord serum TSH [16,17]. Phthalates
indexes were also inversely associated with cord serum TSH and total T4 [17]. However
Yao et al. did not observe any associations between urinary phthalate concentration and
cord sera thyroid hormone [47]. Since phthalates can penetrate placenta [14,30–32] and clear
clinical evidence of low maternal thyroid can affect thyroid function in newborns [51–54],
it reveals that some phthalates, like DBP, may mimic functional thyroxin and cause a
mildly decreased level of TSH in newborns. However, Minatoya et al. did not find any
adverse effects of thyroid hormone levels in infants with prenatal DEHP exposure [46].
The discrepancies in results observed might be due to the possible differences in time of
sample collection.

In this study, cord serum phthalate metabolites were observed to be higher than those
in maternal serum. This might not indicate a possible placenta penetration of phthalate
metabolites such as MBP and MEHP because we did not observe correlations between each
pair of phthalate metabolites in maternal serum and cord serum. Hence, more research is
needed to understand the possible underlying association and mechanism in the uterus.
The knowledge of placenta transportation and metabolic ability of phthalates in uterus
in animal studies [32] is much clearer than in humans. A previous study showed that
DEHP and MEHP can penetrate the placenta [30] and some studies [55–57] have reported
that phthalate metabolites existed in human serum as both a free and conjugated form.
In addition, phthalates have also been detected in the urine of newborns [58]. Therefore,
phthalates and phthalate metabolites may penetrate placenta by different mechanisms.
These mechanisms may seem unclear, however it is possible that phthalate metabolites
may penetrate placenta in its free form and accumulate in the fetus in its conjugated form.
However, further studies are still needed to clarify this phenomenon.
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Since more evidence showed the possible effects on thyroid hormone homeostasis
for certain phthalates in animal and epidemiological studies [13–15,34–38,40,41,45,51], we
cannot rule out the possible effect phthalate exposure has on thyroid function and other
hormones [59–61]. Further research is still needed to clarify the possible mechanisms of
such effect.

In addition to the limitations of this study previously described would be the small
sample size and limited number of phthalate metabolites being analyzed [13], we did not
measure the secondary metabolites of DEHP in this study. While we took precautions to
prevent contamination during collection and analysis of serum samples, levels of phthalate
metabolites in cord blood were higher than in maternal serum and distinguished profiles
of phthalate metabolites in urine and serum samples were found (Figure 1). Urinary
MBP, MEHP and MEP contributed over 95% of total phthalate exposure, whereas MBP
and MEHP were dominantly compounds in serum and cord blood samples. Short-chain
phthalates, like DEP and DMP, were rapidly metabolized to their metabolites in a few
hours [62], which instantly excreted to urine and may not cause significant placenta
transportation [63,64]. For long-chain phthalates with longer half-lives, like DBP and DEHP,
continuous exposure to these phthalates through food and food packaging materials [18,65]
are possible reasons that MBP and MEHP were both dominant compounds in serum and
urine samples.

5. Conclusions

We found that the level of cord blood TSH in newborns was significantly negatively
associated with MBP levels in cord blood after adjusting for covariates. The fall in TSH
levels in newborns may be potentially delaying their development. Hence, questions about
the relationship between thyroid and testosterone hormones in the uterus are needed for
further investigation.
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Abbreviations

BBzP butyl benzyl phthalate
BW birth weight
BL birth length
DBP di-n-butyl phthalate
DEHP di-(2-ethylhexyl) phthalate
DEP di-ethyl phthalate
FT4 free T4
GA gestational age
LC-ESI/MS/MS liquid chromatography electrospray ionization tandem mass spectrometry
LOD limit of detection
MBP mono-n-butyl phthalate
MBzP monobenzyl phthalate
MDL minimum detectable limit
MEHP mono-2-ethylhexyl phthalate
MEP monoethyl phthalate
MMP monomethyl phthalate
ND not detectable
T3 triiodothyronine
T4 thyroxine
TSH thyroid stimulation hormone
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