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ABSTRACT: In this paper, a combined photophysical and electronic
structure theory study demonstrating a remarkable site-specific
fluorine substitution effect on the excited-state dynamics of
monofluorophenols has been presented. The S1 ← S0 electronic
origin band of phenol is shifted to a longer wavelength for para
substitution, but to shorter wavelengths for ortho and meta
substitutions. The observed sequence of excitation wavelengths of
2-fluorophenol (2FP) < 3-fluorophenol (3FP) < phenol < 4-
fluorophenol (4FP) is consistent with the transition energies
predicted by TDDFT/CAMB3LYP/6-311++G(d,p) and CASSCF-
(8,8)/Dunning cc-pVDZ theoretical methods. The most notable
contrast of excited-state dynamics is revealed in the different features
of the fluorescence spectra; the fluorescence yield of 4FP is almost 6
times larger compared to that of 3FP and the spectral bandwidth of 2FP is nearly 1.5 times larger than that of 4FP. Electronic
structure calculation predicts a low-energy S1/S0 conical intersection (CI) near the 1ππ* minimum with respect to the prefulvenic
vibronic mode of the aromatic ring, and the energetic location of this CI is altered with the substitution site of the fluorine atom. The
predicted energy barrier to this prefulvenic CI is smallest for 3FP but largest for 4FP, leading to a facilitated nonradiative electronic
relaxation of the former (3FP), and emission occurs with a much diminished fluorescence intensity.

1. INTRODUCTION
The excited-state relaxation dynamics and photochemistry of
molecules in the framework of nonadiabatic dynamics have
drawn a surge of interest from both theoretical and
experimental perspectives in the past couple of decades.1−22

The close proximity of the molecular electronic potential
energy surfaces, which is common in polyatomic molecules,
results in breakdown of the Born-Oppenheimer approxima-
tion.1 As a result, vibronic mixing among the states allows the
nuclei to move concurrently on multiple electronic surfaces,
which leads to the generation of conical intersections (CIs)
among the states and introduces quantum mechanical
tunneling as one of the intriguing phenomena in the excited-
state dynamics of polyatomic molecules.2−22 Such interactions
significantly raise the propensity of nonradiative decay of the
molecular excited electronic states and leave footprints of the
effects in the electronic absorption and fluorescence
spectra.23−33 Photophysical interpretations in terms of inter-
play between the low-lying excited electronic states have
previously been provided for phenol, substituted phenols, and
other photoacid molecules like pyrrole, indole, and substituted
indoles.34−40 The photophysical and photochemical studies of
fluorinated aromatic compounds have drawn significant
attention from theoretical and experimental researchers.41−46

Phenol, the smallest aromatic alcohol, is the light-absorbing
chromophore of the aromatic amino acid tyrosine that plays a

vital role in photosynthetic processes.47 This chromophore is
also a simple photoacid molecule and its acid dissociation
constant is increased by nearly 6 orders of magnitude upon UV
excitation.48 Many photophysical studies have been carried out
in the recent past with this molecule and its hydrogen-bonded
complexes with water and ammonia in gas phase, as well as in
condensed media of different polarities.49−61 The key photo-
physical effects of the nonadiabatic coupling among the low-
lying excited electronic states of isolated phenol are the low
quantum yield of fluorescence, relatively fast excited-state
decay, and detachment of the H atom from the phenolic O−H
group.61 It has been suggested that the same mechanism is
responsible for the ultrafast electronic relaxations of the purine
and pyrimidine bases of the nucleic acids and offers
photostability to many important biomolecules in the natural
environment.62−66

A unique underlying mechanism that governs the excited-
state dynamics of this class of molecules, as mentioned above,
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is the interplay between the optically bright 1ππ* and the
dissociative 1πσ* states.67−74 For phenolic systems, a CI is
developed between the two excited states at ∼1.2 Å length of
its O−H bond.26 At a still longer O−H distance, a second CI
results between the 1πσ* and S0 states.

26 For phenol, the first
CI between the 1πσ*(S2) and 1ππ*(S1) states is located near
5.0 eV, which is ∼0.5 eV above the energy minimum of the S1
state.23,28 When the excitation energy exceeds the S1/S2 CI
energy, typically at a wavelength shorter than 240 nm, the O−
H bond fission may occur within a few hundred femto-
seconds.75 But for excitations below the CI barrier, O−H bond
fission is slower compared to other electronic relaxation
processes.75 However, the possibility of tunneling-mediated
O−H bond fission in nanosecond time scale has been
discussed in the recent literature.75 In addition, a “channel-
three” S1/S0 radiationless decay pathway involving the
prefulvenic isomeric mode for the single-ring aromatic systems
was also proposed.76−78,23,80 This nonradiative channel opens
up at 3000 cm−1 above the S1 (ππ*) origin for benzene.76−78

For phenol, the barrier height for this channel is reported to be
6370 cm−1 above the S1 minimum.23 It is shown here that this
S1/S0 CI is indeed the key mechanism for the site-specific
excited-state decay of the fluorine-substituted phenols
considered in the present study.
Recently, Sage et al. studied the para halogen substitution

effects on the photodissociation dynamics of phenol and
identified a competition between O−H and C−Y (Y = Br/I)
bond fissions in 4-bromophenol and 4-iodophenol upon
excitations in the wavelength range of 215−330 nm.79 For 4-
chloro and fluorophenols, no Cl and F atoms have been
identified, and O−H bond fission is considered as the primary
photodissociation channel of these two molecules. Harris et al.
recognized a completely different ultrafast S1 state relaxation
dynamics for 2-chlorophenol that matches well with its
subpicosecond S1 state lifetime, while for 3- and 4-
chlorophenols, the lifetimes are ∼3 and ∼4 orders of
magnitude longer and in the nanosecond time scale.80 They
proposed the occurrence of the fast IC for the 2-substituted
phenols involving the C−Cl stretching coordinate owing to the
intramolecular O−H···Cl hydrogen bonding, which could
stabilize the 1πσ* energy state, leading to a barrierless IC to the
ground state. However, the same does not occur for 2FP and
the S1 state lifetime was measured to be in the nanosecond
time scale.75 Pino et al. have reported the experimentally
measured S1 state lifetime for 2FP, 3FP, and 4FP as 4.6 ns, 1.9
ns, and 1.8 ns, respectively, under the isolated condition in the
gas phase.22

The studies presented above underlie the fact that the
information about the energetics of CI points and the
corresponding geometries are important parameters to explain
the photophysical and photochemical behaviors of phenolic
and analogous systems.81−85 While the use of a multireference
theoretical method is recognized to be the most powerful
approach for quantitative prediction in this regard, its limited
applicability for medium to large-sized molecules calls for a less
computationally demanding method, and the time-dependent
density functional theory (TDDFT) is proposed and tested to
be a practical approach in this regard. Earlier, Robinson and
co-workers have drawn a comparison of the spin-flip TDDFT
minimal energy crossing point CI approaches with the
extended multistate complete active-space second-order
perturbation theory (XMS-CASPT2) for a large class of
molecules like fulvene, 5-fluorocytosine, 9H-adenine, azo-

methane, azoxymethane etc.86 Levine et al. showed that under
certain approximations, the TDDFT method can satisfactorily
predict minimum energy CI (MECI) geometries and
energetics.87 Filatov explored the impact of the choice of
density functional on MECI geometries in comparison with
various multireference approaches like the complete active-
space self-consistent field (CASSCF) and CASPT2.88 Olivucci
and co-workers compared TDDFT//CASSCF calculations
with the more expensive CASPT2//CASSCF level for
evaluation of the excited-state isomerization pathway of retinal
chromophores.89 Excited-state proton transfer (ESPT) and
photoinduced electron transfer (PET) have extensively been
studied using TDDFT methods.90,91 Truhlar and co-workers
assessed the performance of the M06 family of functionals for
prediction of electronic excitation energies by TDDFT
methods and found the M06-L functional as the most efficient
one in prediction of the excitation energies among other
similar functionals.92

In this work, we report a combined photophysical
experimental and computational study of the three mono-
fluorophenols, 2FP, 3FP, and 4FP, to investigate the site-
specific substitution effects on the electronic relaxation
dynamics following 1ππ* excitation. The results presented
below show that the effects are quite distinct. The
interpretation of the findings given is based on the predictions
of the electronic structure theory calculations. Although
fluorine atoms are weak hydrogen bond acceptors, the
presence of weak O−H···F hydrogen bonding in 2FP has
been evidenced in a recent infrared spectroscopy study under
an matrix isolation condition and also by the use of
photoionization mass spectrometry.93 The effect of the site-
specific substitution of the fluorine atom on the structure and
dynamics of such molecules is the primary focus of this study.

2. EXPERIMENTAL AND THEORETICAL METHODS
Phenol (purity >99.0%), 2FP (purity >99.0%), 3FP (purity
>99.0%), and 4FP (purity >99.0%) were purchased from
Sigma-Aldrich and used as supplied. UV-grade methylcyclo-
hexane (MCH), used as a solvent in the present study, was
procured from Spectrochem India Pvt. Ltd. and used as
supplied after confirming that it had no fluorescent impurity.
For recording the absorption and fluorescence spectra, a 1 ×
10−4 M solution of each compound was prepared in MCH. At
room temperature, the electronic absorption spectra of all of
the solutions were measured using a Shimadzu UV
spectrometer (model 2410) and the fluorescence spectra of
the same sets of solutions were recorded using a spectro-
fluorimeter, make JobinYvon, model- FluoroMax-3.
For the reference equilibrium geometries of all of the four

molecules in the ground state (S0), geometry optimization was
carried out at the second-order Møller−Plesset perturbation
(MP2) level using the 6-311++G(d,p) basis set employing the
GAUSSIAN 09 package.94 All of the optimized ground-state
geometries converged to the Cs symmetry point group. Starting
from these reference geometries, the electronic structure
calculations for the low-lying excited electronic states and
CIs were carried out using the correlation-consistent polarized
valence double-ζ basis set (Dunning cc-pVDZ) at the state-
averaged CASSCF level using the GAMESS package.95

The active space used for CASSCF calculations of phenol,
CAS(8,8), refers to three phenyl ring-centered π orbitals, an
O(2px)-conjugated lone pair orbital, three ring-centered π*
orbitals, and an O−H antibonding σ* orbital. For fluorophe-
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nols, a fluorine-conjugated lone pair orbital was incorporated
into the active space. Alongside, the ground-state geometry
optimizations were carried out using the density functional
theory (DFT)/Coulomb-attenuating method by employing
Becke three-parameter hybrid functionals and the correlation
functional of Lee, Yang, and Parr (CAMB3LYP) using the 6-
311++G(d,p) basis set, and the calculations for the
corresponding excited states were performed at the TDDFT/
CAMB3LYP/6-311++G(d,p) level using GAMESS package.95

The solvent effects for the same were taken into account by
using the integral equation formalism of the polarizable
continuum model (IEFPCM).96 The vertical excitation
energies (VEEs) of 1ππ* and 1πσ* electronic states were
calculated corresponding to the ground-state equilibrium
geometries using CASSCF/Dunning cc-pVDZ method im-
plemented in the GAMESS suite of programs.95

The natural bond orbital (NBO) dipole moment calcu-
lations and the electronic structure calculation of the potential
energy curves (PECs) of the S0 (ππ), S1 (ππ*), and S2 (πσ*)
states with Cs symmetry constraint were performed along the
O−H stretching coordinate at the TDDFT/CAMB3LYP/6-
311++G(d,p) level of calculation. The CI points for phenol
and fluorophenols were also optimized at the CASSCF(8,8)/
Dunning cc-pVDZ level using the CI search algorithm
implemented in the GAMESS program package.95 The barrier
heights to these CIs from the respective minimum energy
structures of the S1 states were computed here to provide an
understanding and interpretation of the experimental absorp-
tion and fluorescence spectra.

3. RESULTS AND DISCUSSION
3.1. Absorption Spectra and Low-Lying Electronic

States of Fluorophenols. The ultraviolet absorption spectra
of phenol, 2FP, 3FP, and 4FP in MCH solutions (1 × 10−4 M)
within the wavelength range of 240−320 nm are presented in
Figure 1. These absorption spectra shown in Figure 1
correspond to the S1 ← S0 vibronic transitions of phenol,
2FP, 3FP, and 4FP. The longest wavelength peaks in these
spectra representing the electronic origin bands of these
molecules appear in the following order�2FP (273.8 nm) <
3FP (274.4 nm) < phenol (277.6 nm) < 4FP (287.6 nm), with
absorbance values of 0.134, 0.114, 0.131, and 0.234,
respectively. The comparison implies that the S1 ← S0 energy
gap of phenol in MCH is increased upon fluorine substitution
at 2- and 3-position of the ring, but it is reduced for the same
substitution at 4-position, and the same sequence trend is
recorded for the spectra under the jet cooling condition. The
S1 ← S0 electronic origin bands under the latter condition
appear at 284.7 nm, 275.1 nm, 273.0 nm, and 271.7 nm for
4FP,101 phenol,99 3FP,18 and 2FP,100 respectively. It is
noteworthy that in each case, the S1 ← S0 electronic origin
band is shifted to a longer wavelength for the condensed phase
in comparison with those of the supersonic jet expansion
condition, and this can be demonstrated as a direct evidence of
the solvent-induced excited-state stabilization phenomenon
that effectively lowers S1 ← S0 energy spacing. The extent of
shift from the gas to solution phase can be directly correlated
to the ground-state dipole moment of the molecules. The shift
is maximum (2.9 nm) for 4FP, the most polar molecule among
the four molecules, and minimum (1.4 nm) for the least polar
3FP molecule. The observed sequence can be explained in the
following way. The F atom exerts an electron-withdrawing
inductive effect, which is more effective at 2- and 3-positions.

The electron-releasing mesomeric effect is effective dominantly
for substitution at the 4-position. It is also noteworthy that the
finer vibronic structures in the UV absorption spectra, which
are primarily for the in-plane deformation modes of the
aromatic ring, appear prominent in the case of 4FP only.
However, these features are relatively broader in the spectra of
2FP and 3FP. Such differences in vibronic features, which are
apparent even in solutions at room temperature, indicate that
the ring turns out to be more rigid on p-fluorine substitution,
but the rigidity is diminished for substitutions at 2- and 3-sites
of the ring.
The vertical and adiabatic electronic excitation energies for

the lowest-energy transitions calculated for phenol, 2FP, 3FP,
and 4FP at TDDFT/CAMB3LYP/6-311++G(d,p) and
CASSCF/Dunning cc-pVDZ levels are presented in Table 1.
The predictions of both levels of calculation correlate well with
the experimental trends of the S1 ← S0 band origins. The
vertical excitation energies for the lowest-energy transitions
calculated for phenol, 2FP, 3FP, and 4FP at the TDDFT/
CAMB3LYP/6-311++G(d,p) level in the IEFPCM model
appear at 5.215 eV, 5.283 eV, 5.272 eV, and 5.027 eV,
respectively. It clearly reflects a similar trend for the S1 ← S0
electronic origin bands in the MCH solvent with that of the
gas-phase condition and points toward the longer wavelength
shift of the electronic origin band for the condensed phase
caused by the solvent-induced excited-state stabilization
phenomena. The oscillator strength values for the S1 ← S0
transitions predicted by TDDFT/CAMB3LYP/6-311++G-
(d,p) methods are 0.0350, 0.0303, 0.0244, and 0.0632 for
phenol, 2FP, 3FP, and 4FP, respectively. The S1−S0 transition

Figure 1. UV absorption spectra of 1 × 10−4 M solutions of phenol,
2FP, 3FP, and 4FP in MCH at room temperature. The wavelength at
the absorption maximum of the first band is displayed in each case.
The corresponding wavelengths for the S1 ← S0 electronic origin
bands of the jet-cooled molecules are shown by dotted
arrows.18,99−101
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dipole moments are calculated to be 1.3137 D, 1.2158 D,
1.0920 D, and 1.7899 D for phenol, 2FP, 3FP, and 4FP,
respectively, and they are confined to the ring plane for all of
the molecules at the TDDFT/CAMB3LYP/6-311++G(d,p)
level of calculations. The transition dipole moment trend for
phenol, 2FP, 3FP, and 4FP aligns with the trend of oscillator
strengths, which eventually correlates with the integrated
absorbance. Since the absorption arises from an electronic
transition, the oscillator strength value quantifies the
absorption intensity and it is directly proportional to the
absorption area.102 The ratio of the predicted oscillator
strengths for 4FP and 3FP is ∼2.6, which is quite consistent
with the oscillator strength ratio of the same calculated from
the integrated absorbance of the experimental spectra of ∼2.3.
The predicted energy ordering of the 1ππ* and 1πσ*

electronic states following vertical excitation from the
respective S0 states of phenol, 2FP, 3FP, and 4FP, calculated
at CASSCF/Dunning cc-pVDZ level are shown schematically
in Figure 2. These predictions for phenol are in excellent

agreement with those reported by Mahapatra and co-workers
for calculations performed at the EOM-CCSD level using
MOLPRO.85 Shown also are the 1ππ* state energies obtained
from experiments in the gas phase (dotted lines); the predicted
energy ordering for this state is in good agreement with the
observation. Interestingly, for the 1πσ* state, the F substitution
effect at the para-position is predicted to be distinctly opposite
to the energy lowering of the 1ππ* state. It is shown below that
such an increase of the 1πσ* state energy of 4FP affects the
excited-state dynamics and photophysical manifestation of the
molecule.
3.2. Fluorescence Spectra and Excited-State Geo-

metries. The fluorescence spectra of phenol, 2FP, 3FP, and
4FP in MCH solution (1 × 10−4 M) upon excitations at 268
nm are displayed in Figure 3. It has been ensured that the
absorbance values at this excitation wavelength are almost the
same for all fluorophenols. The Stokes shifts between the
fluorescence maxima (Figure 3) and the longest wavelength
peak (electronic origin band) of the S1 ← S0 absorption

Table 1. Vertical and Adiabatic Excitation Energies (in eV) for S1 ← S0 Electronic Transitions of Phenol, 2FP, 3FP, and 4FP
Predicted by TDDFT/CAMB3LYP/6-311++G(d,p) and CASSCF/Dunning cc-pVDZ Theoretical Methods and Those
Obtained Experimentally

S1 ← S0 vertical energy/eV S1 ← S0 optimized energy/eV
experimental
energy/eV

CAMB3LYP/6-311+
+G(d,p)

CAS(8,8)/Dunning cc-
pVDZ

CAMB3LYP/6-311+
+G(d,p)

CAS(8,8)/Dunning cc-
pVDZ in gas phase

previously calculated
energy/eV

phenol 5.343 4.857 5.070 4.814 4.506a 4.864(4.673)e

4.759(4.612)f

4.455(4.308)f

4.816(4.669)f

4.869g

4.52(4.37)h

2FP 5.400 4.931 5.050 4.882 4.562b 4.932(4.677)e

3FP 5.399 4.909 5.108 4.830 4.541c 4.917(4.715)e

4FP 5.198 4.835 4.860 4.803 4.355d 4.668 (4.462)e

aRef 98. bRef 99. cRef 18. dRef 100. eCC2/aug-cc-pVDZ level ref 22. fCAS(10,9)/6-31G**; MRMP2/6-31G**; MRCI/aug-cc-pVDZ levels ref 23.
gEOM-CCSD/aug-cc-pVTZ level ref 85. hCASSCF(10/10)/aug(O)-AVTZ//CASPT2(10/10)/aug(O)-AVTZ level ref 103.

Figure 2. Energy ordering of 1ππ* and 1πσ* excited electronic states
of phenol, 2FP, 3FP, and 4FP calculated for the ground-state
equilibrium geometries at CAS(8,8)/Dunning cc-pVDZ level. The
corresponding experimental 1ππ* energy state values obtained from
experiments in the gas phase are denoted using black dotted lines.

Figure 3. Fluorescence spectra of solutions of phenol, 2FP, 3FP, and
4FP in MCH at room temperature upon excitation at 268 nm. The
concentrations of all of the compounds in the respective solutions are
the same, 1 × 10−4 M. The extent of Stokes shift has been indicated
within parentheses in each case.
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spectra (Figure 1) in each case is the least for phenol, only 14.3
nm, but the same is maximum for 2FP (21.8 nm). The shifts
for 3FP and 4FP are 17.6 nm and 15.6 nm, respectively. The
notable contrasts are displayed with respect to fluorescence
intensity as well as the full width at half-maximum (FWHM) of
the fluorescence bands. While the bandwidth (FWHM) of 2FP
is the largest (50.1 nm), the fluorescence yield of 4FP is
relatively large and almost 5.6 times larger than that of 3FP.
This finding vividly depicts that the photophysical processes in
the excited state are sensitively dependent on the fluorine
substitution site of the aromatic ring.
The optimized geometrical parameters in S0 and S1(ππ*)

states for calculations at CASSCF(8,8)/Dunning cc-pVDZ and
TDDFT/CAMB3LYP/6-311++G(d,p) levels are presented in
Tables S1, S2, S3, and S4 for phenol, 2FP, 3FP, and 4FP,
respectively (Supporting Information, SI). A pictorial
representation of the dominant changes of the structures for
S1(1ππ*) ← S0 excitation of all four phenols, as predicted by
the TDDFT method, is shown in Figure 4. A scrutiny of the
structures reveals that the geometric distortion in S1 is
minimum for 4FP followed by phenol, and the two molecules
fairly retain the ground-state planarity in the S1(ππ*) state. In
contrast, 3FP suffers major skeletal distortions upon ππ*
excitation and 2FP shows prominent out-of-plane distortion of
the ortho-fluorine atom in the S1 state, where the fluorine atom
does not remain in the ring plane and the change of O7−C3−
C2−F8 dihedral angle is ∼38°. The predicted changes are
quite consistent with the previous report of Zhang and co-
workers, where the S1 minima for 2FP is calculated to be
nonplanar with the fluorine atom rotated by 37° out-of-the
aromatic plane.97 On the other hand, in the case of 3FP, the
TDDFT calculation predicts that the ortho-H atom, which is
labeled as H11 (Figure 4), suffers a major angular distortion, as
evidenced by the change of O7−C3−C4−H11 dihedral angle
by ∼21° in the S1 state compared to that of S0, and the
aromatic ring is significantly deformed from planarity.
Summarily, upon photoexcitation to the S1 state, 4FP and
phenol show minimal geometric distortions, but for the other
two, the extents of geometrical distortions are significantly
large.

The structural distortions observed in the excited states of
2FP and 3FP suggest that their ground-state geometries are
significantly different from those of the energy minima in the
1ππ* states. This shift in geometry is responsible for the
relatively broad fluorescence spectrum of 2FP compared to
that of 4FP (Figure 3). In contrast, 4FP, which benefits from
high resonance stabilization due to extended conjugation,
maintains structural planarity upon 1ππ* excitation. Therefore,
the geometry in the S1 minimum is likely very similar to the S0
geometry. As a result, the Stokes shift between the absorption
and emission maxima of 4FP is minimal, resembling that of
phenol. Moreover, the effect of such geometry changes is also
evident in the S1 ← S0 electronic absorption band, as discussed
in the previous section in terms of difference in longest
wavelength absorption peak, integrated absorbance, and
appearance of vibronic structures in the UV absorption spectra
for phenol, 2FP, 3FP, and 4FP.
3.3. Excited-State Dynamics. Displayed in Figure 5 are

the cuts through the potential energy profiles of the S0 (ππ), S1
(ππ*), and S2 (πσ*) states of phenol, 2FP, 3FP, and 4FP as a
function of their O−H stretching coordinate according to the
predictions of TDDFT/CAMB3LYP/6-311++G(d,p) level of
calculation with Cs symmetry constraint. All of these adiabatic
potential energy curves (PECs) are obtained by progressively
scanning along RO−H with geometry relaxation for individual S0
, S1, and S2 states, while all of the atoms are constrained to
remain in a plane. In agreement with the report of Domcke
and co-workers, the plots shown in Figure 5 indicate that the
S1 and S2 PECs of phenol give rise to a CI at RO−H ∼1.2 Å and
a second CI with that of the ground state (S0) upon further
stretching of the O−H bond.26 At Cs symmetric geometries,
the magnitude of the energy barrier along S1/S2 CI relative to
the S1 minimum of phenol predicted by the method used here
is similar to that reported in ref 26, and, further, the values are
almost the same for all monofluorophenols. Thus, it is unlikely
that the interelectronic state coupling with respect to simple
O−H bond elongation could be adequate to explain nearly an
order of magnitude difference in fluorescence yield between
3FP and 4FP. It is worth pointing out here that in the case of
2FP, the computed PEC along the O−H stretching coordinate

Figure 4. Optimized geometries of phenol, 2FP, 3FP, and 4FP at DFT/CAMB3LYP/6-311++G(d,p) for S0 state and TDDFT/CAMB3LYP/6-
311++G(d,p) for S1 state. The dipole moment values for each one calculated at the same level are also mentioned.
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looks somewhat distorted, but it is consistent with those of the
other reports.10,93 Earlier, Chatterjee et al. showed exper-
imental evidence for the occurrence of HF eliminations in
resonance two-photon ionization mass spectrometry in the S1
state of the 2FP monomer.93

For the aromatic systems, a much-discussed alternative
mechanism for the opening-up of the nonradiative decay
channel in S1 is the S1/S0 CI with respect to prefulvenic
geometric distortion. Evidence for such mechanism was
discussed earlier for systems like benzene, phenol, chlorophe-
nol, etc.76−78,23,80 In the literature, this pathway is known as
“channel-three” nonradiative relaxation pathway, and it was
proposed to be responsible for the low quantum yield of
fluorescence after excitation to higher vibronic levels in S1 of
benzene and substituted benzenes. With sufficient excess
energy in S1, this alternative decay pathway comes into play
along with other nonradiative decay mechanisms. The energy
barriers to the S1/S0 CIs with respect to the S1 minima for
phenol, 2FP, 3FP, and 4FP, calculated at CASSCF/Dunning

cc-pVDZ level, are presented in Table 2. The geometric
distortions at the S1/S0 CI are pictorially depicted in Figure 6.

The calculation clearly depicts that while this prefulvenic CI
energy barrier is quite high for phenol, 2FP, and 4FP (0.721
eV, 0.925 eV, and 0.990 eV, respectively), the same CI exists at
a significantly lower energy barrier of only 0.188 eV for 3FP,
which could be readily accessible upon photoexcitation to the
1ππ* state, and offers an efficient nonradiative relaxation

Figure 5. Cuts through the ground (black), first (blue), and second (green) excited singlet PECs of phenol, 4FP, 2FP, and 3FP plotted as functions
of the O−H stretching coordinate. Calculations were performed at TDDFT/CAMB3LYP/6-311++G(d,p) level.

Table 2. Calculated Energy Barrier for S1/S0 CI (in eV) of
Phenol, 2FP, 3FP, and 4FP at CASSCF/Dunning cc-pVDZ
Level with respect to Prefulvenic Mode

barrier height to S1/S0 CIPref from S1 minimum/eV

phenol 0.721
2FP 0.925
3FP 0.188
4FP 0.990
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pathway to the ground state. Therefore, the S1/S0 CI is a likely
origin for the significantly diminished fluorescence yield of the
molecule.
Selected geometrical parameters at the prefulvenic CI points

of phenol, 2FP, 3FP, and 4FP are presented in Table S5 (SI).
It is apparent from the presented data that geometric distortion
at the CI is a maximum for 3FP.
For 4FP, on the other hand, the extended aromatic

conjugation not only results in retention of planarity of the
molecule in S1 but also effectively enhances the S1/S0 CI
barrier. As a result, the fluorescence yield of 4FP turns out to
be maximum among the four molecules discussed here and the
same factor is also responsible for lengthening of the excited-
state lifetime as reported.98 The effects of structural rigidity on
vibrational relaxation and on nonradiative decay processes are
well documented.98 In the case of 2FP, due to the close
proximity of hydrogen and fluorine atoms in ortho-
conformation, HF loss can occur efficiently upon S1 ← S0
electronic excitation in the gas phase.93 In contrast, in the
liquid phase, due to the cageing effect, the HF loss process is
hindered.93 On the other hand, 3FP, having the least π-
conjugation, is prone to skeletal distortions and upon 1ππ*
excitation it undergoes out-of-plane ring deformations and
follows the relaxation pathway through S1/S0 prefulvenic CI.
Displayed in Figure 7 are the potential energy profiles along

the ∠C1−C2−C3−C4 dihedral angle of 3FP in the S1 and S0
states. In contrast to S0, the curve is extremely shallow in the S1
state, resulting in a CI with S0 state at an angle of around 40°.
In Figure 7, the potential energy has been plotted against the
extent of out-of-plane ring deformation, where the ∠C1−C2−
C3−C4 dihedral angle at the S1/S0 CI point has been
considered as the maximum out-of-plane ring deformation.
The calculated minimum energy path on the relaxed S1 PEC is
essentially barrierless and may cause instantaneous photo-

relaxation to the ground state, resulting in the exceptionally
low fluorescence intensity of 3FP.

4. SUMMARY
In this article, we have reported an investigation of the
photophysical behavior of phenol, 2FP, 3FP, and 4FP by
means of an integrated approach of UV spectroscopy in a
nonpolar liquid and electronic structure theory calculation. In
the electronic absorption spectra, the finer vibronic structures
of 4FP are very prominent, but those are somewhat diminished
in the spectra of 2FP and 3FP and the longest wavelength peak

Figure 6. Optimized geometries at S1/S0 CIs with respect to the prefulvenic isomerization coordinates of (a) phenol, (b) 2FP, (c) 3FP, and (d)
4FP performed at CASSCF/Dunning cc-pVDZ level of calculation.

Figure 7. PECs of 3FP along the ∠C1−C2−C3−C4 dihedral angle in
the S0 and S1 states calculated at the CAMB3LYP/6-311++G(d,p)
level. The x-axis shows the extent of out-of-plane ring deformation,
where the ∠C1−C2−C3−C4 dihedral angle at the S1/S0 CI point has
been considered as the maximum out-of-plane ring deformation, and
the planar geometry corresponds to 0.
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(electronic origin band) of the S1 ← S0 absorption spectra is
shifted to longer wavelengths in the order 2FP < 3FP < phenol
< 4FP. The most remarkable contrasts in photophysical
behavior of phenol, 2FP, 3FP, and 4FP are manifested in the
fluorescence spectral bandwidths (FWHM) and the fluores-
cence yields. The fluorescence bandwidth of 2FP is nearly 1.5
times that of 4FP, whereas the fluorescence yield of 3FP is
nearly an order of magnitude smaller than that of 4FP. The
electronic structure theory methods used at TDDFT/
CAMB3LYP/6-311++G(d,p) and CASSCF/Dunning cc-
pVDZ levels offer an interpretation of the electronic origins
for the observations and, in particular, the experimentally low
yield of 3FP fluorescence. Fluorine atom exerts an electron-
withdrawing inductive effect more effectively at ortho- and
meta-positions, but at para-position, the electron-releasing
mesomeric effect of the same acts dominantly. Electronic
structure calculations predict minimal geometric distortions
upon photoexcitation to the S1 state for 4FP and phenol, but
for 2FP and 3FP, the extents of geometrical distortions are
significantly large, which is quite consistent with the large
Stokes shifts of the latter two molecules. A low barrier to S1/S0
CI corresponding to the prefulvenic mode has been predicted,
which has been considered to be the most efficient
nonradiative channel for the effective quenching of 3FP
fluorescence.
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