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Modeling current and future global 
distribution of Chrysomya bezziana 
under changing climate
Eslam M. Hosni*, Mohamed G. Nasser, Sara A. Al-Ashaal, Magda H. Rady & 
Mohamed A. Kenawy

In the last few years, significant changes in climate have had a disparate effect on biodiversity. The 
influences of these changes are random and unpredictable. The resurgence of insect pests, especially 
of medical and veterinary importance, often corresponds with climate changes. The Old World 
screwworm, Chrysomya bezziana, is one of the most important myiasis-causing flies that parasitize 
warm-blooded animals in the Eastern Hemisphere. We used a spatial distribution modeling approach 
to estimate the consequences of climatic changes on the potential geographic distribution of this 
insect throughout the world currently and in the future. A Maxent model used occurrence data from 
104 localities and 19 climatic factors to predict the suitable habitat regions throughout the world. Two 
representative concentration pathways 2.6 and 8.5, were used to forecast the future distribution of 
C. bezziana in 2050 and 2070. The Maxent model for C. bezziana provided a satisfactory result, with a 
high value of the Area Under Curve equal to 0.855 (±0.001). Furthermore, the True Skilled Statistics 
value is equal to 0.67. These values indicate the significant influence on the model of the ecology of 
this fly species. Jackknife test indicated that temperature variables play a significant role in C. bezziana 
dynamics. The resultant models indicated the areas at risk of invasion by potential serious medical/
veterinary issues, especially in countries with a large livestock production.

Throughout the long history of our planet, the climate has changed dramatically, but in the last few decades global 
warming has become more tangible even for the layman1,2. Greenhouse gases emitted as a result of anthropogenic 
action are the main factors driving global warming3. The Intergovernmental Panel on Climate Change (IPCC) has 
predicted an increase of about a 1.8–4 °C in global temperature by the end of the 21st century as a result of high 
CO2 levels4. This form a challenge for many ecosystems throughout the world, threatening ecological processes 
and impacting on biodiversity, including insects5. Conversely, climate change is one of the most important factors 
associated with the resurgence of insect pests. Many medically important pests such as mosquitoes (Culicidae) 
will invade new regions because of changes in global temperature6. Flies that cause myiasis will also be able to 
invade new regions and impact the livestock economy in different parts of the world.

Myiasis is a type of parasitism in which the living tissues of a vertebrate host are infested by dipterous larvae7. 
This phenomenon is widespread throughout the world, especially the tropical regions. It usually occurs in both 
domestic and wild animals and, under certain conditions, in humans8,9.

The Old World screwworm fly (OWSF) Chrysomya bezziana (Villeneuve) is an obligate parasite causing myia-
sis in animals and humans in the Eastern Hemisphere7,9,10. Females deposit their eggs in wounds or near the natu-
ral body orifices of the targeted host. Then the maggots burrow and feed on the living tissue, causing severe injury 
and even death in untreated cases11. As a result of this feeding habit, C. bezziana is considered to be a primary pest 
of great medical importance and the cause of economic losses among domesticated animals9,12. In the Eastern 
Hemisphere, particularly in Iraq in the 1990s, the FAO estimated the economic loss to the livestock industry as 
a result of the OWSF invasion to be US$ 8,555,00013. Other research studies have estimated the annual losses in 
the livestock industries in Australia to be equal to A$500 million due to the possible incursion of the OWSF14.

To date, OWSF prefers tropical and subtropical climates. It is widespread throughout tropical and Sub-Saharan 
Africa, the Middle East region, the Indian subcontinent, from Southeast Asia to China, and the Philippines to 
Papua New Guinea15,16. Recently, OWSF has been expanding out of its typical range through the commercial 
movement of livestock and possibly also due to climate change17. The distribution of OWSF in the Eastern 
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Hemisphere and of the ecologically convergent New World screwworm fly (NWSF) Cochliomyia hominivorax 
(Coquerel) in the Western Hemisphere is usually limited by temperatures10.

On several occasions, NWSF has been transported to the Eastern Hemisphere10. For example, a veterinary 
record about a case of otitis in a dog was recorded in 198218. In 1988, an accidental introduction of NWSF 
occurred from an endemic area of South America to Libya10,19. Three years later, a wide range of infested animals 
were detected in about 25,000 km2 around Tripoli, Libya20. The FAO released a large-scale control program for 
the eradication of NWSF via the sterile insect technique, with a cost of US$750 million17. Intensive surveillance 
and prevention programs were set up by official Egyptian veterinary official institutions to prevent the accidental 
introduction of NWSF from the western border with Libya19. Although no cases of myiasis caused by OWSF have 
been recorded in the Western Hemisphere, about four species of Chrysomya have been established in the New 
World21.

The negative impact of environmental challenges is becoming the main obstacle for the sustainable develop-
ment of human health and the livestock industry. Climate change forms one of these challenges, and predicting 
the relationship between species diversity and climate changes has become an active research issue22,23. Also, 
predictions of the scientific community and decision-makers to the future risks of pest introductions, allow them 
to create a driven strategy to face climate change impacts on biodiversity and medical sectors24.

Spatial- and temporal-based models could establish monitoring programs that act as early warning signs dur-
ing the process of climate change25. Species distribution modeling (SDM) is a method that predicts and describes 
the precise niche of each species26,27. This can be achieved by using the presence-only data and assumed envi-
ronmental variables28. CLIMEX, GARP, HABITAT, and MaxEnt are popular tools used to estimate the current 
and future distribution of targeted species under different climate change scenarios29–31. Predictive models of 
economically important livestock and human health pests are considered to be one of the most urgent direct goals 
of such modeling techniques3,32. The objective of the present research is to predict the potential spatial distribu-
tion of OWSF throughout the world by using the geographic information system and bioclimatic variables for its 
current and future status.

Methods
Occurrence records.  Almost all available records of OWSF were collected from the literature either from 
adult flies or from medical and veterinary larval cases23,33–35. The records of OWSF in the digital database (www.
cabi.org) were also considered13. The occurrence data from 104 localities were converted into comma-delimited 
(CSV) formats and used to assess habitat suitability for OWSF throughout the world (see Supplementary dataset).

Climatic data.  Bioclimatic data were obtained from (www.worldclim.org) with a spatial resolution of approx-
imately 5 km2. A total of 19 climate variables, originally derived from monthly temperature and rainfall values 
collected from weather stations in 1950–2000, were used to depict the current global climate (Table 1 & see 
Supplementary information S1). These layers were converted to ASCII format using ArcGIS v 10.3 and used to 
evaluate the most important variables which contribute biologically to the current model of C. bezziana habitat 
suitability. Bioclimatic variables 8–9 and 18–19 were eliminated from the analysis, due to spatial artifacts in those 
variables36: these layers showed odd discontinuous spatial anomalies between neighboring pixels which lead to 

Variable Description

Bio 1 Annual mean temperature

Bio2 Mean Diurnal Range (Mean of monthly max temp – min temp)

Bio 3 Isothermality (bio2 / bio7) (*100)

Bio 4 Temperature Seasonality (standard deviation *100)

Bio 5 Max Temperature of Warmest Month

Bio 6 Min Temperature of Coldest Month

Bio 7 Temperature Annual Range

Bio 8 Mean Temperature of Wettest Quarter

Bio 9 Mean Temperature of Driest Quarter

Bio 10 Mean Temperature of Warmest Quarter

Bio 11 Mean Temperature of Coldest Quarter

Bio 12 Annual Precipitation

Bio 13 Precipitation of Wettest Month

Bio 14 Precipitation of Driest Month

Bio 15 Precipitation Seasonality (Coefficient of Variation)

Bio 16 Precipitation of Wettest Quarter

Bio 17 Precipitation of Driest Quarter

Bio 18 Precipitation of Warmest Quarter

Bio 19 Precipitation of Coldest Quarter

Table 1.  Bioclimatic variables used in Maxent to predict the preliminary model of the current distribution of 
Chrysomya bezziana.
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lack of resolutions in resulted layers37. For future data, we used parallel datasets for global climate model (GCM) 
from two representative concentration pathways (RCPs) 2.6 and 8.5 to account for the future distribution of 
OWSF based on carbon dioxide emission for 2050 (average of predictions for 2041–2060) and 2070 (average of 
predictions for 2061–2080)38–40 (see Supplementary information S2). These future data layers were also converted 
to ASCII format via ArcGIS v 10.3. Then the climatic data of the selected variables was projected on to the years 
2050 and 2070 from the global climate model of the Meteorological Research Institute (MRI-CGCM3), to assess 
the effects of climate change on the OWSF habitat suitability in the future. These data are among the recent GCM 
climate projections that are used in the Fifth Assessment IPCC Report.

Habitat suitability modeling.  The maximum entropy algorithm implemented in Maxent v3.3.3e was used 
to estimate the habitat suitability and ecological niche of C. bezziana41. This algorithm yields an excellent predic-
tive models that rely on presence data only26,41. Also, It is effective in modeling studies with small sample sizes 
and is able to remove the duplicate records in the same cell26,42. Additionally, the response curve for each biocli-
matic variable was used to estimate the relationship between the habitat suitability for a species that varies from 
0 (lowest suitability) to 1 (highest suitability) and bioclimatic variables43. In our models, 75% of the occurrence 
records were used for training whereas 25% of the records used for testing the model44. The maximum number of 
background points and the number of iterations was 10,000 and 1000 respectively. Furthermore, the process was 
repeated in a 10-fold cross-validation, which improved the model performance31,44,45.

A set of five biologically significant bioclimatic variables was chosen to produce the final models based on 
several statistical analysis: (Bio 1) Annual mean temperature, (Bio 3) Isothermality, (Bio 6) Min temperature 
of the coldest month, (Bio 10) Mean temperature of the warmest quarter and (Bio 11) Mean temperature of the 
coldest quarter. First, the Jackknife function of MaxEnt was used to estimate the most important set of variables 
from the 19 bioclimatic factors by discarding the variables contributed less than 70% (see Supplementary Fig. S3). 
Species Distribution Modeling (SDM) Tools in ArcGIS 10.3 (Universal tool; Explore climate data; Remove highly 
correlated variable) were then used to remove variables with high correlations46. As the five most important vari-
ables were related to temperature, the environmental envelope test evaluated the impact of precipitation variables 
on the distribution of C. bezziana by using DIVA-GIS 7.5 software (Fig. 1). The generated graph indicated that 
the precipitation variables show less or no contribution to C. bezziana distribution as 88.2% of all records used 
in the model occur on the envelope which has the expanded range of Annual precipitation (Bio 12) in contrast to 
the narrow range of annual mean temperature (Bio 1). Such analysis indicates the null effect of all precipitation 
variables on the final models.

Model evaluation.  The area under curve (AUC) of the receiver operating characteristics (ROC) was used 
to estimate the model performance, and its value varies from 0 (random discrimination) to 1 (perfect discrimi-
nation). Higher AUC values suggested significant influences of the model with the ecology of OWSF. Values less 
than 0.5 indicated poor-fitting models while AUC values more than 0.75 indicated high-fitting of the models47,48. 
In addition, the True Skilled Statistics (TSS), a common statistical method, was used to evaluate the accuracy 
of predicted models. TSS values range from -1 to 1 and values that are close to negative or zero imply that the 

Figure 1.  Environmental envelope model of recorded points of Chrysomya bezziana, the envelope showing the 
wide range of Annual precipitation (Bio 12) against an effective small range of Annual mean temperature (Bio 1).
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distribution is not much better than random, while values close to 1 indicate an intimate relationship between the 
model prediction and distribution49.

Ethical approval.  This article does not contain any studies dealing directly with animals, and all applicable 
international, national and /or institutional ethical guidelines were taken in consideration during preparation of 
this manuscript.

Results
The occurrence data of OWSF were taken from 104 localities throughout the World. Generally, OWSF occurs in 
tropical and subtropical climates. Most of the occurrence records were geographically distributed across Africa 
and Asia.

Modeling performance.  The Maxent model for OWSF provided a high value of the Area Under Curve 
(AUC) equal to 0.855 (±0.001) (see Supplementary Fig. S4). In continuous species distribution modeling, the 
values of AUC tended to be high rather than discontinuous. Also, model performance tended to be excellent 
due to the high value of the true skilled statistics (TSS) equals 0.67. Normally, TSS values of ≥0.5 are acceptable.

Contribution of bioclimatic variables.  The jackknife test illustrated the contribution percent of biocli-
matic variables of the predictive distribution model (Fig. 2 and Table 2). Annual mean temperature (Bio 1) made 
the largest contribution to OWSF distribution with 48.4%, followed by Mean Temperature of Coldest Quarter 
(Bio 11), Mean Temperature of Warmest Quarter (Bio 10), with 30.1% and 9.9 respectively. The remaining var-
iables, Min Temperature of Coldest Month (Bio 6) and Isothermality (Bio 3), had only a minor effect with 6.1% 
and 5.5%, respectively. Response curves of the most contributory environmental variables (Fig. 3) suggested that 
the favorable annual mean temperature of OWSF ranged from 28 °C to 30 °C. Notably, Bio 11 and Bio 10 critically 
affected OWSF distribution.

The Predicted current potential distribution.  The predictive model generally agreed with the occur-
rence records in regions that already have OWSF infestations. In Africa, our predicted model is compatible with 
the real distribution of the fly from the Horn of African to Sierra Leone. It also shows some other areas with a high 
existing probability such as Niger, Algeria, and Mali (Fig. 4a).

In Asia, the potential distribution of OWSF occupies most of the currently-infested areas. The Indian sub-
continent, Southeast Asia (Indonesia, Malay Peninsula, Malaysia and Philippine Islands) and Papua New Guinea 
(PNG) showed a high to very high habitat suitability, respectively (Fig. 4a). On the other hand, central and north-
ern Asia indicated a high level of distributional limitations.

In Europe, geographical barriers have prevented the movement of OWSF. However, the southern areas of 
Europe along the Mediterranean Sea, especially the Greek islands, Malta, and southern Italy, showed high habitat 
suitability (Fig. 4a).

In the Americas, the results indicate areas that were predicted as suitable but are not currently occupied by 
OWSF: coastal Florida, Cuba, and the Bahamas displayed high habitat suitability (Fig. 4a). The model also showed 
a high suitability in the uplands of the Amazon River Basin, coastal Brazil along the Atlantic Ocean and the 
Galapagos Islands of Ecuador (Fig. 4b).

Figure 2.  Jackknife test for Chrysomya bezziana showing the most effective environmental variables.

Bioclimatic 
variables Description

Contribution 
percentages

Bio 1 Annual mean temperature 48.4%

Bio 11 Mean Temperature of Coldest Quarter 30.1%

Bio 10 Mean Temperature of Warmest Quarter 9.9%

Bio 6 Min Temperature of Coldest Month 6.1%

Bio 3 Isothermality (bio2 / bio7) (*100) 5.5%

Table 2.  Relative percentages of bioclimatic variables used in Maxent to model the current and future habitat 
suitability of Chrysomya bezziana.

https://doi.org/10.1038/s41598-020-61962-8


5Scientific Reports |         (2020) 10:4947  | https://doi.org/10.1038/s41598-020-61962-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

In the Middle East, OWSF is endemic in the Kingdom of Saudi Arabia, the United Arab Emirates, the Sultanate 
of Oman, Iraq, Iran, and incidentally in Bahrain, Kuwait, and Yemen. Our model confirmed this distribution and 
indicated other areas with a very high habitat suitability in the Hejaz west of Saudi Arabia, the mountains of Sarawat 
and the coastal region of Yemen along the Indian Oceans. The OWSF is not currently established in Egypt. However, 
the northern strip along the Mediterranean Sea had a high habitat suitability. Also, the coastal regions of the Nile 
Delta and the coastal strip of the Red Sea in Sinai exhibited a very high habitat suitability (Fig. 4c).

Australia is the only continent with a tropical zone without a true invasion of OWSF. The current distribution 
model (Fig. 4d) indicated a very high habitat suitability in the northern strip, especially at Port Darwin. A high hab-
itat suitability is also evident in the Northern Territory and parts of Queensland. The Fiji island, New Caledonia and 
the Solomon Islands show a very high habitat suitability for the fly without any true records until now.

The Predicted future potential distribution for 2050 and 2070.  The overall distribution patterns through-
out the Old World between the present-day and future models showed reasonable similarities except in some regions. 
Furthermore, the future predictions showed some differences between RCPs in 2050 and 2070 (Figs. 5, 6).

For the time period 2050, except for the African Sahara which showed a low suitability, the future model in 
RCPs 2.6 and 8.5 confirmed a high habitat suitability in the Horn of African, Sub-Saharan Africa and West Africa. 
In Asia, endemic regions (Saudi Arabia, United Arab Emirates, Sultanate of Oman, Iraq, Iran, Bahrain, Kuwait, 
and Yemen) and the Indian subcontinent, Southeast Asia and PNG showed a very high suitability (Fig. 5a,b). 
For RCPs 2.6 and 8.5 during 2070, the predictive model illustrated a dramatic change in OWSF distribution and 
habitat suitability in the African continent. Nevertheless, the endemic regions of Asia, the Indian subcontinent, 
and South east Asia still show a very high habitat suitability (Fig. 6a,b). Interactive calibrated maps show the gain 
and loss of the overall habitat suitability differences among current and future models are provided here as sup-
plementary materials (see Supplementary Figs. S5–S9).

Figure 3.  Response curves of the most relevant environmental factors affecting the distribution of Chrysomya 
bezziana; the shown values are average of ten replicate runs.
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Discussion
Throughout the world, myiasis is considered to be a neglected health and veterinary concern50. The Old World 
screwworm fly is one of the most important myiases-producing agents7. It poses a great threat to the livestock 
industry in many parts of the world10,15. The present study provides updated and detailed maps about the current 
and future global distribution of OWSF in the light of climate changes. Our generated maps are of public health 
and veterinary importance as they estimate the potential distribution of OWSF in the Eastern Hemisphere and 
predict susceptible regions of invasion outside the actual currently-known distribution of this fly. These model 

Figure 4.  Current potential distribution of Chrysomya bezziana with three zonation areas in South America, 
the Middle East region and Australia.

Figure 5.  Predicted future distribution of Chrysomya bezziana under two representative concentration 
pathways (RCPs 2.6, 8.5) of climate conditions in 2050.
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maps also illustrate the influence of climate changes on OWSF distribution. Furthermore, these findings can 
assist concerned international organizations and decision-makers to assess surveillance and control programs 
for OWSF.

Only one previous study compared the global distribution of OWSF with the predicted distribution using 
CLIMEX in relation to climatic factors15. Another powerful and updated predictive tool is Maxent. Maxent mod-
els are characterized by their robust predictive powers for the potential distribution of species51. Also, its statistical 
algorithm is accurate even with small occurrence records. Our Maxent model showed that the predicted habitat 
suitability agreed strongly with the actual occurrence of OWSF records with a high AUC value, which suggests a 
close relationship between the model and the ecology of the species. Moreover, the TSS value of 0.67 illustrated a 
perfect agreement between the model predictions and fly’s distribution.

Previous studies emphasized that temperature is the most significant variable that affects OWSF distribu-
tion14,15. Our model agrees with this finding, and the ambient temperature variables were the most effective bio-
climatic variables of jackknife test that affected OWSF distribution. These variables are Annual mean temperature 
(Bio 1), with the largest contribution to OWSF distribution (48.4%), followed by Mean Temperature of Coldest 
Quarter (Bio 11) and Mean Temperature of Warmest Quarter (Bio 10) with 30.1% and 9.9%, respectively. The 
remaining variable was Minimum Temperature of Coldest Month (Bio 6) with 6.4%. The cumulative contribution 
of these variables equals 94.8% (Table 2, Fig. 3). All response curves of the five temperature bioclimatic variables 
show an increase in habitat suitability of fly up to a certain point at which a further increase in temperature could 
eliminate the fly from the ecosystem.

The current model for the potential distribution of the OWSF is closely associated with present-day distribu-
tions except for minor changes. Old World screwworm flies naturally occupy tropical and subtropical areas of 
Asia and Africa. Even a sudden increase of 3 °C in annual mean temperature in different eco-climatic zones of the 
Old World is considered tolerable for OWSF (Fig. 3). Only in the middle and northern Asia were there considera-
ble distribution limitations of OWSF due to low temperatures in the coldest quarter. Our model highlighted areas 
with large livestock production, such as Brazil and the northern regions of Australia, as being of high and very 
high habitat suitability even though they are still free from this fly.

With the influence of climatic change, the potential distribution and population dynamics of OWSF were 
greatly affected by rises in temperature. The future GCM models of 2050 and 2070 with RCPs 2.6 and 8.5 illustrate 
a high risk in areas with a large livestock production. This also agreed with the previous CLIMEX model of the 
potential geographic distribution of OWSF15. Both models showed a high suitability in the Western Hemisphere, 
especially in Brazil and an undoubted high risk in Australia associated with the movement of animals within the 
countries of Southeast Asia and PNG.

Australia forms a special case for OWSF invasion risk. The country is close to the fly risk areas in the oriental 
region. The current and future models show a high and a very high suitability of northern Australia to OWSF. In 
the real world, Australia has already faced some cases of OWSF detection on quarantines on northern harbors due 
to livestock trades including a collection of adult male and female flies52. So, the resultant models act as a warning 
guard for Australian quarantine authority to avoid the possible invasion of OWSF to their northern territory14. A 

Figure 6.  Predicted future distribution of Chrysomya bezziana under two representative concentration 
pathways (RCPs 2.6, 8.5) of climate conditions in 2070.
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similar status of incursion has occurred in Libya with NWSF20,53, the FAO estimated the cost of eradication-via a 
sterile insect technique- to reach US$750 million17.

In Africa, the effect of climate change is unequivocal (Figs. 5, 6). The future models showed that the increase in 
temperature affected the distribution of OWSF negatively because of a low habitat suitability, especially in Central 
and Southern Africa. Moreover, the occurrence of OWSF will be restricted to the region of West Africa and the 
Horn of African (Figs. 5, 6).

Across Asia, all future models confirmed that the Indian subcontinent, Southeast Asia, the southern parts of 
China and PNG have a high suitability for OWSF (Figs. 5, 6). In other areas in the Middle East, the endemicity of 
flies increased because of a high suitability. This agreed with the FAO report about the geospatial demarcation of 
OWSF in the Middle East51. This report confirmed the influence of temperature on the potential distribution of 
OWSF in the Middle East.

The future models for 2050 and 2070 also indicated the risk of future invasions into southern part of North 
America and South America. In the same way, islands with a fragile ecosystem, an economy based on livestock 
trades or low population densities, such as the Bahamas, Fiji island, Galapagos, New Caledonia, Socotra and the 
Solomon Islands, have a high habitat suitability for OWSF invasion (Figs. 5, 6). Effective planning by quarantine 
authorities, especially in such sensitive ecosystems, is very important to avoid economic damage.

Our study gives an important insight into the current and future status of C. bezziana throughout the world. 
The distribution models generated in this study, based only on climatological variables, assess the effect of climate 
change on the current and future distribution of OWSF. Several publications have used only the climatic varia-
bles for this purpose54–59. Incorporating other environmental variables such as human population, land cover, 
vegetation index, host animal distribution, etc, could improve the resultant models. But the absence of future 
data on these variables could limit their use for studies which assess the effect of climate change on the current 
distribution models.

Conclusion
GIS techniques along with climatological variables could help in developing models to assess the habitat suit-
ability of specific insect pest species. In this study, we have successfully modeled the current and future global 
distribution of OWSF. With a spatial resolution of 5 km2 throughout the world, the models indicated current 
areas at risk and other regions with suitable habitat that could undergo new invasions by OWSF in the future. 
These patterns of models could help decision-makers and quarantine authorities to expedite control programs 
for such pests which have serious impact on human health and livestock industry. They also pave the way to fur-
thers investigations on a local scale, especially for areas predicated to be highly suitable, with the incorporation 
of ecological criteria such as altitude and anthropogenic factors in addition to climatological factors for modeling 
this interesting veterinary pest. It is important that records of occurrence and georeferencing locations should be 
shared globally through a common-language database, as a paucity of records could impede successful modeling 
strategies59.
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