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Abstract. To delineate potential angiogenic roles of 
platelet-derived growth factor (PDGF), we have inves- 
tigated PDGF and its receptors on bovine aortic en- 
dothelial cells that exhibit spontaneous angiogenesis in 
vitro (angiogenic endothelial cells). Initiation of 
cord/tube formation by angiogenic endothelial cells re- 
quired bovine or human serum. Neutralization of 
PDGF-BB in human serum with a monoclonal anti- 
PDGF-BB antibody reduced cord/tube formation by 37 
-t- 10%, whereas neutralizing anti-PDGF-AA and an 
IgG isotype-matched control antibody had no effect. 
DNA synthesis in response to PDGF-BB increased as 
the cords and tubes developed; furthermore, PDGF-BB 
induced the incorporation of BrdU in the nuclei of 
cells associated with these structures. PDGF/S-recep- 
tor (PDGFR-/~) mRNA increased concomitantly with 
cord/tube formation, and PDGFR-/S were specifically 

localized by immunocytochemistry to developing and 
mature cords and tubes. However, PDGFR-/S tran- 
scripts and protein were undetectable in nonangiogenic 
endothelial cells, and PDGF a-receptor mRNA was 
not expressed in either endothelial cell strain. In con- 
trast to nonangiogenic endothelial cells, angiogenic en- 
dothelial cells did not express the PDGF B-chain, the 
required ligand for the PDGFR-/$. 

We conclude that (a) PDGF-BB can contribute to 
angiogenesis in vitro, (b) PDGFR-/S are specific for 
cord/tube-forming endothelial cells and mediate en- 
dothelial proliferation and cord/tube formation, and (c) 
in angiogenic and nonangiogenic endothelial cells, the 
expression of PDGFR-/3 and PDGF B-chain is in- 
versely correlated. We therefore suggest that paracrine 
PDGF might amplify angiogenesis via direct action on 
endothelially expressed PDGFR-/S. 

61OGENESIS is critical to embryogenesis, wound 
repair, diabetic retinopathy, tumor growth, and other 
conditions. The formation of new vessels requires an 

increase in proliferation of endothelial cells, the expression 
of proteolytic enzymes by endothelial cells, the migration of 
endothelial cells toward an angiogenic stimulus, and the 
deposition and breakdown of extracellular matrix. The coor- 
dinated interplay of these processes leads ultimately to tubu- 
lar morphogenesis, and, in the presence of pericytes, to cap- 
illary formation (for review see Risau, 1990; Ingber, 1991; 
Folkman and Shing, 1992; Montesano, 1992). 

Molecules capable of inducing the formation of new ves- 
sels include acidic and basic FGF, TGF-ct, TGF-~, tumor 
necrosis factor-or (TNF-t~) t, platelet-derived endothelial 
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cell growth factor (PD-ECGF), angiogenin, angiotropin, 
vascular endothelial growth factor (VEGF), interleukin-8 
(Koch et al., 1992), and low molecular weight substances 
(for review see: Risau, 1990; Folkman and Shing, 1990). 
Because endothelial proliferation is necessary for the forma- 
tion of new vessels, angiogenic growth-regulatory molecules 
would be expected to induce mitogenesis in vascular en- 
dothelial cells. Indeed, FGF, VEGF, PD-ECGF, and TGF-t~ 
stimulate the proliferation of endothelial ceils in vitro. How- 
ever, angiogenin, TGF-/~, and TNF-u have been shown to in- 
hibit the proliferation of macrovascular endothelial cells 
(Folkman and Shing, 1992). The angiogenic properties of 
this latter group of polypeptides have been ascribed to the 
chemoattraction of other cells such as monocytes, which in 
turn might secrete endothelial mitogens. Alternatively, en- 
dothelial cells forming new capillary tubes might correspond 
to a distinct phenotype of endothelial cells with distinguish- 
ing responses to various growth-regulatory molecules. 

The role of PDGF and its receptors in the formation of new 
vessels is unclear. The application of PDGF-BB to dermal 
wounds (Pierce et al., 1992) and to chick chorioallantoic 
membranes (Risau et al., 1992) promoted the appearance of 
new vessels. Similarly, transfection of the PDGF B-chain 
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gene into human melanoma cells and subsequent growth of 
these cells in recipient animals demonstrated a substantial 
increase of vascularized connective tissue stroma in the 
resultant tumors (Forsberg et al., 1993). Hence, PDGF is a 
morphogen that can support the formation of a connective 
tissue stroma containing a functional vascular system. How- 
ever, it is not clear whether PDGF elicits these effects by 
recruitment of inflammatory and/or connective tissue cells 
(Forsberg et al., 1993) or via a direct action on endothelial 
cells. 

In general, macrovascular endothelial cells do not express 
PDGF receptors in culture (Bar et al., 1989; Raines et al., 
1990); hence, PDGF does not induce a proliferative re- 
sponse in these cells. However, observations in macrovascu- 
lar endothelial cells might not be relevant to angiogenesis be- 
cause new vessels form from extant microvessels (Ausprunk 
and Folkman, 1977), the endothelial cells of which have 
been shown to express many phenotypic markers that distin- 
guish them from macrovascular endothelial cells. In fact, 
some strains of microvascular endothelial cells (Bar et al., 
1989; Stairs et al., 1989; Beitz et al., 1991), capillaries in 
the rat brain (Smits et al., 1989), proliferating capillaries in 
glioblastomas (Hermanson et al., 1992; Plate et al., 1992) 
and in wounds (Reuterdahl et al., 1993) have been reported 
to express PDGF ~-receptors. 

Endothelial cells can also express the ligands of the PDGF 
receptors, the PDGF A- and B-chain genes, both in vivo and 
in vitro (for review see Raines et al., 1990). However, an ear- 
lier report indicated that c-sis (PDGF B-chain) was down- 
regulated in endothelial cells differentiating into 3-dimen- 
sional tubular structures (Jaye et al., 1985). 

In this study we have investigated the potential role of 
PDGF in angiogenesis. We used a model of angiogenesis in 
vitro in which endothelial cells form cords and tube-like 
structures; some strains of cloned bovine aortic endothelial 
cells assume ~i microvascular phenotype and organize into 
networks of cords and tubes (angiogenic EC), whereas other 
strains, derived by identical procedures, do not form cords/ 
tubes and grow in monolayers or in monolayers with sprouts 
(nonangiogenic endothelial cells) (Cotta-Perreira et al., 
1980; Iruela-Arispe et al., 1991; Iruela-Arispe and Sage, 
1993). Both the differentiation of the angiogenic endothelial 
cells into cords and tubes and some changes in endothelial 
morphology and phenotype are highly reminiscent of en- 
dothelial processes associated with capillary formation in 
vivo. In contrast to some models of angiogenesis in vitro or- 
ganization and differentiation of angiogenic endothelial cells 
into cords and tubes occurs spontaneously, i.e., in the ab- 
sence of an imposed extracellular matrix substratum. Be- 
cause most available matrix substrata contain contaminating 
and/or specifically bound growth-regulatory molecules (Vu- 
kicevic et al., 1992; our unpublished observations), this 
model seems especially suited to studies related to PDGF. 

We addressed the following questions: (a) Does PDGF 
stimulate angiogenesis in vitro via endothelial cell prolifera- 
tion and cord/tube formation? (b) Are PDGF receptors ex- 
pressed on endothelial cells that form cords/tubes in vitro 
and on nonangiogenic EC? (c) Is PDGF expressed concomi- 
tantiy with its receptors during cord/tube formation? Our 
results support a direct role for PDGF in angiogenesis in 
vitro through endothelial cell proliferation and cord/tube 

formation by phenotypically distinct angiogenic endothelial 
cells. 

Materials and Methods 

Growth Regulatory Molecules and Antibodies 
Human recombinant PDGF-AA and PDGF-BB were expressed in yeast sac- 
charomyces cerevisiae E18-9 strain, purified and assessed for homogeneity 
as described (Herren ct al., 1993a). Pfa 4 and Pfa 15 are mouse monoclonai 
antibodies against human recombinant PDGF-AA. Pfa 4 recognizes an epi- 
tope of PDGF-AA within the receptor-binding domain and neutralizes hu-. 
man PDGF-AA (Herren et al., 1993b), but does not neutralize human 
PDGF-BB. Pill 15 was used for immunocytochemistry. Monoclonal anti- 
body vsb8a was raised against the purified v-sis gene product and was 
provided by M. Brockhaus, E Hoffmann-La Roche LTD, Basel; it neutral- 
izes human recombinant PDGF-BB (1 ng/ml) at an ICS0 of 14/~g/ml, but 
does neither neutralize human PDGF-AA (Herren et al., 1993b) nor human 
PDGF-AB or bovine PDGF-BB. Monoclonai antibody p17-8, raised against 
p17 virion core protein of  human immunodeticiency virus type 1 (M. Brock- 
haus, E Hoffmann-La Roche LTD), was used as an isotype-matched control 
antibody for neutralization experiments. Isotype matched nonimmune 
mouse IgG's (Biogenex, San Ramon, CA) were used for controls in immu- 
nocytochemistry experiments. A polyclonal rabbit antibody against the ex- 
tracellular domain of the rat PDGF ~receptor (8529) (Herren et ai., 1993a) 
or a nonimmune rabbit serum (Vector Labs., Burlingame, CA) was used 
for imrnunocytochemistry of bovine PDGF ~-receptor. A monocional anti- 
body against 5-bromo-2~leoxyuridine-5'monophospbate (BrdU) was pur- 
chased from Boehringer Mannheim Biochemicals (Rotkreuz, Switzerland). 
Biotinylated horse anti-mouse IgG and biotinylated goat anti-rabbit IgG 
were purchased from Vector Labs. Concentrations of PDGF isoforms in the 
human serum used for neutralization experiments were PDGF-AA: 21 
ng/ml and PDGF-BB 13 ng/ml as measured with an isoform specific ELISA 
(H. Gallati, E Hoffmann-La Roche LTD, Basel [Allam et al., 1993]). 

Cell Culture 
Endothelial cells from adult bovine aorta were isolated, cloned, character- 
ized, and maintained as previously described (Cotta-Pereira et al., 1980; 
Iruela-Arispe et al., 1991); upon cloning, isolates that neither exhibited 
spontaneous organization of cord/tube-like structures (angiogenic EC), or 
that grew in monulayers with sprouts or in monolayers without sprouts 
(nonangiogenic EC), were established and characterized for synthesis of 
yon W'dlebrand factor and endocytosis of acetylated low density lipopro- 
teins. Stock cultures were maintained in DMEM (Biochrom Seromed, Ber- 
lin, FRG) containing 10% FCS (Gibco BRL, Life Technology, Basel, Swit- 
zerland). Endothelial cells used between passages 4-18 were plated at a 
density of 15,000 cells/cm 2 and were grown in DMEM containing 10% 
FCS for the days specified. To achieve cellular quiescence, cultures were 
incubated for 72 h in serum-free DMEM with one change of media after 
24 h. For angiogenic and nonangiogenic endothelial cells, two different iso- 
lates each were used for any reported experiment. 

Swiss 3T3 D1 cells were maintained as described (Seifert et al. 1989). 

Determination of Cord~Tube Numbers 
Cells were cultured in 6- or 24-well trays in media containing 10% FCS, 
changed to serum-free or serum-~'~ontaining media when cellular sub- 
confluence was reached, and treated as described in the specific experi- 
ments. Cells were fixed for 6 min in 100% methanol at -20°C and subse- 
quently stained with hematoxylin to demonstrate the network of endothelial 
cords/tubes. Each culture was photographed with Polaroid 667 film (Polar- 
oid Corporation, Cambridge, MA) at a magnification of 32x with a Leitz 
Laborvert FS microscope equipped with a Polaroid camera system (Wild, 
Heerbrngg, Switzerland). A grid of lines 5 mm apart was layered over the 
photograph and the numbers of intersections of cords/tubes crossing the 
lines was defined as the "number of cords/tubes". Crossings were then 
counted manually for each photograph. Each photograph corresponds to an 
area of 7.2 ram 2 and each datapoint corresponds to the average number of 
cords/tubes crossing the lines + SEM of at least four photographs taken 
of 2 (6-well plates) or 4 (24-well plates) separate wells. 

The Journal of Cell Biology, Volume 125, 1994 918 



DNA Synthesis 

ffH]Thymidine incorporation. Endothelial cells were plated in 24-well 
plates (Falcon, Becton Dickinson, Lincoln Park, NJ). Growth-regulatory 
molecules or serum was added directly to the cells maintained in serum-free 
DMEM. The cells were pulsed with 1 #Ci/ml [3H]thymidine (Amersham, 
Ziirich, Switzerland) added at the times and for the periods indicated in the 
figure legends. The cells were washed, and incorporation of [3H]thymi- 
dine into acid-insoluble material was determined as previously described 
(Battegay et al., 1990). Values are #oven as the mean :t: SEM. 

In situ localization of proUferating cells. Cells were plated on plastic 
Labtek TM slides (Nunc, Life Technology, Basel, Switzerland), cultured, 
made quiescent, and treated as described for [3H]thymidine incorporation 
at different stages of cord/tube formation. The thymidine analog BrdU (20 
#M 5-bromo-2'-deo:Cyuridine and 20 #M deoxycytidine) (Sigma, Fluka- 
Chemie, Buchs, Switzerland) was added 12 h after stimulation of the cul- 
tures with growth-regulatory molecules or FCS, and the cells incubated be- 
tween hours 12-24 for exactly 12 h with BrdU. Incorporated BrdU was 
detected by immunoperoxidase staining (Vectastain Elite, Vector Labs.) by 
a monoclonal antibody specific for BrdU (1/~g/mi) (Boehringer Mannheim 
Biochemicals) and a biotinylated horse anti-mouse IgG (10 #g/mi) (Vector 
Labs.). Labeled cells were visualized with 3-amino-9-ethylcarbacole (AEC) 
(Sigma). Cell nuclei were counterstained with hematoxylin. 

RNA Isolation and Northern Blots 

Cells were plated in 150-ram plastic dishes (Falcon), cultured for various 
periods of time, and made quiescent as described above. Total RNA was 
isolated by lysis of cells with acid guanidinium thiocyanate and subsequent 
extraction with phenol-cMoroform (Chomczynsld and Sacchi, 1987). 15 
~tg of total RNA/lane was separated in a 1% agarosc/formaldehyde gel, and 
the RNA was transferred by vacuum transfer to Hybond~-N membranes 
(Amersham) (Sambrook et al., 1989). Filters were hybridized as previously 
described (Battegay et al., 1990) with cDNAs labeled with [32p]deoxycyti- 
dine 5'-triphospbate (Amersham) using a random prime labeling kit (Boeh- 
finger Mannheim Biochemicals) to specific activities of 1-2 x 10 9 cpm/#g. 
The following cDNA probes were used for hybridization: rat B-chain (Not 
I fragment, 745 bp) (Herren et al., 1993b), recombinant transfer vector pB3 
(Eco RI/Bam HI fragment, 1617 bp) (Herren et al., 1993a) containing mu- 
tagenized human PDGF 3-receptor (Gronwald et al., 1988) and pot39.1 
(Barn HI fragment, 1587 bp) containing PDGF or-receptor (Kelly et al., 
1991), and chicken GAPDH (Pst I fragment, 1150 bp) (Dugaiczyk et al., 
1983). Blots were hybridized (~20 x 106 clam ) for 24 h, washed 2 x 15 
min in 2x SSC/0.1%SDS and 2 x 15 rain in lx  SSC/0.1%SDS at 65°C, 
and were subsequently exposed to XAR-2 film (Eastman Kodak Company, 
Rochester, NY). 

Immunocytochemistry 

Cells were plated on round glass coverslips that had been placed into 24- 
well trays, cultured for various periods of time, made quiescent, and treated 
with growth-regulatory molecules as described above. Cells were exposed 
to 25 ng/ml PDGF-BB, PDGF-AA, or diluent at 37°C for 30 rain before 
fixation to elicit clustering of corresponding PDGF receptors. The cells 
were fixed in methanol and were washed twice in PBS: the coverslips were 
subsequently removed from the 24-well plates for further processing. 
Nonspecific binding was blocked by a 20-rain incubation in normal goat se- 
rum (50% in PBS plus 0.1% BSA). Polyclonal rabbit anti-PDGFR-/3 (8529, 
10 ~g/ml), anti-PDGF-BB (vsb8a, 10 #g/ml), or anti-PDGF-AA (Pfa 15, 
30 #g/ml) was added for 1 h at RT (22°C). Controls for primary antibodies 
included PBS, nonimmune rabbit igG (10 ~g/ml, Vector), and isotype 
matched nonimmune mouse IgG's (10 #g/ml or 30 #g/ml, respectively, Bio- 
genex). After two washes with PBS, a biotinylated goat anti-rabbit IgG (15 
pg/ml, Vector) was applied for 30 min. The coverslips were washed with 
PBS and were incubated with streptavidin-FITC (20/~g/ml) (Jackson Im- 
muno Research Labs. Inc., Milan Analytica AG, La Roche, Switzerland) 
for 20 rain. After a final washing, the coverslips were mounted upside-down 
in mowiol (Osborn and Weber, 1982). Analysis was performed with a Zeiss 
axioskope (Zeiss, Oberkochen, FRG) equipped with HBO-50 epifluores- 
cence, and photomicrographs were taken with a Zeiss MC-100 camera 
system. 

Statistical Analysis 
Values are given as the mean 4- SEM. Summary statistics to test the global 

hypothesis and, if rejected, pairwise comparisons between means were 
evaluated with the Bernard-van Elteren test (generalization of the Friedman 
test) (Haux et al:, 1984) using the data in an experiment as a block (PROQ 
FREQ procedure, Cochran-Mantel-Haenszel statistics, SAS R statistics 
package, Cary, NC). p-values are reported after adjustment for multiple 
comparisons with the Bonferruni-Hohn method (Bauer, 1991). For global 
evaluation of the data described in Figs. 3 and 4, ANOV~s were performed 
on the logarithms of the counts using the factors "experiment7 "drug" 
(Diluent, PDGF-AA, PDGF-BB), and "dose" (Fig. 3) or "day" (Fig. 4) and 
the interaction of drug with dose (Fig. 3) or drug with day (Fig. 4) (FROC 
GLM, SAS R statistics package). For comparison of specific doses (Fig. 3) 
or days (Fig. 4) the ANOVA was repeated, and the Bonferroni-Hohn adjust- 
ment was applied to the resultant p-values. 

Results 

The organization of endothelial cords and tube-like struc- 
tures by angiogenic bovine aortic endothelial cells that were 
used in this study progresses through the following stages: 
(a) formation of an endothelial cell monolayer with the emer- 
gence of "sprouting cells" growing above or below the 
monolayer ('~1-3 d after plating), (/7) appearance of wide 
cords which develop from sprouting cells (~3-5 d), (c) 
remodeling of wide cords into thin and elongated cords 
(,,o5-14 d), (d) development of a lumen in some cords result- 
ing in short tubes with the lumen often containing secreted 
material (~10-21 d) (Iruela-Arispe and Sage, 1993). 
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Figure 1. Serum is necessary for cord/tube formation in angiogenic 
endothelial cells. Cultures of bovine aortic endothelial cells form- 
ing cords and tubes (angiogenic endothelial cells) were established 
as described (Iruela-Arispe et al., 1991). Ceils were plated (15,000 
ceils/era 2) in DMEM containing 10% FCS. After growth of the 
endothelial cells to subconfluence, the cells were changed to 
DMEM supplemented with different concentrations of human se- 
rum and grown for an additional 7 d. Cells were subsequently fixed 
and stained with hematoxylin to demonstrate the interconnecting 
network of endothelial cords/tubes. Each photograph corresponds 
to a surface area of 7.2 mm 2. Cords/tubes were counted for every 
photograph as described in Materials and Methods. Serum induced 
a significant increase of cord/tube numbers at aU concentrations 
tested compared to serum free cultures (p < 0.001). The values cor- 
respond to quadruplicate counts + SEM of a representative ex- 
periment (n = 3). 
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PDGF-BB Drives Cord~Tube Formation and Cellular 
Proliferation of Angiogenic EC 

Originally we observed that cord/tube formation depended 
on the presence of serum in the culture media. In initial 
experiments, angiogenic endothelial cells were plated and 
cultured in serum-containing media until a subconfluent 
monolayer without cords/tubes formed (1-3 d). The cells 
were further cultured in serum-free media or media contain- 
ing different concentrations of FCS or human serum. Cord/ 
tube formation was subsequently assessed. Angiogenic en- 
dothelial cells survived in serum-free media but formed no 
or only a few abortive cords/tubes (Fig. 1). In contrast, 
numerous cords/tubes developed in the presence of serum. 
Cord/tube formation after 7 d of culture correlated dose- 
dependently with the concentration of fetal calf (data not 
shown) or human serum (p < 0.001 for pairwise comparison 
of each serum concentration with serum free culture) (Fig. 
1). In parallel, cell numbers increased with serum concentra- 
tion (data not shown). Thus, serum factors play a decisive 

role in driving cellular proliferation and concomitant 
cord/tube formation in this model of angiogenesis. 

To assess whether PDGF present in serum might support 
cord/tube formation, we first analyzed whether cords/tubes 
still developed after neutralization of PDGF in serum. All 
three isoforms of PDGF (PDGF-AA, PDGF-AB and PDGF- 
BB) are released from human platelets and are therefore 
present in whole human serum (Hart et al., 1990). Because 
our anti-PDGF-BB antibodies neutralize human but not bo- 
vine PDGF-BB, we used human serum for the neutralization 
experiments. Angiogenic endothelial cells were cultured in 
media containing FCS until a subconfluent monolayer with- 
out cords/tubes was formed. Thereafter, the cultures were 
changed to serum-free media or to media containing 1% or 
5% human serum, 1% or 5% human serum pretreated with 
a neutralizing monoclonal mouse antibody against PDGF-BB 
(vsb8a), against PDGF-AA (Pfa 4), or anti-HIV p17 protein 
(p17-8, IgG isotype-matched control), and were grown for an 
additional 7 d. In the presence of the neutralizing antibody 
against PDGF-BB the number of cords was reduced by 38 

Figure 2. Neutralization of PDGF-BB in serum reduces cord/tube formation in angiogenic endothelial cells. Angiogenic endothelial cells 
were plated in 6-well trays, and treated as described in the legend to Fig. 1. Cultures were changed to media containing 1% or 5% human 
serum, 1% or 5 % human serum pretreated with a neutralizing monoclonal mouse antibody against PDGF-BB (vsb8a, 50 #g/ml), PDGF-AA 
(PFA 4, 50 #g/nil), anti-HIV p17 protein (p17-8, IgG isotype-matched control, 50 #g/ml) and were grown for 7 d. Cords/tubes were subse- 
quently processed as described in Fig. 1. Fig. 2 a shows a photograph of a representative experiment. The wells designated with A, show 
serum free controls; B, 1% human serum; C, 1% human serum and anti-PDGF-BB (50 #g/ml); D, 5% human serum; E, 5% human serum 
and anti-PDGF-BB (50 #g/ml). The anti-PDGF-BB, in contrast to the control antibodies, significantly (*) decreased serum-induced cord/ 
tube numbers (p < 0.01). The values given in Fig. 2 b correspond to quadruplicate counts + SEM of another experiment (n = 3). 
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+ 4% in 1% human serum and 35.2 d: 7.5%in 5% human 
serum (p < 0.01, average reduction in all experiments 37 + 
10%, n = 3) (Fig. 2), compared to the cultures containing 
serum without antibody. The antibodies against PDGF-AA 
and the control antibody (anti-HIV t)17) had no statistically 
significant effect on the numbers of cords/tubes (Fig. 2). 
Therefore, significant and substantial but not complete sup- 
pression of cord/tube formation occurred in serum pre- 
treated with anti-PDGF-BB, in comparison to controls. 

Cord~Tube Formation in Response to PDGF-BB 
Requires Additional Serum Fac to rs  

Next we tested whether PDGF-BB alone could drive cord/ 
tube formation in the absence of additional serum factors. 
Angiogenic endothelial cells were plated in serum-contain- 
ing media and changed to serum-free media after a subcon- 
fluent monolayer had formed. Thereafter either diluent, 
PDGF-AA, PDGF-BB, or FCS were added daily for 7 con- 
secutive days. Neither PDGF-BB nor PDGF-AA in the ab- 
sence of serum supported cord/tube formation. Hence, se- 
rum factors in addition to PDGF-BB are necessary to 
support continued cord/tube formation. 

PDGF-BB Stimulates DNA Synthesis in Angiogenic 
But  Not in Nonangiogenic EC 

Because 'cord/tube formation results from both cellular 
migration and proliferation, we assessed DNA synthesis as 
a measure of cellular proliferation in response to PDGF-AA, 
PDGF-BB, and FCS in angiogenic endothelial cells. We ex- 
amined the incorporation of [3H]thymidine into DNA in 
angiogenic endothelial ceils kept in serum-containing media 
for 7 d and subsequently changed to serum-free media for 
3 d to achieve cellular quiescence. At this stage, the cultures 
exhibited postconfluent monolayers with a profuse network 
of wide cords. PDGF-BB (100 ng/mi) stimulated [3I-I]thy- 
midine incorporation into angiogenic endothelial cells by 65 
+ 30% (mean + SEM) above diluent control (p < 0.001) 
(Fig. 3). Half maximal stimulation of pH]thymidine incor- 
poration was observed between 1-10 ng/mi PDGF-BB and 
was statistically significant at concentrations of 1 ng/rnl 
PDGF-BB (p < 0.05) and higher (p < 0.001) (Fig. 3). PDGF- 
AA did not increase [3H]thymidine incorporation in a 
statistically significant dose-dependent manner. FCS (10%) 
stimulated [3H]thymidine incorporation to 76 + 19% above 
diluent control (p < 0.001), an increase similar to the one 
elicited by PDGF-BB. Because ceils responding to PDGF- 
BB constituted a small minority of all cells (see below), the 
relative increase in DNA synthesis in response to PDGF-BB 
can be estimated to be very high in PDGF-responsive ceils. 
For the same reason, variation from experiment to experi- 
ment was predicted to be relatively high. 

No response ¢o either PDGF-BB or PDGF-AA was ob- 
served in identically derived bovine aortic endothelial ceils 
that did not form cords/tubes, e.g., that grew to confluent 
monolayers only or that formed monolayers with sprouts 
without further development into cords/tubes ("nonangio- 
genic" EC) (data not shown). 

Although these results do not establish a rigorous mecha- 
nistic link between PDGF-BB-induced DNA synthesis and 
PDGF dependent cord/tube formation they nevertheless sug- 
gest that cord/tube formation by angiogenic endothelial cells 
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PDGF-BB, but not PDGF-AA, stimulates DNA syn- 
thesis in angiogenic endothelial cells. Angiogenic endothelial cells 
were plated in 24-well trays (15,000 cells/cm 2) and were grown in 
DMEM containing 10% FCS for 7 d (intermediate stage of cord/ 
tube formation in angiogenic endothelial cells and confluence in 
nonangiogenic EC). To achieve cellular quiescence, the cultures 
were subsequently incubated for a total of 72 h in DMEM without 
serum, with one chan~e of media after 24 h. Human recombinant 
PDGF-AA (zx), PDGF-BB (B), diluent (0.25% BSA in 10 mM 
acetic acid), or 10% FCS were added, and the cells were incubated 
with [3H]thymidine (1 /~Ci/ml) 20-24 h after the addition of 
growth-regulatory molecules. Incorporation of [3H]thymidine into 
acid-insoluble material was determined at the end of the indicated 
period. PDGF-BB (t9 < 0.05 at 1 ng/ml and p < 0.001 at concentra- 
tions of 3 ng/ml and higher), but not PDGF-AA, dose dependently 
increased DNA. Values of a representative experiment are given as 
the mean + SEM (n = 6). [3I-I]thymidine incorporation for di- 
luent controls was 70,205 5:4,506 clam (=100%) and 123,373 
+ 1,640 cpm for 10% FCS. 

in response to PDGF-BB is associated with cellular prolifer- 
ation and not only due to a migratory response of the cells 
to PDGF-BB. 

DNA Synthesis in Response to PDGF-BB Increases as 
Cords~Tubes Form 

To assess DNA synthesis in response to PDGF at different 
stages of cord/tube formation, we cultured angiogenic en- 
dothelial ceils for 1, 3, 7, and 14 d in serum-containing me- 
dia, and then rendered the cells quiescent. Subsequent addi- 
tion of PDGF-BB (100 ng/ml) increased [3H]thymidine 
incorporation 28 5= 16% at day 1, 39 + 24% at day 3, 65 
+ 30% at day 7, and 79 + 21% at day 14 above respective 
diluent controls (p < 0.001) (Fig. 4). This response to PDGF- 
BB was dose-dependent at each timepoint (data not shown). 
In contrast to the response of the cells to PDGF-BB which 
monotonously increased with time in culture, i.e., in propor- 
tion to the number of cells outside the monolayer (sprouts 
and cords/tubes, see below), FCS (10%) induced its maximal 
response at day 1 (199 ± 94%). DNA synthesis in response 
to FCS decreased continuously as the ceils differentiated into 
cords/tubes (p < 0.005). At day 14 the response to FCS had 
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Figure 4. DNA synthesis in response to PDGF-BB increases as 
cords and tubes form. Cells were plated, grown, treated, and ana- 
lyzed as described for Fig. 3. Angiogenic endothelial cells were 
maintained for the periods indicated on the x-axis. An~iogenic en- 
dothelial cells grow to a monolayer with sprouts between day 1 and 
3, to an early stage of cord/tube formation between day 3 and 5, 
to an intermediate stage between day 5 and 14, and to a later stage 
between day 10 and 21. Human recombinant PDGF-AA (100 
ng/ml), PDGF-BB (100 rig/m1), diluent (0.25 % BSA in 10 mM ace- 
tic acid), or 10% FCS were used. PDGF-BB increased DNA syn- 
thesis above respective diluent controls (p < 0.001). DNA synthesis 
in response PDGF-BB increased above diluent controls (p < 0.001) 

declined to 48 + 19%, less than the response to PDGF-BB. 
PDGF-AA, which can only activate PDGF a-receptors (for 
review see Raines et al., 1990; Heldin, 1992), had no 
significant effect on [3H]thymidine incorporation at these 
stages of  angiogenesis in vitro (Fig. 4). 

To confirm the results of  [3H]thymidine incorporation 
and to determine the location of  DNA-synthesizing cells, we 
performed BrdUdabeling at an intermediate and a late (data 
not shown) stage of cord/tube formation. Fig. 5 shows repre- 
sentative stainings of  cords/tubes and adjacent areas in an- 
giogenic cultures at an intermediate stage of  cord/tube for- 
marion (clay 7). BrdU-labeled nuclei were not dist(ibuted 
evenly but mostly localized to cords/tubes or cell clusters in 
monolayers (Fig. 5). Background DNA synthesis, i.e., the 
percentage of  BrdU-incorporating nuclei under conditions of 
quiescence, was different in distinct areas of  the cultures; 27 
+ 11% in cords/tubes and 17 + 7% in monolayers (compila- 
tion of counts from areas adjacent and far-removed from 
cords/tubes). PDGF-BB increased the number of  labeled 
nuclei in all areas of  the cultures both at an intermediate (Fig. 
5 and below) and a late stage of  cord/tube formation dose de- 

with time in culture whereas DNA synthesis in response to FCS 
decreased continuously as the cells differentiated into cords/tubes 
(/7 < 0.005). PDGF-AA had no significant effect. Values represent 
the mean + SEM of all experiments (n = 4). 

Figure 5. PDGF-BB increases 
DNA synthesis in areas of 
cord/tube formation. Cells 
were cultured on plastic Lab- 
tek slides and were treated at 
an intermediate stage of cord/ 
tube formation (day 7) as de- 
scribed for Fig. 3. Human re- 
combinant PDGF-AA (30 ng/ 
ml), PDGF-BB (30 ng/ml), di- 
luent (0.25% BSA in 10 mM 
acetic acid), or 10% FCS were 
used in the experiments. DNA 
synthesis was measured with 
incorporation of the nuclear 
analog BrdU for a labeling pe- 
riod of exactly 12 h between 
12 to 24 h after stimulation of 
the cells. The incorporated 
analog was identified by an 
immunoperoxidase staining re- 
action. The scale bars corre- 
spend to 100/~m. 
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pendently (data not shown). Numerical evaluation of BrdU- 
labeled nuclei in the cords/tubes at an intermediate stage of 
cord/tube formation (7 days) demonstrated an increase of 69 
+ 41% above diluent controls in cultures treated with 
PDGF-BB (30 ng/ml) (/9 < 0.05), 9 + 9% with PDGF-AA 
(30 ng/ml) (not significant), and 102 5- 70% with FCS. In 
monolayers an increase of 124 4- 43% to PDGF-BB (p < 
0.01), 20 5- 20% to PDGF-AA (not significant), and 384 + 
242% to FCS above diluent controls was observed. This 
staining procedure did not allow specific identification of 
cells in sprouts or surfacing cords. It is therefore possible 
that clusters of BrdU-incorporating cells in "monolayers" ac- 
tually correspond to very early stages of developing cords. 
Labeled nuclei were found in clusters in both diluent controls 
and PDGF-BB-stimulated cells. However, because the num- 
ber and size of such clusters within the monolayer seemed 
to be increased in PDGF-BB-stimulated ceils (Fig. 5), we 
speculated that PDGF-BB might specifically affect endothe- 
lial cells in sprouts that are about to develop into cords/tubes 
and endothelial cells within cords/tubes, but not endothelial 
cells in the monolayer directly attached to the plastic dish. 
To substantiate this hypothesis we analyzed PDGF B-recep- 
tor expression in detail. 

PDGF B-Receptors Are Exclusively Localized 
on Sprouts and Cords~Tubes of  Angiogenic Endothelial 
Cells, and Their Expression Increases with 
Cord~Tube Formation 

The current model of PDGF ligand/receptor interactions 
stipulates distinctive receptor specificities of the PDGF 
A-chain and B-chain. The PDGF A-chain can only elicit its 
effects through the PDGF c~-receptor, whereas the PDGF 
B-chain elicits its effects through both the PDGF u- and 
B-receptor (Seifert et al., 1989; for review see Raines et al., 
1990; Heldin, 1992; Herren et al., 1993). This model, to- 
gether with the effects of PDGF-BB and the lack of a re- 
sponse to PDGF-AA in angiogenic endothelial cells, predicts 

the presence of PDGF B-receptors and the absence of PDGF 
a-receptors in angiogenic EC. 

To evaluate the presence of PDGF receptors, we measured 
both PDGF B-receptor and a-receptor mRNA expression by 
Northern blot analysis. As shown in Fig. 6, PDGF B-recep- 
tor transcripts were expressed at low levels inangiogenic en- 
dothelial cells. Moreover, PDGF B-receptor mRNA expres- 
sion increased with time (Fig. 6), possibly indicative of an 
association of the receptors with the appearance of cords/ 
tubes. In nonangiogenic endothelial cells, however, PDGF 
B-receptor mRNA was undetectable (Fig. 6). The PDGF 
or-receptor gene was expressed in neither angiogenic or non- 
angiogenic endothelial ceils but present in Swiss 3T3 cells 
used as controls (data not shown). 

To localize PDGF-responsive cells and to document the 
presence of PDGF receptors and their activation by PDGF, 
we performed immunocytochemical staining of PDGF B- and 
a-receptors. Angiogenic endothelial cells at different stages 
of cord/tube formation were incubated with a polyclonal rab- 
bit antibody against the ectodomain of the PDGF B-receptor. 
We found diffuse staining of PDGF/3-receptors on cords/ 
tubes and sprouts, but no staining in monolayers in angio- 
genic and nonangiogenic cultures (data not shown). To better 
visualize PDGF B-receptors and to demonstrate their activa- 
tion we preincubated the cells with PDGF-BB 30 min be- 
fore fixation. As reported previously (Tingstrfm et al., 
1992), this approach increased the sensitivity of the immu- 
nocytochemical staining and demonstrated clustering PDGF 
B-receptors on sprouting ceils and cords/tubes, but not in 
monolayers of angiogenic (Fig. 7 a) and nonangiogenic en- 
dothelial cells (data not shown). AS predicted from the 
PDGF receptor subunit model (Seifert et al., 1989), no 
clustering of PDGF/3-receptors could be elicited by prein- 
cubating the cells with PDGF-AA (data not shown). How- 
ever, an identical staining pattern to the one shown in Fig. 
7 a was obtained when angiogenic cells were preincubated 
for 30 min with human PDGF-BB and subsequently stained 
with an anti-human PDGF-BB antibody (vsb8a), thus ascer- 

Figure 6. PDGF/~-reeeptor mRNA is found exclusively in angiogenic endothelial cells and increases concomitantly with cord/tube forma- 
tion. Total RNA was isolated from endothelial cells by homogenization and lysis with acid guanidinium thiocyanate followed by phenol- 
chloroform extraction. 15/zg of total RNA/lane was separated in a 1% agarose/formaldehyde gel and transferred to a nylon membrane. 
Filters wore hybridized with [32P]dCTP-labeled cDNA probes for human PDGF B-receptor and for GAPDH. Angiogenic endothelial cells 
are shown in the left and nonangiogenic in the right panel. 
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Figure 7. 
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taining the validity of the staining with the antibody against 
the PDGF ~receptor. Staining without primary antibodies 
or with nonimmune rabbit IgG or with isotype matched 
nonimmune mouse IgG's did not yield any signal (data not 
shown). 

It is notable that early in cord/tube formation, PDGF 
/3-receptors were expressed exclusively on sprouts and their 
cellular projections (Fig. 7 a, panel I).  Conversely, staining 
of nonangiogenic endothelial cells did not reveal PDGF 
/~-receptors, and interestingly, sprouts in these cultures 
lacked PDGF/3-receptors. Furthermore, PDGF B-receptor 
staining increased continuously as cords/tubes formed (Fig. 
7 a, panels l -W).  

PDGF a-receptor protein was investigated by preincuba- 
tion of the angiogenic endothelial cells with human PDGF- 
AA, followed by staining with anti-human PDGF-AA anti- 
body (Pill 15). No staining of PDGFR-t~ protein was found 
in angiogenic or nonangiogenic endothelial cells. However, 
in Swiss 3173 cells which express both PDGF ct- and/3-recep- 
tors and which were used as controls, specific staining of 
PDGF ~receptors was demonstrated with the same staining 
procedure (Fig. 7 b). Thus, neither angiogenic nor non- 
angiogenic endothelial cells expressed PDGFR-tx mRNA 
and protein, in agreement with the lack of effects of PDGF- 
AA on these cells. 

Angiogenic Endothelial Cells Express No PDGF 
B-chain, in Contrast to Nonangiogenic EC 

Expression of the PDGF B-receptor raised the question 
whether proliferation of angiogenic endothelial cells might 
be stimulated in an autocrine manner by PDGF-BB. We 
therefore probed Northern blots with a human PDGF 
B-chain cDNA. However, angiogenic endothelial cells did 
not express the PDGF B-chain at day 7 (Fig. 8), or at any 
other stage of cord/tube formation (data not shown). In con- 
trast, nonangiogenic endothelial cells expressed PDGF 
B-chain transcripts constitutively (Fig. 8); the human PDGF 
B-chain cDNA used in these experiments therefore hybrid- 
ized to the bovine PDGF B-chain. 

Discussion 

Endothelial cells comprise the inner lining of the vascula- 
ture, an extensive and in most instances continuous mono- 
layer. Normally these endothelial cells have a very low rate 
of proliferative activity (Folkrnan and Shing, 1992). How- 
ever, in angiogenesis microvascular endothelial cells (Aus- 
prunk and Folkman, 1977) respond to angiogenic stimuli by 

Figure 7. PDGF B-receptor protein is expressed on endothelial cells 
cords/tubes and clusters upon activation with PDGF-BB. Angio- 
genie and nonangiogenic endothelial cells were plated, cultured, 
and stimulated as described in the legend for Fig. 3. Clustering of 
the PDGF E-receptor was elicited by treatment of the cells with 
PDGF-BB (25 ng/ml) at 37°C for 30 re.in, before processing of the 
slides. Immunofluorescence was performed with a polyclonal anti- 
PDGF E-receptor (Herren et al., 1993). Fig. 7 a shows PDGF 1% 
receptor expression at different stages of cord/tube formation, and 

7 a, panel day 1 shows an enlargement of a sprout with a "traction 
cell" (see text). Arrows point to the elongated cellular projections 
of the cell that exhibit PDGF receptors. Scale bars correspond to 
30/zm in panels for day 1 and 3 and to 50/zm in panels for day 
7and 14. Fig. 7 b shows controls for the analysis of PDGF c~-recep- 
tors by immunocytochemistry in Swiss 3"1"3 cells; cells were cul- 
tured in media containing 10% FCS and changed to serum free 
media 48 h before the experiment. Ceils were prestimulated with 
either diluent (panel I), PDGF-AA (50 ng/ml, panel II), or PDGF- 
BB (50 ng/ml, panel III) for 30 rain at 37°C. After fixation cells 
were stained with anti-PDGF-AA (PFA 15). Scale bars correspond 
to 30/~m. 
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Figure 8. Angiogenic endothelial cells do not express the PDGF 
B-chain, the ligand for the PDGF B-receptor, in contrast to non- 
angiogenic endothelial cells. Total RNA was isolated from endothe- 
lial cells at day 7, fractionated, and transferred to a nylon membrane 
as described in the legend to Fig. 6. Filters were hybridized with 
cDNA probes for human PDGF B-chain and GAPDH. 

increased proliferation, by expression of proteolytic en- 
zymes, and by synthesis of specific extracellular matrix com- 
ponents (Risau, 1990; Ingber, 1991; Folkman and Shing, 
1992; Montesano, 1992). These processes are necessary for 
endothelial cells to form new endothelial tubes, and, in con- 
junction with pericytes, to remodel new capillary vessels. 
Endothelial cells originating from microvessels in some re- 
spects bear little resemblance to the continuous monolayer 
of quiescent endothelial cells that line the macrovasculature 
and that do not express PDGF receptors (Raines et al., 
1990). In this study we have provided evidence that PDGF- 
BB can elicit endothelial proliferation and the formation of 
endothelial cords/tubes via direct action on PDGF/~-recep- 
tors that are exclusively expressed on a specific phenotype 
of endothelial cells, that we have termed "angiogenic en- 
dothelial cell: 

PDGF-BB Could Play a Direct Role in Angiogenesis 

The potential roles of PDGF in angiogenesis are not well 
delineated. Specifically, it is unclear whether PDGF can act 
directly on angiogenic endothelial cells, as reported for a 
structurally related protein, VEGF (Risau, 1990; Folkman 
and Shing, 1992). In vivo models of angiogenesis cannot de- 
termine whether PDGF induces neovascularization via di- 
rect action upon endothelial cells or indirectly via recruit- 
ment of other cells (Montesano, 1992). For example, PDGF 
and other proteins such as TGF-/3 are chemotactic for mono- 
cytes and other cells which, in turn, might release angio- 
genic molecules (Wiseman et al., 1988). Recently, it has 
been shown that PDGF can control angiogenesis in vitro in- 
directly through the action of other cells (Sato et al., 1993). 
Sato et al., using an angiogenesis system in which myofibro- 
blasts and microvascular endothelial cells were cocultured, 
found that PDGF induced the secretion of an endothelial cell 
growth factor by myofibroblasts, which in turn stimulated the 

formation of cord-like structures by endothelial cells (Sato 
et al., 1993). 

Obviously, any direct effect of PDGF would require the ex- 
pression of PDGF receptor(s) on neovascular endothelial 
cells. Although most macrovascular endothelial cells do not 
express PDGF receptors (Raines et al., 1990), several groups 
have reported the presence of PDGF ~receptors on various 
strains of microvascular endothelial cells (Bar et al., 1989; 
Smits et al., 1989; Beitz et al., 1991). Effects of PDGF-BB 
have also been identified on endothelium-dependent vascular 
relaxation of rat aortic rings, i.e., rnacrovessels (Canningham 
et al., 1992). In vivo, PDGF B-receptors were demonstrated 
on endothelial cells of capillaries in the rat brain (Smits et 
al., 1989), in glioblastomas (Hermanson et al., 1992; Plate 
et al., 1992), and in wounds (Reuterdahl et al., 1993). These 
observations suggest potential direct effects of PDGF-BB on 
endothelial cells undergoing angiogenesis. 

In this study we have demonstrated that PDGF-BB can also 
directly induce endothelial cell proliferation and cord/tube 
formation during angiogenesis in vitro via PDGF B-recep- 
tors. We used cloned strains of bovine aortic endothelial cells 
that spontaneously form cords/tubes without exogenous ex- 
tracellular matrix through consecutive stages of differentia- 
tion (angiogenic EC) (Cotta-Pereira et al., 1980; Iruela-Arispe 
et al., 1991). Nevertheless, formation of these cords/tubes is 
not strictly spontaneous, because serum is necessary for en- 
dothelial cells to proliferate and undergo morphogenesis. 
Here we report that PDGF is one of the serum elements that 
can amplify cord and tube formation via endothelial ceil pro- 
liferation. Additionally, PDGF-BB-induced endothelial cell 
migration might contribute to angiogenesis in vitro. Cellular 
proliferation and cord/tube development can be inhibited 
substantially by neutralization of PDGF-BB but not PDGF- 
AA in serum. However, identically derived bovine endothe- 
lial cells that do not differentiate into cords/tubes (nonangio- 
genic endothelial cells) and that form monolayers or mono- 
layers with some sprouting cells, do not respond to PDGE 

In angiogenic endothelial cells, cord and tube formation 
could not be abrogated completely by neutralizing PDGF- 
BB. Residual amounts of PDGF, for example as a result of 
incomplete neutralization by the antibody, or PDGF-Iike 
molecules, not detected by our neutralizing antibody, might 
have exerted their action via the PDGF ~receptor and thus 
have upheld residual cord/tube formation after neutralization 
of PDGF-BB. Alternatively, it is possible that PDGF-BB is 
not an absolute requirement for the morphogenesis of cords/ 
tubes. Furthermore, PDGF-BB alone in serum-free media is 
not sufficient to drive cellular proliferation and cord/tube 
formation suggesting that additional serum constituents are 
required in conjunction with PDGF-BB to drive angiogene- 
sis. However, the identity of serum factor(s)that expedite 
PDGF-sfirnulated angiogenesis and that support PDGF-free 
angiogenesis in vitro remain unclear. 

PDGF ~-Receptors Define a Phenotype of Endothelial 
Cells Undergoing Angiogenesis In Vitro 
As expected the mitogenic effect of FCS decreased continu- 
ously as angiogenic endothelial cells achieved greater ceLlu- 
lar density and differentiated into cords and tubes (Fig. 4). 
In contrast, earliest expression of the PDGF/~-receptor pro- 
tein emerged after cellular confluence had been reached and 
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was found exclusively on sprouting cells and later on cords 
and tubes in angiogenic cultures. PDGF ~-receptor mRNA 
(Fig. 6) and protein expression (Fig. 7 a) increased in paral- 
lel with cord/tube formation and correspondingly also the 
mitogenic response to PDGF-BB (Fig. 4). Thus, PDGF 
B-receptors were exclusively expressed and activated on the 
minority of cells that emerged outside the cellular mono- 
layer, i.e., in the ceils that were actively engaged in the for- 
marion of cords and tubes. These observations point to 
phenotypically distinct cellular populations within angio- 
genic cultures that are associated with differences in cell 
shape, spatial organization, the nature of the substrate, and 
the extracellular matrix in the microenvironment; accord- 
ingly, angiogenic endothelial cells in sprouts or cords/tubes 
specifically express collagen type I, SPARC, and decorin, 
macromolecules that are not or that are only minimally pro- 
duced by confluent monolayers of nonangiogenic endothelial 
cells 0ruela-Arispe et al., 1991; J~irval~iinen et al., 1992). 
Moreover, in our angiogenesis model, cellular shape differs 
in the endothelial cells of sprouts and cord/tubes, compared 
with endothelial cells residing in the cellular monolayer of 
the same cultures. Angiogenic endothelial cells that emerge, 
i.e., sprout, outside the confluent endothelial monolayer as- 
sume a trapezoid shape with elongated cellular projections 
that wrap around extracellular matrix components after leav- 
ing the cellular monolayer of the same cultures ([Vernon, 
R. B, personal communication] and Fig. 7 a, panel I). The 
generation of traction by these cells contributes to the reor- 
ganization of extracellular matrices in tracks, which serve as 
a scaffold for developing interconnecting cellular projections 
and the creation of a cellular network (Vernon et al., 1992). 
These sprouts or traction ceils express PDGF B-receptors 
but, interestingly, morphologically similar cells in nonan- 
giogenic endothelial ceils that form sprouts but no intercon- 
necting cellular projections and no cords/tubes do not ex- 
press PDGF B-receptors. Also, endothelial cells in mature 
cords/tubes express PDGF ~receptors and are more elon- 
gated and rounded whereas endothelial cells in the mono- 
layer are more polygonal and flat. Hypothetically, control of 
growth by shape and microenvironment may translate into 
distinct responses of endothelial cells to growth factors. For 
example, the angiogenic response of endothelial cells to FGF 
can be controlled by modulation of the composition of the 
extracellular matrix and the resulting changes in cell shape 
(Ingber, 1991). Hence, the expression of PDGF B-receptors, 
and thus the response to PDGF-BB, might depend on the 
specific microenvironment and the cellular shape of angio- 
genic endothelial cells. 

Conversely, angiogenic cells that express PDGF B-recep- 
tors might contribute to a specific microenvironment that is 
favorable for angiogenesis. PDGF-BB could act directly on 
angiogenic endothelial cells via PDGF B-receptors to change 
cell shape, to modulate the generation and degradation ofex- 
tracellular matrix, to regulate the generation of traction 
forces, to alter the proteolytic potential, and to modify the 
response of angiogenic endothelial cells to other growth- 
regulatory molecules. 

Although neovascularizations arise from microvessels 
(Ausprunk and Folkman, 1977), macrovascular endothelial 
cells can also unfold the developmental program that allows 
formation of cords, tubes, branches, and capillary-like net- 
works; treatment of macrovascular endothelial cells with 

PMA (Montesano and Orci, 1987) or clonal isolation of bo- 
vine aortic endothelial cells (Iruela-Arispe et al., 1991) in- 
duced conversion to an ~angiogeniC phenotype. Hypotheti- 
cally a set of angiogenic genes might be activated that control 
the emergence of an angiogenic versus a nonangiogenic 
phenotype of endothelial cells. Our study suggests that ex- 
pression of the PDGF B-receptor might be coupled to a more 
committed state of differentiation toward an angiogenic en- 
dothelial phenotype. Hence, in contrast to other angiogenic 
molecules, PDGF-BB might conceivably not control the 
switch to an angiogenic phenotype of endothelial cells, i.e., 
the initiation of angiogenesis, but rather processes associated 
with cells already committed to active neovascularization. 

The appearance of PDGF B-receptors on endothelial cells 
engaged in cord and tube formation is indicative of multiple 
additional alterations toward a potentially distinct angio- 
genic phenotype of endothelial cells. TGF-B, which is angio- 
genie in vivo, has been shown to promote the proliferation 
of angiogenic, but not nonangiogenlc endothelial cells (Iruela- 
Arispe et al., 1993) or macrovascular endothelial cells (Hei- 
mark et al., 1986; Miiller et al., 1987). Similarly, TNF, al- 
though generally growth-inhibitory for endothelial cells, has 
been shown to promote microvessel formation at low con- 
centrations (Fajardo et al., 1992). We propose that the re- 
sponse to many growth-regulatory molecules may be deter- 
mined by the specific phenotype of the target endothelial 
cell. Additional research to better understand and define dis- 
tinct phenotypes of endothelial cells, such as angiogenic and 
nonangiogenic endothelial cells, is clearly needed. 

Angiogenic Endothelial Cells Are Not the Source 
of  PDGF-BB 

Expression of the PDGF B-receptor in angiogenic en- 
dothelial cells led us to question whether these cells might 
stimulate their proliferation in an autocrine manner by con- 
comitant expression of the PDGF B-receptor and the PDGF 
B-chain. However, angiogenic endothelial cells did not con- 
stitutively express the PDGF-B-chaln, a result in keeping 
with a previous report on human umbilical vein endothelial 
cells that differentiated into three-dimensional tubular struc- 
tures (Jaye et al., 1985). Macrophages, platelets, tumor 
cells, and many other cell types can release PDGF-BB 
(Raines et al., 1990) and might therefore serve as a paracrine 
source of PDGF-BB and other growth-regulatory molecules 
in angiogenesis. In contrast, nonangiogenic endothelial 
cells, as previously shown by others (Collins et al., 1985; 
Jaye et al., 1985), express PDGF B-chain transcripts. The 
PDGF B-receptor and its ligand, the PDGF B-chain, are 
therefore expressed by angiogenic and nonangiogenic en- 
dothelial cells in a mutually exclusive manner. Regulatory 
mechanisms that are as yet unknown might be involved in 
precluding concomitant expression of these two interrelated 
genes and thus an autocrine loop. 
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