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Simple Summary: The histopathologic type is one of the most important prognostic factors in
gastric cancer (GC), which underpins the basic strategy for surgical management. In the present
study, a fully automated approach was applied to distinguish differentiated/undifferentiated and
non-mucinous/mucinous tumor types in GC tissue whole-slide images from The Cancer Genome
Atlas (TCGA) stomach adenocarcinoma dataset (TCGA-STAD). The patch-level areas under the
curves for the receiver operating characteristic curves for the differentiated/undifferentiated and non-
mucinous/mucinous classifiers were 0.932 and 0.979, respectively. We also validated the classifiers
on our own datasets and confirmed that the generalizability of the classifiers is excellent. The results
indicate that the deep-learning-based tissue classifier could be a useful tool for the quantitative
analysis of cancer tissue slides.

Abstract: Histomorphologic types of gastric cancer (GC) have significant prognostic values that
should be considered during treatment planning. Because the thorough quantitative review of a tissue
slide is a laborious task for pathologists, deep learning (DL) can be a useful tool to support pathologic
workflow. In the present study, a fully automated approach was applied to distinguish differenti-
ated/undifferentiated and non-mucinous/mucinous tumor types in GC tissue whole-slide images
from The Cancer Genome Atlas (TCGA) stomach adenocarcinoma dataset (TCGA-STAD). By classify-
ing small patches of tissue images into differentiated/undifferentiated and non-mucinous/mucinous
tumor tissues, the relative proportion of GC tissue subtypes can be easily quantified. Furthermore,
the distribution of different tissue subtypes can be clearly visualized. The patch-level areas under the
curves for the receiver operating characteristic curves for the differentiated/undifferentiated and non-
mucinous/mucinous classifiers were 0.932 and 0.979, respectively. We also validated the classifiers
on our own GC datasets and confirmed that the generalizability of the classifiers is excellent. The
results indicate that the DL-based tissue classifier could be a useful tool for the quantitative analysis
of cancer tissue slides. By combining DL-based classifiers for various molecular and morphologic
variations in tissue slides, the heterogeneity of tumor tissues can be unveiled more efficiently.

Keywords: gastric cancer; differentiated; undifferentiated; mucinous; deep learning; digital pathology

1. Introduction

Gastric cancer (GC) is generally classified into two-tiered categories according to
several official classification systems [1–3]. The Japanese classification categorizes GC
as differentiated and undifferentiated types according to the degree of glandular differ-
entiation [1]. The former includes papillary adenocarcinoma and well- to moderately
differentiated tubular adenocarcinoma, whereas the latter includes poorly differentiated
adenocarcinoma and signet ring cell carcinoma. For mucinous adenocarcinoma cases,
the specimen is considered an undifferentiated type, even if the GC originated from the
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differentiated component [1,4]. Furthermore, poorly differentiated carcinomas are sub-
classified into solid or non-solid types. Solid-type GCs display solid structures and barely
recognizable tubules, whereas non-solid-type tumors consist of individual cells or clusters
of a few cells with diffuse infiltrative growth patterns [5].

The histomorphologic type is one of the major prognostic factors in GC, which under-
pins the basic strategy for surgical management. It is reported that the undifferentiated
carcinomas carry a higher risk of lymph node metastasis (LNM) than differentiated types in
early gastric cancer (EGC) [6,7]. Moreover, there are several studies on the clinical outcomes
of mixed-type EGC, which is defined as GC that has both differentiated and undifferen-
tiated components. Recent reports demonstrated the relationship between mixed-type
histology and higher risk of LNM in EGC [8–11]. Mucinous GC is also linked to a poor
prognosis [12]. Therefore, identifying between different subtypes of GC is essential for
decision making, especially regarding the surgical resection of EGC.

Computer-based analysis of tissue images is drawing attention as an area of research
in digital pathology. Recently, deep learning (DL) has been applied to detect and classify
diverse tumors, including GC [13–15]. DL using convolutional neural network (CNN)
systems have considerable visual recognition capabilities because they can discern fea-
tures directly from the large training dataset, outperforming humans [16]. With the recent
approval of using the digitized pathology whole-slide images (WSIs) for primary diagno-
sis, the digitized tissue slides have been explosively increasing in prevalence, providing
massive amounts of digital pathology images [17]. However, DL in digital histopathology
is still in its early stages of development, and the efficiency and accuracy of pathologic
diagnosis could be improved by combining the routine digitization of WSIs with DL.

In the present study, we built DL-based differentiated/undifferentiated and non-
mucinous/mucinous GC tissue classifiers to automatically classify the GC WSIs based on
The Cancer Genome Atlas (TCGA) stomach adenocarcinoma dataset (TCGA-STAD). Then,
we tested the generalizability of the classifiers on our own GC tissue dataset. Here, we
report the results of the classification performance of the developed classifiers.

2. Materials and Methods
2.1. Patient Cohort

From the TCGA-STAD dataset, 396 formalin-fixed paraffin-embedded (FFPE) slides
from 371 patients were selected after the basic slide quality reviews. One pathologist (S.H.L.)
initially annotated normal/tumor, differentiated/undifferentiated, and non-mucinous/
mucinous regions of the stomach FFPE slides, and then another pathologist (I.H.S.) re-
viewed the annotation. We classified the tumor tissues as mixed-type when more than
30% of differentiated or undifferentiated tissues were mixed. Questionable regions were
then co-reviewed for an agreed annotation. We randomly selected 90% of patients for
the training group and 10% for the test group. Therefore, slides from a patient cannot be
included in both the training and test groups.

For the external validation of the classification models trained with the TCGA dataset,
we collected stomach cancer tissue slides from 232 patients who previously underwent surgi-
cal resection in Seoul St. Mary’s hospital between 2017 and 2019 (SSMH dataset). Approval
for this study was acquired from the Institutional Review Board of the College of Medicine
at the Catholic University of Korea (KC20RISI0329). The SSMH slides were also annotated
for normal/tumor, differentiated/undifferentiated, and non-mucinous/mucinous regions
for exact validation of the models. The summaries of the TCGA and SSMH datasets are
presented in Supplementary Table S1.

2.2. Pathologic Diagnosis

The histologic type of GC was diagnosed according to the Japanese classification [4].
Well- and moderately differentiated tubular adenocarcinoma and papillary adenocarci-
noma were classified as differentiated-type, and poorly differentiated adenocarcinoma
(either solid or non-solid types) and signet ring cell carcinoma as undifferentiated-type. In
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this study, mucinous adenocarcinoma was classified separately. The decision regarding
the histologic classification was made by the consensus of two expert gastrointestinal
pathologists (S.H.L. and I.H.S.).

2.3. Deep Learning Model

Artifacts in tissue slides such as air bubbles, blurring, compression artifacts, pen
markings, and tissue folding are irrelevant for the tissue classification tasks and thus should
be removed to enhance the performance of the classifiers. We adopted a convolutional
neural network (CNN)-based tissue/non-tissue classifier to select the proper tissue patches,
which was used in our previous studies [18,19]. The detailed structure of the tissue/non-
tissue classifier was described there. Because the discrimination of differentiated and
undifferentiated tissues in this study is meaningful only for the cancer tissues, we tried to
build the differentiated/undifferentiated classifier for the selected tumor tissues. Therefore,
a normal/tumor tissue classifier for the TCGA FFPE stomach tissue slides is a prerequisite.
In a previous study, we built normal/tumor classifiers for tissue slides of cancers from
bladder, lung, colon and rectum, stomach, bile duct, and liver [20]. In the present study,
we reused the normal/tumor classifiers for the stomach cancer tissues. The classifier was
trained to classify the 360×360 pixel tissue patches, obtained from WSIs of the stomach
tissues at 20× magnification, into normal or tumor tissue. Normal and tumor tissue
patches for the training were separated into each group based on the normal/tumor tissue
annotation from pathologists (Figure 1A). The patch-level areas under the curves (AUCs)
for the receiver operating characteristic (ROC) curves of the normal/tumor classifier for
the TCGA-STAD FFPE stomach tissue was excellent, at 0.993 [20].

Figure 1. Approach for the fully automated classification of gastric cancer tissue subclasses. (A) A normal/tumor
classifier was trained with normal/tumor tissue patches collected based on the pathologists’ annotation. (B) A dif-
ferentiated/undifferentiated classifier was trained with differentiated/undifferentiated tumor tissue patches collected
based on the pathologists’ annotation. (C) Sequential application of the tissue/non-tissue, normal/tumor, and differenti-
ated/undifferentiated classifiers could automatically delineate the differentiated and undifferentiated tumor tissues.

To train the differentiated/undifferentiated classifier, 360 × 360 pixel patches of
differentiated and undifferentiated tissue were collected based on the annotation from
the pathologists (Figure 1B). Before training, the patches underwent the normal/tumor
classifier and only patches classified as tumors were included for the training. The non-
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mucinous/mucinous classifier was also trained with the same approach. The Inception-v3
architecture was adopted for the normal/tumor, differentiated/undifferentiated, and non-
mucinous/mucinous classifiers. The classifiers were implemented using the TensorFlow
DL library (http://tensorflow.org). We used a mini-batch size of 128 and the same number
of normal/tumor, differentiated/undifferentiated, or non-mucinous/mucinous patches
were fed into each mini-batch during the training of each classifier to yield balanced
results. Data augmentation techniques were applied to the tissue patches during training,
including random rotations by 90◦ and random horizontal or vertical flipping. To avoid
the effect of stain difference, color normalization was applied. To minimize overfitting,
10% of the training slides were used as a validation dataset. The training was stopped
when the accuracy of the validation data was saturated. Then, the performance of the
trained classifier was evaluated on the test dataset. For the classification of slides in the test
datasets, the normal/tumor classifier initially discriminated the tumor patches from the
entire selection of slides. Then, only tissue patches with high tumor probability were used
for differentiated/undifferentiated or non-mucinous/mucinous classification (Figure 1C).

2.4. Statistics

To demonstrate the performance of each classifier, the ROC curves and their AUCs
for the test datasets were presented. The ROC curves for the patch-level results were
calculated based on the pathologists’ annotation on the WSIs. The distribution of differenti-
ated/undifferentiated or non-mucinous/mucinous regions was visualized as heatmaps
on the tissue thumbnails. We used a permutation test with 1000 iterations to compare the
differences between the ROC curves when the comparison was necessary [21].

3. Results

In the present study, we tried to build a system to discriminate subclasses of GC
tissues. To this end, separate classifiers to discriminate the normal/tumor tissues, differ-
entiated/undifferentiated tumor tissues, and non-mucinous/mucinous tumor tissues in
stomach tissue slides were built to characterize stomach cancer tissues. After removing
various artifacts and background with the tissue/non-tissue classifier, tumor patches with
high tumor probability (tumor probability higher than 0.9) were selected (Figure 1C middle
panel). Then, the differentiated/undifferentiated or non-mucinous/mucinous classifiers
were applied to the tumor patches (Figure 1C right panel). The classification results were
overlapped on the image of the whole tissue as a colored heatmap to clearly delineate the
distribution of the different subclasses of cancer tissues.

The classification results for the differentiated/undifferentiated tumor tissues are
described in Figure 2. Different composition of differentiated/undifferentiated tumor
tissues in a GC tissue slide was easily identifiable with the heatmap visualization: mainly
differentiated tumor tissue (Figure 2A), mainly undifferentiated tumor tissue (Figure 2B),
and mixed tumor tissue (Figure 2C). In comparing the classification results for the test
dataset with the pathologists’ annotation, the ROC curve for the patch-level classifica-
tion results could be obtained (Figure 2D). The AUC for the ROC curve was 0.932 for
the differentiated/undifferentiated discrimination. The differentiated/undifferentiated
classifier showed a relatively poor performance compared to the normal/tumor classifier
(AUC = 0.993, p < 0.01 between the normal/tumor and differentiated/undifferentiated
classifiers by Venkatraman’s permutation test for unpaired ROC curves).

Non-mucinous/mucinous classification results are shown in Figure 3. There were
mainly non-mucinous tumor tissues (Figure 3A), mainly mucinous tumor tissues (Figure 3B),
and relatively mixed tumor tissues (Figure 3C). The AUC for the ROC curve was 0.979
for the non-mucinous/mucinous classifier. This result was better than the differenti-
ated/undifferentiated classifier (p < 0.05 by Venkatraman’s permutation test for unpaired
ROC curves).

http://tensorflow.org


Cancers 2021, 13, 3811 5 of 11

Figure 2. Results for the differentiated/undifferentiated classification on the TCGA-STAD dataset.
(A) A representative heatmap overlaid on a tissue slide image demonstrating a mainly differentiated
tumor tissue. (B) A representative heatmap overlaid on a tissue slide image demonstrating a
mainly undifferentiated tumor tissue. (C) A representative heatmap overlaid on a tissue slide image
demonstrating a mixed tumor tissue. (D) The patch-level area under the curve (AUC) for the receiver
operating characteristic curve of the differentiated/undifferentiated classifier.

Figure 3. Results for the non-mucinous/mucinous classification on the TCGA-STAD dataset. (A)
A representative heatmap overlaid on a tissue slide image demonstrating a mainly non-mucinous
tumor tissue. (B) A representative heatmap overlaid on a tissue slide image demonstrating a mainly
mucinous tumor tissue. (C) A representative heatmap overlaid on a tissue slide image demonstrating
a relatively mixed tumor tissue. (D) The patch-level area under the curve for the receiver operating
characteristic curve of the non-mucinous/mucinous classifier.
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The classifiers can be used for the quantitative description of the tumor tissues
(Figure 4). By applying the normal/tumor classifier, the proportion of tumor tissues
in the total tissue area can be obtained. For example, there are tumor proportions of
84.2%, 92.5%, and 54.1% in the tissues of Figure 4A, B, and C, respectively. Since the
total area of the tissues can be easily calculated from the resolution of the WSIs and
the number of tissue patches, we can also calculate the tumor area with the tumor pro-
portion. Then, the differentiated/undifferentiated proportion of the tumor tissue can
be obtained via the differentiated/undifferentiated classifier. Their distribution in the
tissues can also be easily identified with the heatmaps (Figure 4 middle panels). Fi-
nally, the non-mucinous/mucinous classifier can delineate the mucinous tumors. By
combining the differentiated/undifferentiated and non-mucinous/mucinous classifiers,
the non-mucinous-differentiated, non-mucinous-undifferentiated, mucinous-differentiated,
mucinous-undifferentiated areas can be identified (Figure 4 right panels). Therefore, the
proportion of subclasses of cancer tissues in a tissue slide can be quantitatively described
and delineated with the sequential application of our tissue/non-tissue, normal/tumor,
differentiated/undifferentiated, and non-mucinous/mucinous classifiers.

Figure 4. Quantitative evaluation of the subclasses in gastric cancer tissues. (A) A representative cancer tissue consisting of
mainly undifferentiated and mucinous tissues. (B) A representative cancer tissue consisting of mainly differentiated and
mucinous tissues. (C) A representative cancer tissue consisting of mixed differentiated, undifferentiated and non-mucinous
tissues. The relative proportion of each subclass was calculated. Grey shades indicate the major components.

One important aspect of DL application is the generalizability of a model for external
datasets that were not exposed during the training session. Although the test sets in the
TCGA dataset were not exposed during the training, they may share specific features
with the training dataset that may not be very generally applicable outside the TCGA
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dataset. Therefore, a completely different dataset is necessary to test the generalizability
of a trained model. We tested the classifiers on the SSMH dataset. In a previous study,
we showed that the normal/tumor classifier for the TCGA FFPE stomach cancer tissues
showed similar performance for the SSMH dataset (AUC = 0.991) [20]. In the present study,
we tested the generalizability of the TCGA-trained differentiated/undifferentiated and non-
mucinous/mucinous classifiers on the SSMH dataset. The AUCs for the ROC curves for
the patch-level classification results were obtained by comparing the classification results
for the SSMH dataset with the pathologists’ annotation on the SSMH dataset. The AUCs
were 0.895 and 0.953 for the differentiated/undifferentiated and non-mucinous/mucinous
classifiers, respectively (Figure 5). The performance was comparable to the result for the
TCGA test dataset (p = 0.119 and p = 0.203 for the differentiated/undifferentiated and
non-mucinous/mucinous classifiers, respectively, by Venkatraman’s permutation test for
unpaired ROC curves). The classification results for the TCGA and SSMH datasets are
summarized in Supplementary Table S2.

Figure 5. Extra validation of the classifiers trained with the TCGA dataset. (A) Classification
results of the differentiated/undifferentiated classifier on the SSMH stomach tissues. Left panel:
A representative gastric cancer tissue with mixed differentiated/undifferentiated tumor tissues.
Right panel: The patch-level area under the curve (AUC) for the receiver operating characteristic
(ROC) curve of the differentiated/undifferentiated classifier. (B) Classification results of the non-
mucinous/mucinous classifier on the SSMH stomach tissues. Left panel: A representative gastric
cancer tissue with mixed non-mucinous/mucinous tumor tissues. Right panel: The AUC for the
ROC curve of the non-mucinous/mucinous classifier.

The two pathologists (S.H.L. and I.H.S.) identified 182 differentiated, 151 undifferenti-
ated, and 63 mixed WSIs from the TCGA dataset and 90 differentiated, 96 undifferentiated,
and 46 mixed WSIs from the SSMH dataset (Figure 6A). The ROC curves for the slide-
level classification results of the differentiated/undifferentiated classifier are presented in
Figure 6B.
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Figure 6. Slide-level classification results of the differentiated/undifferentiated classifier for the
TCGA and SSMH datasets. (A) Pathologists’ classification for the TCGA and SSMH datasets. (B)
The slide-level receiver operating characteristic (ROC) curves of the differentiated/undifferentiated
classifier for the TCGA and SSMH datasets.

4. Discussion

In the present study, DL-based classifiers were applied to discriminate the subclasses
of GC tissues. We showed that this method can aid the quantitative evaluation of cancer
tissues. This quantitative evaluation can be used in future studies for a deeper understand-
ing of the prognostic and therapeutic significance of tumor subclass composition in GC.
DL-based methods will be able to substitute the manual quantitative evaluation of the
whole slides by pathologists, which is too laborious for routine application.

The differentiated/undifferentiated classifier yielded relatively poor performance
compared to the normal/tumor and non-mucinous/mucinous classifiers. This result is
surprising considering that the training of the differentiated/undifferentiated classifier
had ten times more patches than the training of the non-mucinous/mucinous classifier.
This result reflects the relative difficulty of the discrimination of the differentiated and
undifferentiated cancer tissues. In some cases, discrimination between differentiated and
undifferentiated tissues can be confusing [22]. Although the two gastrointestinal patholo-
gists cooperated to make agreed annotations for the differentiated and undifferentiated
cancer tissues, there will be grey areas that cannot be clearly discriminated because many
mixed tumors have transition borders. The absence of a gold standard for differentiated
and undifferentiated discrimination in the grey area was reflected in the DL-based classifier
and the poorer performance of the differentiated/undifferentiated classifier. In fact, many
misclassified patches came from the transition borders between the differentiated and
undifferentiated cancer tissues, which were overlaid with a greenish color in the differ-
entiated/undifferentiated probability heatmaps (Supplementary Figure S1). Therefore,
the main discrimination power of the differentiated/undifferentiated classifier would be
acceptable.

The histological type is known to be one of the most important factors in determining
endoscopic treatment in EGC and chemotherapy for the advanced stage of GC. It is widely
accepted that the risk of LNM is higher in patients with undifferentiated-type EGC than
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those with differentiated EGC, and therefore the indication criteria for endoscopic resection
are more restricted in undifferentiated-type EGC [23,24]. Likewise, the histological type is
a critical factor for the prediction of prognosis, recurrence patterns, and chemosensitivity
in patients with advanced GC [25,26]. In addition, several recent studies demonstrated
that mixed histology type in EGC is a risk factor for LNM [27–29]. Komatsu et al. showed
that mixed histological type is itself an independent risk factor for LNM in EGC and that
patients with mixed-type EGC showed significantly lower survival rates than patients
with pure differentiated or undifferentiated types [28]. Furthermore, Lee et al. analyzed
the relationship between the proportion of the undifferentiated-type components and
LNM in EGC. They demonstrated that the presence of minor undifferentiated-type (>10%
of total tumor volume) components should be considered when assessing the curative
resection status of endoscopic resection for differentiated-type mucosal GC [29]. Moreover,
Yuan et al. suggested that the clinical outcome of mucinous adenocarcinoma was far
poorer than that of non-mucinous GC [30]. Given these results, the automatic classification
of differentiated/undifferentiated and non-mucinous/mucinous tumor types and the
calculation of the approximate composition ratio of each component is of great use for
predicting the clinical outcomes of patients with GC.

GC is highly heterogeneous in both inter- and intra-tumor levels [31,32]. Studies for
spatial tumor heterogeneity have been exploding in prevalence because of the emergence
of molecular methods with high spatial specificity such as multi-region sequencing and
single-cell sequencing [33,34]. However, a random sampling of tissues for these molecular
tests would be inefficient. If candidate regions of molecular heterogeneity in a tissue slide
could be identifiable before the tests, molecular testing could be more specific and efficient.
DL-based tissue classifiers can help to investigate the spatial tumor heterogeneity by
visualizing morphologically and molecularly heterogeneous regions in a tissue slide [35]. In
previous studies, we could visualize the molecularly heterogeneous regions with different
mutational or microsatellite instability status using DL-based classifiers [18,19]. In the
present study, morphologically heterogeneous regions could also be discriminated. These
DL methods can be used to determine the target regions for molecular tests to investigate
the tumor heterogeneity more efficiently.

Although the DL-based classifiers showed promising applicability, there are some
limitations. First of all, the black-box nature of DL limits the interpretability of DL models
and remains a significant barrier in their validation and adoption in the clinic [36,37].
Recent efforts for explainable artificial intelligence will help to solve this problem [38].
In addition, the model should be validated with well-curated multi-national and multi-
institutional datasets to secure generalizability. Currently, huge annotated datasets of
digital pathology slides are not available for validation. However, many countries started
to build nationwide datasets of tissue slides for various cancers. Therefore, the sizeable,
well-curated data will soon be available for both the training and validation of DL models.
Then, the performance and generalizability of DL-based tissue classifiers can be enhanced.

5. Conclusions

DL-based digital pathology tools have the potential to be integrated into routine
pathology workflow to minimize subjectivity and enhance the accuracy of diagnosis and
to provide more quantitative information on the tissue slides [39,40]. This information
could help to improve our understanding of the prognostic value of tissue slides and the
additional information will also support therapeutic decisions. Although there are still
hurdles to overcome with the adoption of DL-based assistant tools, the accumulation of
data and the evolution of DL algorithms may eventually open the era of computer-aided
decision support for clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13153811/s1. Figure S1: The differentiated/undifferentiated probability heatmaps.
Table S1: Summary of TCGA and SSMH data. Table S2: Classification results of the TCGA and SSMH
datasets by the deep-learning-based classifiers.
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