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Inflammatory activation and/or dysfunction of the glomerular endothelium triggers

proteinuria in many systemic and localized vascular disorders. Among them are

the thrombotic microangiopathies, many forms of glomerulonephritis, and acute

inflammatory episodes like sepsis and COVID-19 illness. Another example is the

chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic

disorders like diabetes. While the glomerular endothelium is a porous sieve that filters

prodigious amounts of water and small solutes, it also bars the bulk of albumin and large

plasma proteins from passing into the glomerular filtrate. This endothelial barrier function

is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer,

that together form a relatively thick, mucinous coat composed of glycosaminoglycans,

proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted

and circulating proteins. The glycocalyx/endothelial surface layer not only covers the

glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx

components span or are attached to the apical endothelial cell plasma membrane

and form the formal glycocalyx. Other components, including small proteoglycans and

circulating proteins like albumin and orosomucoid, form the endothelial surface layer and

are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound

plasma albumin is a major constituent of the endothelial surface layer and contributes to

its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular

capillary wall to protein filtration has been demonstrated by many elegant studies.

However, it can only be fully understood in the context of other components, including the

glomerular basement membrane, the podocytes and reabsorption of proteins by tubule

epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial

surface layer disruption within glomerular capillaries will hopefully lead to pharmacological

interventions that specifically target this important structure.

Keywords: endothelial surface layer, endothelial dysfunction, fenestrae, glycocalyx, hyaluronan, permselectivity,

proteoglycans, thrombotic microangiopathy

INTRODUCTION

Albuminuria is the hallmark of essentially all disorders affecting renal glomeruli. In some cases,
endothelial cell (EC) injury predominates, for instance the hemolytic uremic syndrome (HUS)
(1), thrombotic thrombocytopenic purpura (TTP) (2), pre-eclampsia (3, 4), and nephrotoxicity
due to VEGF inhibitors (5). Transient proteinuria also accompanies generalized EC activation, in
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the presence of sepsis (6) or viral infections (7, 8).
Microalbuminuria is a feature of widespread EC dysfunction
in diabetes (9, 10) and in cardiovascular disease, where it is a
predictor of cardiovascular risk (11–19). EC activation and injury
also contributes to proteinuria in many glomerulonephritides
and vasculitides affecting glomeruli. This review will tackle the
question to what extent the glomerular endothelium contributes
to the glomerular capillary wall (GCW) barrier preventing
filtration of albumin and other circulating macromolecules.
It will review the molecular components of this part of the
glomerular capillary barrier (GCB) followed by an exploration
of some human diseases in which glomerular EC injury or
dysfunction leads to proteinuria. Due to space limitations
components of the endothelial glycocalyx that govern
complement activation, coagulation and inflammatory cell
adhesion and transmigration will not be reviewed in detail.

It is useful to recall that without a glomerular barrier to
macromolecule filtration, the potential filtered load of albumin
would be 3–5 g/min (∼4–7 kg/24 h) in human adults, assuming
a plasma albumin concentration of 40 g/L and a glomerular
filtration rate (GFR) in the range of 75–125 ml/min. Given
the upper limit for urinary albumin excretion of 30 mg/24 h
in normal adults, it follows that <0.001% (∼ 1/100,000) of
the potential filtered load of albumin is excreted in the urine.
Indeed, even with severe nephrotic syndrome, urinary albumin
loss usually represents <1% of the potential filtered load. Thus,
extraordinarily effective mechanisms prevent urinary loss of
albumin and other circulating macromolecules.

THE GLOMERULAR CAPILLARY WALL
BARRIER

The Glomerular Sieving Coefficient (θ) for
Albumin (gθAlb) and Other Macromolecules
The GCW sieving coefficient, gθ, is defined as the ratio of
the Bowman’s space to plasma concentration for any given
molecule. Since the GCW prevents macromolecule filtration
despite its large hydraulic conductivity (water permeability), gθ
for macromolecules is usually much lower than 1 and depends
on size, charge, and shape of the macromolecule. It should also
be noted that proximal tubule albumin reabsorption contributes
to the low urinary albumin concentration. Hence, gθAlb can only
be determined from urinary albumin levels if the modification
of urine by proximal tubule cells is blocked. Alternatively,
the albumin/tracer concentration in Bowman’s space or early
proximal tubule must be quantified. Functional models of the
GCW (20–24), derived from experimental sieving data for
infused tracers like ficoll (25–28), dextran (29–31), albumin (32–
34) or endogenous circulating proteins (28, 35, 36), suggest that
the GCW functions as a composite gel-like mesh with a high
density of pores having a radius in the 45–50 Å range, a few
large pores with radii of 75–155 Å, and a negatively charged
layer at the blood/endothelial interface with a charge density of
∼35–45 mEq/L (22). Taking into account these experimentally
derived parameters, a mathematical model predicted a gθAlb of
2 × 10−3 (a ratio of ultrafiltrate: plasma albumin of 2: 1,000)

(22). In fairly close agreement, the best measured estimate of
gθAlb obtained by micropuncture in rats was 6.2 × 10−4 (0.62:
1,000) (33), and gθAlb derived from radiolabeled albumin tracer
studies (34) was 6× 10−4. More recent quantification of gθAlb by
intravital two-photon fluorescence microscopy in rats has varied
more widely: 0.034 (37), 0.014 (38), 0.002–0.004 (39) and 0.00044
(40). It appears that technical limitations account for some of
the higher values by this approach (39, 41). Norden et al. (36)
studied humans with the Fanconi syndrome due toDent’s disease,
in whom proximal tubule albumin reabsorption is negligible, and
found that gθAlb averaged 7.7 × 10−5. Similarly, when megalin
and cubulin were conditionally deleted in mice (42, 43), gθAlb
was estimated at 7.5 × 10−5 and 1.7 × 10−5, respectively. In
suchmice, streptozotocin diabetes (43) or superimposed podocin
(42) deletion resulted in a significant increase in gθAlb. Since
proximal tubule uptake of albumin was completely absent in
megalin/cubulin deficient mice (42), these data, taken together
with those from rats and humans, indicate that ∼0.01–0.1%
of plasma albumin passes through the GCW into Bowman’s
space. In normal humans therefore, an estimated 500–5,000mg
of albumin are filtered each day (44). Proximal tubule uptake then
reduces excretion to <30 mg/day.

Size and Charge Selectivity
Mathematical models of sieving data (20, 24, 25, 35, 45, 46) agree
that the GCW is best described as a hydrated gel that hinders
entry and movement of macromolecules based on size, shape,
flexibility and charge (21, 22). Gaps in the gel that allow relatively
free filtration of water and small solutes are modeled as abundant
small “pores” with amolecular radius cutoff in the 45–50 Å range.
The models include a small number of larger “pores” to account
for the transit of a small fraction of large macromolecules.
It turns out that the shape and flexibility of macromolecules
influence movement through the small, abundant gaps given
that large, elongated uncharged carbon nanotubes seem to be
filtered relatively freely (47). Recent data furthermore suggest
that compression of GCW components against intact podocytes
may influence the size of gaps in the gel and therefore the
molecular size cutoff (48). Abundant experimental data in
animals (25–27, 30, 34, 49–52) and humans (20, 29) and ensuing
mathematical models (20, 22, 27, 53–56) have concluded that for
molecules like albumin whose size is close to the 45–50 Å radius
cutoff, negative charge also impedes movement into and through
the gel, compared to the same or similar neutral molecule.
Conversely, neutralization of negative charges in the GCW with
cationic protamine sulfate (57, 58), hexadimethrine (34, 59)
or their removal with neuraminidase/sialidase (60, 61) which
strip sialic acid from the GCW, all increase albumin excretion
rapidly and reversibly. However, because these interventions
also cause structural changes in podocytes and glomerular EC,
the cause-effect relationship specifically between the reduction
in GCW negative charge density and albuminuria was not
proven. Nonetheless, infusion of enzymes to destroy negatively
charged glycosaminoglycans (GAGs) also increase the fractional
clearance of albumin across the GCW (62, 63), even without
changes in EC or podocyte ultrastructure. By contrast, in isolated
GBM, no change in albumin permeability was observed when
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negative charges were neutralized with protamine (64), and the
substantial reduction of GBM negative charges due podocyte-
specific deletion of agrin ± perlecan (65), or the heparan sulfate
glycosyltransferase EXT1 (66) raise albumin excretion only
minimally. While a change in gθAlb in the knockout mice could
have been masked by proximal tubule albumin reabsorption,
the results nevertheless cast some doubt on the possibility that
“fixed negative charges” located in the GBM play a major role in
charge selectivity.

Location of the GCW Albumin Barrier
The first detailed transmission electron microscopy (TEM)
studies of glomeruli caused Farquhar (67) to rule out the
glomerular endothelium as a component of the barrier because
its fenestrae, lacking visible proteinaceous diaphragms, seemed
simply too large to restrict anything smaller than circulating
cells. Hence, the glomerular basement membrane (GBM) (68)
and podocyte filtration slit diaphragms were held to be the
main barrier to macromolecule filtration, with charge selectivity
assigned to the GBM (46, 69, 70). This deduction was
strengthened by findings of negatively charged sites within the
GBM (71–73), congruent functional studies showing charge
selectivity of the GCW (34, 51, 74), and the fact that disorders
affecting podocytes or GBM all lead to proteinuria (75).

Nonetheless, the concept that the GBM and podocyte slit
diaphragm constitute the main barrier to GCW protein flux
cannot be reconciled with the fact that bulk convective transit
of macromolecules through wide open glomerular endothelial
fenestrae would rapidly clog the filter unless high-capacity
mechanisms returned them, intact, to the circulation (76, 77).
While podocytes endocytose and degrade albumin and other
macromolecules (78), this mechanism does not have the capacity
to deal with a daily load of albumin in the 4–7 kg range. Long
albumin and immunoglobulin half-lives and a low renal albumin
degradation rate (79) are also inconsistent with removal and
degradation of massive quantities macromolecules by podocytes.
Farquhar (67) suggested that macromolecules pass through the
endothelium into the GBM and sub-podocyte space and then
are swept into the mesangium. However, bulk transit of plasma
proteins through the mesangium back into the circulation has
never been demonstrated, and glomerular lymphatics that would
be needed to clear them from the mesangium have not been
found (80).

It turns out that under physiological conditions, endogenous
albumin (81, 82), or infused gold-conjugated albumin (68),
actually do NOT penetrate glomerular endothelial fenestrae,
leading to the more attractive conclusion that a barrier covering
the endothelium and extending into endothelial fenestrae retains
all but a small fraction of albumin and other large proteins
within the circulation. Indeed, disruption of glomerular EC
adherens junctions by EC-specific notch1 activation or VE-
cadherin deletion results in glomerular EC glycocalyx damage
and significant proteinuria (83), implying that fully differentiated
glomerular EC with intact adherens junctions and glycocalyx are
critically important components of the GCW barrier. No doubt,
as detailed by comprehensive models of GCW permselectivity
(48, 84–87), one cannot consider any single GCW component

in isolation (88), but the role of the glomerular endothelium in
GCW permselectivity, for which data were already accumulating
in the 1980’s (9, 89) is only now becoming widely accepted
(10, 53, 88, 90–95).

PHYSICAL STRUCTURE OF THE
GLOMERULAR EC GLYCOCALYX AND
SURFACE LAYER

The EC glycocalyx consists of proteoglycans, sialomucins, other
glycoproteins and glycolipids, all anchored to EC plasma
membrane. Molecules in the EC glycocalyx interact with and
extend into the sub-endothelial GBM and into a luminal
endothelial surface layer (ESL). The ESL is composed of secreted
and circulating molecules that associate reversibly with the
luminal EC glycocalyx, forming a hydrated, loose gel-like layer
between blood and EC glycocalyx. These delicate EC surface
components are destroyed by tissue processing for conventional
electron microscopy (EM) due to their hygroscopic nature, and
perfusion and oxygenation are required for their stability (81, 96).
The luminal EC glycocalyx and the ESL were therefore not
appreciated until appropriate techniques for their visualization
and quantification were developed.

Visualization of the EC Glycocalyx
With conventional processing for transmission or scanning EM
the glomerular endothelium has the appearance of a sieve,
with fenestrae ∼60–80 nm (600–800 Å) in diameter accounting
for ∼30% of the glomerular EC surface area. Glomerular EC
fenestrae are plasma membrane-lined, transcellular pores that
lack the proteinaceous PV-1-based diaphragms observed in
most other fenestrated endothelia (97). The size and density of
glomerular EC fenestrae accounts for the enormous hydraulic
conductivity of the GCW (98). Any decrease in their density
and/or size leads to a reduction in GFR, for instance in
experimental models of uranyl nitrate (99) and gentamicin (100)-
induced acute renal failure, streptozotocin induced diabetes
(101), and in humans with diabetes (102) and preeclampsia (103).

The radius of glomerular EC fenestrae is much larger than
the effective radius of circulating macromolecules that are not
filtered, for instance orosomucoid (29 Å), albumin (36 Å),
Transferrin (43 Å), IgG (55 Å), α2-macroglobulin (90 Å) and
fibrinogen (108 Å) (35, 104), so they were initially assumed to
allow their free convective movement into the GBM. Yet, studies
in non-glomerular capillaries had suggested that EC fenestrae
are impermeant to macromolecules (104), and Luft (105) found
that EC do not present a “naked” surface to circulating plasma,
given that perfused electron-dense ruthenium red accumulated
on the EC luminal surface revealing an anionic coat. Avashi
and Koshy (106) perfused kidneys with ferritin, a multimer
∼120 Å nm in diameter, so much smaller than glomerular EC
fenestrae. Cationic ferritin densely decorated the glomerular EC
surface and the core of fenestrae and did not penetrate into
the GBM. Anionic ferritin was completely excluded from the
EC surface and the GBM, indicating that the EC coat excludes
negatively charged macromolecules. Furthermore, adhesion of
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cationic ferritin was removed by neuraminidase and reduced
by heparinase and hyaluronidase without change in EC or
podocyte ultrastructure. The authors concluded that “glomerular
endothelial fenestrae are not empty holes” but “are occupied by
an anionic matrix that is visualized only following the binding
of an electron-dense tracer. In this respect the matrix in the
fenestrae is similar to the glycocalyx at the external surface
of cells which also remains invisible in unstained preparations”
(106). Rostgaard and Qvortrup (96) extended these observations
using oxygen-carrying perfusion fixation and tannic acid/uranyl
acetate staining. They observed “sieve plugs” in fenestrae of
intestinal and peritubular capillary EC, and a similarly stained
layer covering the EC. But in glomerular EC the same procedure
revealed only a delicate ∼300 nm thick surface coat (96).
Hjalmarsson et al. (107) reported a colloidal lanthanum labeled
∼60 nm thick EC glycocalyx that was revealed in oxygen-carrying
perfusion fixed, tannic acid-stained tissue. They observed a
thicker ∼200 nm coat ascribed to glycocalyx plus ESL. In their
study, cupromeronic blue stained tissue showed a semi-ordered
proteoglycan network within the fenestrae (107). In glomerular
EC, Hegermann (108) recently visualized an amorphous 200–
300 nm thick layer with alcian blue. With cationic colloidal
thorium they observed an electron-dense layer that filled the
fenestrae, extended from the EC surface by 50 to 300 nm and
was organized into bundles that were about 50 nm wide at the
EC surface, with sub-organization into wider and wider bundles
as they moved away from the surface. They concluded that the
glycocalyx proper represents bundles of proteoglycans that are
anchored to the EC plasmamembrane and extend vertically from
the cells toward the capillary lumen (Figure 1). These findings
are consistent with those by Squire et al. (109) in non-glomerular
EC, who reported vertically organized bundles extending from
the EC surface, intertwined with horizontal strands forming a
lattice with gaps that could account for size-selectivity. Indeed,
Fan et al. (110) were able to visualize hyaluronan (HA) and
heparan sulfate (HS) at the single molecule level in cultured EC,
using stochastic optical reconstructionmicroscopy (STORM), i.e.
a super-resolution imaging technique with a resolution of 20 ×

50 nm. They reported that HS bundles extend vertically from the
EC surface and are intertwined with horizontally arranged, long
HA strands to form an organized lattice-like network on the EC
surface (110, 111).

Defining the Height of the ESL
It could still be argued that tissue processing and deposition
of electron-dense material for transmission EM could produce
artifact that might overestimate the dimensions of the EC
glycocalyx and/or might remove the ESL. To assess the
thickness of the EC glycocalyx/ESL the zone of exclusion for
RBCs or fluorescently labeled tracers above the EC plasma
membrane is therefore commonly determined. For instance,
in hamster cremasteric muscle capillaries, the exclusion zone
for dextran 70 and RBCs was found to be 400–500 nm (112),
and was significantly reduced by hyaluronidase, and partially
reconstituted hyaluronan or chondroitin sulfate infusion (113).
In renal glomerular capillaries, the zone of exclusion for infused
intralipid droplets was ∼200 nm and was also significantly

reduced by enzymes that cleave glycosaminoglycans (114)
and by elution of ESL components with hypertonic NaCl
(115). Evaluation of the EC glycocalyx/ESL thickness is now a
commonly used technique in human clinical research (116) and
has helped define changes in the height of the glycocalyx/ESL
in disease.

Hence, all EC surfaces are covered by an organized glycocalyx
and an associated ESL. These form an anionic surface that
results in repulsion of anionic macromolecules as well as the
anionic glycocalyx of circulating cells. The anionic EC glycocalyx
extends into the fenestrae, forming a semi-permeable matrix
that allows rapid filtration of water and small solutes, but not
macromolecules. The lattice-like arrangement of the EC coat
furthermore suggests that it participates in size-selectivity of the
GCW. It is already well-established that immune-activation of
EC changes its glycocalyx, breaching the normal glycocalyx/ESL
(116), allowing EC interactions with circulating cells and platelets
and facilitating thrombosis (117). Under those conditions it is
therefore expected that permselectivity is also reduced.

MOLECULAR COMPONENTS OF THE EC
GLYCOCALYX

The EC glycocalyx is composed membrane-anchored
proteoglycans and sialomucins that in conjunction with
secreted, hyalectin-bound hyaluronan (HA) form an organized,
extremely hydrated lattice-like gel. Many membrane-anchored
glycoproteins embedded in the glycocalyx serve as receptors for
cytokines, growth factors and as counter-receptors for circulating
cells (117). The ESL, on the other hand is a concentrated layer
of circulating and EC-secreted proteins, glycoproteins, small
proteoglycans and other macromolecules, that is in dynamic
equilibrium with the circulation (118).

Glycosaminoglycans
The structure and function of the EC glycocalyx depends
critically on its glycosaminoglycan (GAG) composition. GAGs
are long, unbranched polymers of repeating disaccharides, each
consisting of an amino sugar (N-acetylglucosamine or N-
acetylgalactosamine) and either a galactose or uronic acid sugar
(Figure 1A). Due to their high hydroxyl and sulfate content,
GAGs are negatively charged; they bind large amounts of water,
critical for their viscoelastic properties; they repel negatively
charged molecules like albumin and they often serve as co-
receptors for growth factors and cytokines. In the luminal
EC glycocalyx GAGs confer anti-coagulant properties, they
repel circulating cells, and they impart the charge barrier to
the endothelium. Heparan sulfate (HS), chondroitin sulfate
(CS)/dermatan sulfate (DS) and keratan sulfate (KS) GAGs are all
assembled on core proteins of distinct proteoglycans. Hyaluronic
acid (HA; aka hyaluronan) (119) is the only GAG synthesized
outside the Golgi as a stand-alone polysaccharide composed of
non-sulfated N-acetylglucosamine/glucuronic acid disaccharide
repeats. HS (120), the most abundant GAG in the EC glycocalyx,
consists of N-acetylglucosamine/uronic acid repeats, CS GAGs
(121) consist of N-acetylgalactosamine/glucuronic acid and
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FIGURE 1 | Components of the EC glycocalyx and ESL. (A) Structure of glycosaminoglycan chains. (B) Example of a branched, sialylated oligosaccharide side-chain.

(C) Schematic representation of hyaluronan synthase (HAS)-mediated hyaluronan synthesis at the cell membrane. (D) Schematic representation of major EC

glycocalyx components. (E) Schematic representation of major ESL components. (F) Artistic representation of the dense, bundled glycocalyx component. (G)

Transmission EM image of a glomerular capillary wall with superimposed artistic representation of the glycocalyx (orange) and ESL (blue) thickness.

KS (122). GAGs are composed of N-acetylglucosamine/galactose
disaccharide repeats (Figure 1A). Addition of GAG chains to
proteoglycans in the Golgi is initiated by specific glucuronyl
transferases that covalently couple a bridging tetrasaccharide
through O-linkage on serine or threonine or N-linkage on
asparagine, followed by elongation of the polysaccharide chain
and subsequent position-specific modifications through de-
acetylation/sulfation and epimerization. For instance, within
the initial HS polymer, epimerization converts some of the
glucuronic acids to iduronic acid (123) and de-acetylation

converts some of the N-acetylglucosamine to glucosamine.
Similarly, CS is converted to DS through epimerization of
glucuronic to iduronic acid. For proteoglycans, structural and
functional diversity is therefore not only due to their different
protein cores, but also the GAG type, the number and
length of their GAGs, as well as position-specific epimerization
and sulfation. Since enzymes involved in GAG-core protein
attachment, chain elongation and modification serve multiple
proteoglycans, any mutations or deletion in the many enzymes
that carry out these functions tend to have different, and often
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more severe phenotypes than mutations or deletion of any one
proteoglycan core protein (124).

Cleavage by enzymes that are GAG-specific, namely
hyaluronidases, heparinase and chondroitinase have been used
extensively to define the functional role of GAGs in the GCW
and EC glycocalyx, and shedding of HA and EC cell-surface
proteoglycans (125) into the circulation due to endogenous
enzymes is used as an indicator of glycocalyx damage (126, 127).

Hyaluronic Acid/Hyaluronan
In vertebrates HA is produced by HA synthases encoded by three
distinct genes (HAS1-3). The HA synthases are integral plasma
membrane proteins with multiple membrane-spanning domains
(Figure 1C). The catalytic site within their hydrophilic core acts
as a polymerase, converting soluble intracellular UDP-GLcNAc
and UDP-GLcA to polymeric HA, simultaneously extruding
the growing polymer it into the extracellular space (128). The
length of the HA polymer varies from about 1,000 to 10,000
kDa. The rate of HA synthesis depends on the availability
of substrate sugars (129), and conversely, high rates of HA
synthesis are associated with a shift of cellular metabolism to
glycolysis (130–132). HA binds to cell-surface receptors CD44
(133), RHAMM (receptor hyaluronan mediated motility) (134)
and the lymphatic EC receptor LYVE-1. The cytoplasmic domain
of CD44, a single pass membrane-spanning receptor, is coupled
to cortical actin by ERM (ezrin radixin moesin) proteins (135).
The interaction of CD44 with HA enhances EC barrier function
(136) and is necessary for transmission of shear force signals
that cause Rac1-dependent EC re-orientation (137), enhanced
nitric oxide synthesis (138) and increased HAS2 expression (129,
139). In keeping with luminal HA/CD44 interactions, HA loss
from the glycocalyx profoundly reduces shear-force induced NO
synthesis (140).

HA turnover is rapid and regulated, in part, through HA
degradation by hyal-1 and−2 (Hyaluronidase-1 and−2) and
by Cemip-1 and−2 (Cell Migration-Inducing hyaluronidase-
1 and−2; the latter also known as transmembrane protein
2/TMEM2) (131, 141). Hyal-2 is a GPI-anchored plasma
membrane-associated enzyme that cleaves CD44-boundHA. The
fragments are then internalized by the GAG scavenger receptor
HARE (142). The cemid1 (143) and−2 (144) hyaluronidases are
single-pass plasma membrane-spanning proteins that degrade
extracellular HA into small, bioactive extracellular fragments
(oHA). These oligosaccharides modify VEGF signaling in
EC (144).

HA polymers are hydrated with 15 H2O molecules per
disaccharide unit (145). At the apical/luminal EC surface HA
interweaves with other components of the glycocalyx/ESL (110,
134) and shear stress (129, 146) and inflammatory stimuli (147)
augment HA accumulation in the EC glycocalyx. HA binds
proteoglycans in the hyalectin family (see below) forming large,
patterned aggregates. A HA-versican lattice may in fact account,
at least in part, for the semi-ordered appearance of the apical
EC glycocalyx (108, 109), and perhaps also contribute to size-
selectivity of the GCW.

In systemic microvessels, destruction of HA by hyaluronidase
markedly reduces the height of the EC glycocalyx and its

macromolecular barrier function (113). Similarly, in glomerular
capillaries the height of the EC glycocalyx is reduced by
hyaluronidase infusion along with an increase in the fractional
excretion of albumin (114). EC-specific, conditional HAS2
deletion in mice reduced glomerular EC HA and cationic
ferritin labeling, along with progressive proteinuria, glomerular
EC ultrastructure changes and capillary involution (148).
Conversely, in the mouse streptozotocin model of diabetes
deletion of the HYAL1 gene reduced hyaluronidase activity,
preserved the EC glycocalyx and was associated with less
glomerular barrier disruption than in wild-typemice (149). These
findings are consistent with those in diabetic patients, where
higher levels of circulating HA and hyaluronidase were found
to be associated with the development of microalbuminuria
(150, 151), and where endothelial glycocalyx disruption was
associated with a substantial reduction in glomerular endothelial
HA content (148).

Endothelial Proteoglycans
Among many glycosylated proteins, proteoglycans are
distinguished by their very long, unbranched, sulfated GAG
sidechains usually accounting for at least 60% of their molecular
mass, the exception being perlecan, where the GAG chains
are a minor component (see below). Classification of distinct
proteoglycans is based on the structure of their protein core, the
type and number of associated GAG chains, and their molecular
interaction profile. Some proteoglycans are integral membrane-
spanning proteins, some are covalently bound to the outer leaflet
of the plasma membrane by GPI (glycosylphosphatidylinositol)
anchors, and others are secreted. The principal structural
glycocalyx proteoglycans in EC are membrane-spanning
syndecans, GPI-anchored glypicans and secreted perlecan and
versican. Other small, secreted proteoglycans are produced by
EC and participate in defining the dynamic EC phenotype. In
addition to their GAG chains, proteoglycans can also be modified
by branched oligosaccharide side chains, some terminated by
sialic acid. There currently is a paucity of data on potential effects
of such modifications on the properties of the glycocalyx/ESL.
Thus, future studies are needed to better understand their impact
on glomerular permselectivity.

Syndecans
Syndecans 1–4 are ubiquitous single-pass type I membrane-
spanning proteoglycans, with core proteins in the 20–45 kDa
range. The extracellular domains of syndecan-1 and−3 are
decorated by HS and CS GAGs, while syndecans-2 and−4
contain only HS GAGs. Their GAG-rich extracellular domains
interact with many growth factors, cytokines and extracellular
matrix proteins transmitting signals via their cytoplasmic
domains down several intracellular pathways (152–155). In EC,
syndecans act as co-receptors promoting angiogenesis (156–158)
and the EC response to inflammation (158–160). At the basal
surface of angiogenic EC, syndecan-1 is part of integrin/focal
adhesion complex (157, 161) that promotes angiogenesis, and
both syndecan-4 (162) and syndecan-1 (163) participate in
the EC remodeling response to shear stress. All syndecans are
expressed in cultured glomerular EC where they are part of the
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luminal/apical EC glycocalyx (127, 159, 164). In Zebrafish in vivo,
syndecan-3 is the main syndecan in glomerular EC (165).

The EC response to inflammation is characterized by
upregulation of syndecan expression (158, 160) and shedding of
syndecans from the glycocalyx into the circulation (125, 166),
resulting in less syndecan in the ESL (167). The increased
mRNA expression levels may be compensatory of the increased
shedding of proteins (168). Syndecan shedding is observed in
response to thrombin activation (166, 169), hypoxia, ischemia-
reperfusion injury (170) and in preeclampsia (171). In glomerular
EC, syndecan-4 shedding in response to IL-1β activation and
was mediated by matrix metalloproteinase-9 (127). Protease-
dependent syndecan shedding (126, 127, 160, 172, 173) produces
bioactive soluble syndecan fragments generally inhibiting the
inflammatory response (160). Syndecan shedding is now widely
recognized as a biomarker of EC glycocalyx disruption (174)
and is associated with a reduced glycocalyx thickness and a
reduced barrier function resulting in edema formation and
albuminuria (175). While cleavage of HS and CS GAGs reduces
the size and barrier of the glycocalyx in glomerular and non-
glomerular EC, endothelial-specific deletion of syndecan 1 alone
only reduced the height of the glycocalyx but did not change its
barrier function (176). In cultured EC, sphingosine-1-phosphate
(S1P) rescued shedding of syndecan-1 and glycocalyx GAGs
due to plasma protein depletion (177). Since S1P is presented
to EC by albumin, this was taken to indicate that the effect of
serum proteins on glycocalyx integrity may be mediated by S1P
(178, 179). Substantial syndecan shedding along with thinning
of the EC glycocalyx has also been reported in patients with
CKD where it correlates with markers of EC dysfunction (180).
Hence, the syndecans along with their HS GAGs are major
contributors to the EC glycocalyx thickness. Their shedding
signals EC glycocalyx dysfunction along with a reduction in the
EC glycocalyx barrier to protein filtration.

Glypicans
Glypicans (124, 181) are proteoglycans composed of 60–70 kDa
core proteins with heparan sulfate GAG side chains. The C-
termini of glypicans are attached to the plasma membrane
through GPI anchors. There are 6 glypican genes (GPC1-
6), among these, glypican-1 is predominant in EC (182).
Glypicans enhance fibroblast growth factor (FGF) (183), and
VGEF-dependent (182) cell proliferation, in turn stimulating
angiogenesis. Due to its GPI anchor, glypican-1 localizes to
lipid microdomains often referred to as rafts, and clusters in
response to shear stress in EC caveolae (184), where it activates
NO synthesis in response to traction forces (163, 185, 186). In
glypican-deficient mice, NO synthesis is markedly reduced, in
keeping with a major role of EC glypican-1 in signaling NO
synthesis (187). Conversely, the HS GAGs of glypican-1 undergo
non-enzymatic cleavage from their core protein by NO (124),
resulting in glypican-1 endocytosis and recycling (188). Reduced
NO synthesis, a hallmark of EC dysfunction in inflammatory
diseases and under conditions of increased oxidative stress, has
therefore been attributed to reduced EC glycocalyx glypican-1
function (174).

Versican
Versican and aggrecan, both abundant in the vasculature,
belong to the family of hyalectins (189), large, secreted CS-
containing proteoglycans that bind hyaluronan with high affinity
forming aggregates with substantial viscoelastic strength (190).
Like other proteoglycans, hyalectin GAGs bind growth factors
and cytokines, regulating their interaction with cell-surface
receptors, and their cleavage by proteases releases bioactive
fragments (189). In EC, synthesis of an HA-binding CS
proteoglycan by EC was first demonstrated by Morita et al.
(191) and versican was subsequently shown to be produced
by EC (192), including glomerular EC (164). Aggrecan is
synthesized by vascular smooth muscle cells and myofibroblasts
(193) but evidence for its synthesis by EC is lacking so far.
While versican is part of the subendothelial matrix where it
binds the matrix protein fibulin (194), it also localizes to the
apical/luminal EC surface where it binds hyaluronan which, in
turn, attaches to cell-surface CD44 (189). Co-localization of CS
GAGs and hyaluronan on the apical surface of immortalized
glomerular EC in culture has been documented and removal
of CS reduced the transendothelial resistance and increased
apical to basal albumin flux (195) indicating a role for CS
containing proteoglycans in the EC barrier function. In zebrafish,
versican was observed in glomerular EC and podocytes, and its
knockdown reduced the barrier function of the GCW (165).
Versican synthesis by cultured glomerular EC is inhibited by
puromycin aminonucleoside (164). Adriamycin in vivo similarly
reduced glomerular versican expression along with a profound
loss of glomerular EC glycocalyx/ESL thickness and an increase
in the sieving coefficient for albumin due to a charge defect (196).
A similar charge defect was associated with reduced glomerular
versican expression in diabetic mice (197). In aggregate, these
studies indicate that versican is part of the glycocalyx that
surrounds EC, and that its GAGs participate in glomerular
charge selectivity.

Perlecan
Perlecan is a massive proteoglycan whose protein core alone has
a molecular mass of ∼470 kDa and is composed of 5 distinct
functional domains (152, 198). Three GAG chains, which can be
HS, CS or KS, decorate the N-terminal perlecan domain, each
contributing another∼40 kDa to the overall molecular mass. The
C-terminus of perlecan interacts with transmembrane integrins.
Produced by all EC (164, 199), perlecan carries only HS GAGs
in EC, and is secreted into the subendothelial matrix and the
EC apical/luminal surface layer (199, 200). A host of molecular
interactions specific for each of the 5 perlecan domains have
been described, and proteolytic cleavage of perlecan produces
bioactive fragments (152, 198, 199). Relevant for EC is the pro-
angiogenic action of intact perlecan and the anti-angiogenic
function of endorepellin, the cleaved, soluble perlecan V domain
that inhibits VEGFR2 in EC (199). Perlecan functions as a
mechanosensor at the surface of chondrocytes where it transmits
shear stress signals produced by compression-induced fluid flow
in cartilage canaliculi. A similar function as a shear stress sensor
has been proposed for EC (152, 198), though is no proven so
far. Perlecan deletion in mice is lethal, but the knock-out mice
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are viable when perlecan is selectively rescued in chondrocytes
(201). In that model, EC perlecan is required for the appropriate
formation of EC cel-cell junctions and pericyte recruitment by
brain microvessels (201). In mice carrying a perlecan mutation
that precludes attachment of its GAG chains, no abnormalities
in glomerular structure or function were detected, and the
macromolecular GCW barrier function remained intact (65). So,
while perlecan is a major proteoglycan produced by EC, its GAG
components do not seem to confer charge-selective properties
to the GCW, and absence of perlecan GAGs do not impair
glomerular EC ultrastructure. Nonetheless, perlecan shedding
from the glycocalyx has been observed under conditions of EC
dysfunction. For instance, in patients with severe preeclampsia
circulating perlecan levels are significantly higher than in normal
pregnant women (202).

Small Leucine-Rich Proteoglycan Family
The (SLRP) family (203) includes decorin, biglycan and lumican
all produced by EC, including glomerular EC in culture (164)
and in vivo (204, 205). These SLRPs are characterized by a small
core protein (∼ 40 kDa) with few CS/DS or KS GAG chains
(206). They are secreted into the subendothelial matrix where
they interact directly with collagen, aiding in the structural matrix
organization and EC adhesion and migration (207). Lumican is
found in a high-salt eluate of renal vessels (115, 208), suggesting
that it is a major component of the ESL. The SLRPs interact
with, and regulate the function of TGF-β and its family members
and other growth factors (203). Most recently decorin was
shown to activate the autophagy pathway in EC (209). Decorin,
biglycan and lumican null mice have been created, but so far
roles in defining glomerular EC ultrastructure, thickness of the
glomerular EC coat, or glomerular permselectivity have not
been reported.

Endothelial Specific Molecule-1
Endothelial specific molecule-1 (ESM1, aka endocan) is a small,
secreted EC-specific CS/DS proteoglycan (210) induced by TNF-
α and IL-1β. It interacts with integrins and growth factors
and is involved in regulating angiogenesis. Its circulating levels
increase and correlate with microalbuminuria in patients with
hypertension (211).

Serglycin
Serglycin is a small proteoglycan expressed by EC, and
hematopoietic cells (212, 213) whose name refers to a
serine/glycine repeat domain that supports attachment of several
GAGs through O-linked glycation on Ser residues. At baseline,
serglycin is sequestered in intracellular granules and participates
in granule mobilization in response to inflammatory stimuli.
In activated EC, serglycin promotes cell-surface localization of
chemokine receptors (213, 214).

Endothelial Sialomucins
Sialomucins in the EC glycocalyx are integral plasma membrane
glycoproteins each with a single membrane-spanning domain, a
large extracellular “mucin” domain and a cytoplasmic domain
that interacts with cortical actin via ERM (ezrin radixin

moesin) proteins. Mucin domains are ser/thr/pro-rich regions
densely decorated by O-glycans initiated by core 1 β1,3
galatosyltransferase (215) and containing terminal sialic acids.
Silomucins largely accounting for the high sialic acid content of
the EC glycocalyx. Several sialomucins, including podocalyxin
(216, 217), endoglycan (218) (aka podocalyxin 2), CD34 (219),
and endomucin (220, 221) are expressed by EC, while podoplanin
is restricted to lymphatic EC (215). Sialomucins are sorted to
the apical/luminal surface (216, 222) of EC where they play a
repulsive role during embryonic vascular lumen formation (222,
223) and they repel circulating cells by virtue of their negative
charge (219). EC sialomucins (219) play a role in hematopoietic
precursor trafficking (219) and as counter-receptors for L-
selectin, though this latter function requires modification of
the O-glycan by carbohydrate 6-O-sulfotransferase restricted to
high endothelial venules (224). The potential role of sialomucins
the glomerular EC barrier to macromolecule flux has only
been studied indirectly, through infusion of neuraminidase
(60, 61, 95, 106, 225–227), which removes sialic acid from
the GCW and consistently results in albuminuria. However,
since podocytes also express the sialomucins podocalyxin and
podoplanin, it is possible that the neuraminidase-induced GCW
barrier results from stripping of sialic acid from both, EC and
podocyte sialomucins. Even so, in cultured EC, podocalyxin
knock-down markedly reduces the trans-endothelial resistance.
EC-specific podocalyxin deletion in mice alters EC structure
and reduces the EC barrier function in lung and brain in
the presence of pro-inflammatory stimuli (228–230). Global
podocalxyin deletion in mice is lethal due to a major podocyte
defect, though in these mice glomerular EC are also thickened
and lack fenestrae (231). Conditional deletion of the core 1
β1,3 galatosyltransferase, critical for sialylation of all sialomucins,
results in marked albuminuria (232). Finally, in children with
streptococcus pneumoniae associated HUS, neuraminidase-
mediated removal of sialic acid from sialoglycoproteins in the EC
glycocalyx likely plays a significant role in triggering intravascular
coagulation, hemolysis, and acute renal failure accompanied by
proteinuria (233).

CIRCULATING PROTEINS IN THE
ENDOTHELIAL SURFACE LAYER

The ESL refers to a layer of macromolecules that merges
with glycocalyx GAGs substantially increasing the separation
of freely flowing plasma from the EC surfce (118). The height
of glycocalyx with ESL is ∼250 nm in glomerular capillaries
(114), and up to 500–1,000 nm in systemic vessels (113). The
loosely bound macromolecules of the ESL, some secreted by EC,
others derived from circulating blood (Figure 1), are in dynamic
equilibrium with flowing plasma and are concentrated in the
zone above the glycocalyx due to the sieving effect.

The precise composition of the ESL is not known, though
it contains albumin, orosomucoid, lipoproteins, lipases,
complement components, and small proteoglycans secreted by
EC, like lumican (115). Removal of GAGs and terminal sialic
acids disrupts the interactions of ESL components with the
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glycocalyx proper, causing glycocalyx collapse and a reduction in
the zone of exclusion.

Albumin
Produced by the liver at a rate of∼10 g/day, albumin is the most
abundant circulating protein, with normal plasma concentrations
of 35–50 g/L and a half-life of 19–20 days. Encoded by a
single gene, human albumin is secreted as a monomeric non-
glycosylated polypeptide consisting of 585 amino acids (MW
∼66.5). A relatively high content of acidic amino acids and
fatty acid binding result in an estimated isoelectric point of 4.7–
5.8 (234). Hence, in physiologic solutions albumin is negatively
charged. Structural analyses (235–238) show that albumin is
not a simple sphere, but that it consists of 3 major domains,
each containing subdomains, with 17 intramolecular disulfide
bonds contributing to 3D folding. Normally, albumin assumes
a heart-shaped triangular structure (237) with a hydrodynamic
radius of 36.2 Å, though it can assume other conformations
depending on pH, including an expanded cigar-like shape with
a hydrodynamic radius of 61.5 Å (238). Were it not for its
negative charge, the structure of albumin and its ability to take on
different conformations suggest it could penetrate a meshwork
with mean pore radii in the range of 40–60 Å, like the glomerular
capillary wall (20). The albumin monomer contains hydrophobic
pockets that bind many lipophilic substances, among them
endogenous fatty acids, steroid hormones, thyroid hormone,
bilirubin, vitamins, and phytochemicals. Its binding affinity
for many drugs and its potential as drug carrier have been
extensively investigated. Non-enzymatic glycation of albumin
results in conformational changes that alter its interaction with
endogenous substances and drugs, increase its half-life and
reduce formation of albumin aggregates (38, 239).

While albumin flux across the endothelial glycocalyx and ESL
is highly restricted (81), albumin also associates with the ESL
and alters the endothelial barrier function. In vitro NMR studies
show interactions between albumin and hyaluronan resulting
in albumin/hyaluronan complexes that hinder the mobility
of albumin in solution (240). Albumin binds to immobilized
artificial glycocalyx composed of hyaluronan, heparan sulfate
and chondroitin sulfate GAGS though its binding affinity is
low (241). In cultured EC, albumin similarly associates with the
EC cell surface in a reversible fashion (242), and in perfused
frog mesenteric microvessels (243) endogenous albumin was
observed in a ∼200 nm thick layer covering the EC surface
(243). Likewise, albumin associates with lung EC glycocalyx;
Lowering perfusate plasma protein/albumin content significantly
increased penetration of endogenous, negatively charged ferritin
into the vessel wall (244). Similarly, in isolated dog glomeruli,
lowering perfusate albumin concentrations raised GFR not only
due to a reduction in the colloid osmotic pressure, but also due
to an increase in the hydraulic conductivity of the glomerular
capillary wall (245). A similar effect of albumin on the hydraulic
conductivity was also reported for non-glomerular vessels in frog
(225) and rabbit (246). Finally, in the analbuminemic Nagase
rats, the negative charge density of the glomerular EC coat was
reduced, with enhanced penetration by macromolecules in the
60–90 kDa range both corrected by albumin infusion (247).

In tracer studies, enhanced flux of glycated albumin across
the EC layer has been reported (248), though by two-photon
microscopy its GCW sieving coefficient was not different than
that of native albumin (38). Instead, reduced uptake of glycated
albumin by the neonatal Fc receptors (FcRn) in proximal tubule
cells enhanced its renal excretion (38). Thus, in vitro and in
vivo studies all indicate that albumin associates with the EC
coat, reducing the filtration coefficient and the trans-endothelial
flux of macromolecules (179). The relatively low affinity of
albumin for glycocalyx/ESL components furthermore suggests
that bound albumin is constantly exchanged with circulating
albumin. Given that albumin binds the bioactive lipid S1P (178,
249), and that S1P protects the EC glycocalyx (250), it is likely
that albumin not only changes the function of the endothelial
glycocalyx/ESL through physical binding, but that it also
delivers mediators to the EC that alter glycocalyx/ESL synthesis
and degradation.

Orosomucoid
In humans, orosomucoids are produced by two distinct genes,
ORM1 and 2. Orosomucoids are sialylated, negatively charged
circulating glycoproteins produced mainly by the liver (251)
but also by EC (252). Basal plasma concentrations are in the
range of 1 g/L. Orosomucoid synthesis is strongly induced
by inflammatory stimuli, like lysopolysaccharide (LPS), and
interleukins-1 and−6; they are therefore considered to be acute
phase reactants (251). Orosomucoid core proteins (∼21.5 kDa)
undergo complex and variable glycosylation prior to secretion,
increasing their molecular mass to ∼ 44 kDa, and resulting
in a high sialic acid content. Orosomucoid glycosylation is
modified in response to acute inflammatory stimuli, increasing
the density of sialyl-Lewis × epitopes (sLex) that can interact
with EC surface P- and E-selectins (253, 254). In cultured
EC, orosomucoid 1 binds both high affinity, relatively low
capacity cell surface receptors, and lower affinity, extremely high
capacity binding sites (255). The former likely represent EC
P- and L-selectin binding, the latter association with the ESL,
increasing the ESL negative charge density (256). Pertinent to
this discussion, orosomucoid reduces the flux of albumin across
rat hindlimb microvessels (257), and lactalbumin flux across frog
mesenteric vessels (258) and the blood brain barrier (259). In the
kidney, perfusate containing orosomucoid reduces the fractional
clearance of albumin (32, 260), and administration of of
orosomucoid protects rats from puromycin aminonucleoside—
induced albuminuria and GFR loss (261). Hence, orosomucoid,
which is not filtered but associates with the surface of EC, reduces
albumin flux across EC, by increasing the ESL negative charge
density. Orosomucoid-dependent modulation of inflammatory
cell recruitment and EC transmigration may also contribute to
the renal response to injury. For instance, urinary excretion
of orosomucoid increases in patients with type 2 diabetes and
may be a biomarker for EC dysfunction due to low-grade
inflammation (262). In triple (ORM1-3) knockout mice (unlike
humans, mice have 3 ORM genes), enhanced inflammation
and a greater susceptibility to renal fibrosis in the unilateral
ureteral obstruction (263) and acute ischemia-reperfusion
(264) models have been reported. At this time, quantitative
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glomerular permselectivity studies in ORM deficient mice
are lacking.

DISRUPTION OF THE EC
MACROMOLECULAR BARRIER IN
DISEASE

A thorough understanding of the GCW barrier not only requires
knowledge of its composition, still incomplete, but also its
dynamic regulation. The complete EC barrier consists not only
of the glycocalyx/ESL covering the EC surface and filling the
fenestrae, but also cell-cell junctions, and the subendothelial
glycocalyx/matrix. Even at equilibrium, all constituents of the EC
glycocalyx and ESL are continually turning over through tightly
regulated mechanisms. They are subject to, and participate in
responses to shear and compression forces, to soluble mediators
and to signals from podocytes (265–267).Mechanisms disrupting
the barrier can range from EC dysfunction observed in the
metabolic syndrome and cardiovascular disease, to EC de-
differentiation upon withdrawal of critical stimuli like VEGF,
observed in preeclampsia, to EC activation by inflammatory
stimuli in HUS, TTP and sepsis, all the way to destruction of the
EC in some forms of glomerulonephritis and vasculitis.

Microalbuminuria Reflects Generalized EC
Dysfunction
EC dysfunction, characterized by diminished flow-mediated
vasodilation due to reduced endothelial NO production, signals
generalized EC abnormalities in patients with cardiovascular
disease, the metabolic syndrome, diabetes and chronic kidney
disease (10, 174, 265, 268). Microalbuminuria is strongly
associated with EC dysfunction (269), predicts cardiovascular
morbidity (19) and is one of the earliest indicators of generalized,
chronic EC injury (9). Note again that microalbuminuria tends
to underestimate the GCW defect, due to proximal tubule
reabsorption of albumin (79). EC glycocalyx disruption with a
substantial reduction in glomerular EC HA content has been
documented in patients with diabetic nephropathy (148). In
generalized vascular disease, microalbuminuria is associated
with a reduction in EC glycocalyx/ESL height and increase in
circulating EC glycocalyx components, including hyaluronan
(149, 270) and proteoglycans (126, 150, 151, 174). As EC
glycocalyx glypican-1 is required to elicit shear-induced NO
synthesis (184, 186), it seems likely that glycocalyx degradation
is, in fact, the proximate cause of reduced flow-dependent
NO synthesis in generalized EC dysfunction. In experimental
diabetes, endomucin restored the EC glycocalyx (221, 271),
and in human diabetic patients partial restoration of the EC
glycocalyx with sulodexide, an orally administered mixture
of GAGs, not only lowers blood pressure, but also reduces
albuminuria and other diabetic complications (272–276). Hence,
microalbuminuria reflects the endothelial barrier defect that
accompanies glycocalyx disruption and EC dysfunction in
cardiovascular disease, diabetes and chronic kidney disease. The
use of GAGs to enhance EC glycocalyx function could well
develop into new therapeutic approach. It is important to note

that the massive increase in cardiovascular morbidity of dialysis
patients is, at least in part, due to chronic EC glycocalyx/ESL
dysfunction (277, 278).

Albuminuria Reflects Glomerular
Endothelial Barrier Dysfunction in
Preeclampsia
Preeclampsia affects 3–5% of all pregnant women and is
associated with substantial risk to baby andmother. Albuminuria
and hypertension are the earliest manifestations of preeclampsia.
Marked glomerular EC swelling along with loss of glomerular
EC fenestrae, also referred to as “glomerular endotheliosis” has
long been recognized as the key glomerular abnormality in
preeclampsia (279–281). EC abnormalities in preeclampsia, are
not restricted to the glomerular endothelium, often involving
the choroid plexus as well, and preeclampsia can progress
to the full-blown thrombotic microangiopathy of pregnancy
(282), the HELLP (hemolysis, elevated liver function tests,
low platelets) syndrome. Even so, proteinuria is the main
indicator of EC dysfunction in these patients. Glomerular EC
differentiation and fenestration depend critically on podocyte-
derived VEGF (283) and endotheliosis lesions are observed
in mice with podocyte-specific VEGF haploinsufficiency (284).
Also, bone morphogenetic protein-9 (BMP-9) signaling via the
endothelial-specific ALK-1/endoglin receptor complex signals
EC differentiation (285, 286). In patients with preeclampsia,
placenta-derived, circulating soluble VEGF receptor and soluble
endoglin inhibit VEGF- and BMP-9 signaling pathways leading
to glomerular EC de-differentiation (3, 287, 288). Along with the
ultrastructural EC changes, reduced EC glycocalyx/ESL height
and shedding of glycocalyx components into the circulation have
been documented in preeclampsia (171, 174, 202, 289). The use of
VEGF inhibitors to reduce tumor angiogenesis (290) andmacular
degeneration (5) can evoke a similar syndrome of albuminuria,
sometimes in the nephrotic range, and hypertension. It turns out
that the human diacylglycerol kinase epsilon (DGKE) mutation
(291), a cause of the hemolytic uremic syndrome, also reflects
inhibition of VEGF signaling and consequent de-differentiation
of glomerular EC (292). Hence, albuminuria in preeclampsia,
and in patients treated with VEGF inhibitors, reflects EC de-
differentiation resulting in a breach of the normal glomerular EC
barrier to macromolecules.

The Thrombotic Microangiopathies
Characterized by a vicious cycle of intracapillary thrombus
formation, platelet consumption and microangiopathic
hemolytic anemia, the thrombotic microangiopathies all involve
EC activation (293), whether by Shiga toxin (294), COVID-19
(295, 296), thrombin, complement components (297) and/or
inflammatory cytokines (296). Normally, endogenous inhibitors
prevent activation of the coagulation and complement cascades
at the EC surface and soluble EC-derived mediators like NO and
prostacyclin block platelet activation. As part of the luminal EC
glycocalyx, integral membrane-spanning thrombomodulin binds
and inhibits thrombin, and stimulates protein C, which actively
cleaves components of the coagulation cascade (298), by binding
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to the EC protein C receptor. Tissue factor pathway inhibitor
(TFPI) (299) and complement factor H (CFH) (300) both bind
HS GAGs in the EC glycocalyx/ESL, inhibiting local thrombin
and complement activation, respectively. EC activation also
results in reduced NO and prostacyclin production, de novo
expression of membrane-anchored tissue factor, release of
TFPI and CFH from the EC surface by heparinases (300), and
mobilization of P-selectin and von Willebrand Factor (vWF) to
capture platelets (301). It follows that even minor causes of EC
activation, for instance a viral infection, can trigger run-away
intravascular thrombosis in patients with genetic mutations or
neutralizing antibodies to thrombomodulin (298), ADAMTS13
(297, 302), or to complement inhibitors (293). Loss of sialic
acid EC glycocalyx by pneumococcal derived neuraminidase
can also trigger the hemolytic uremic syndrome in children
(233), as can reduced VEGF signaling due to loss of function
mutations in diacylglycerol kinase (291, 292). While albuminuria
is common in patients with these disorders, end-organ damage
due to microvascular thrombosis are clinically more significant.

EC Glycocalyx Disruption in Critically ill
Patients
Trauma, cardiovascular surgery, septic shock (303) and more
recently in critical illness due to COVID-19 (7, 295), all are
associated with generalized EC activation and EC glycocalyx
disruption. While proteinuria is common in critically ill patients
(6, 8), pulmonary and brain EC barrier disruption tend to
have greater relevance for outcomes and therapy in these
patients. Endothelial cell activation by inflammatory mediators,
among them TNF-α and Il1-β, results in shedding of EC
glycocalyx components exposing cell-surface adhesion molecules
that enable the initial capture and rolling of leukocytes on the
endothelium and integrin-dependent leukocyte transmigration
(304). EC glycocalyx disruption also promotes platelet adhesion
and reduces the anti-coagulant and fibrinolytic activity of the EC
surface (305). Even so, a recent metanalysis concluded that while
EC glycocalyx shedding is common in critically ill patients, it does
not distinguish between various causes and is not consistently
associated with “vascular leak” (116). Similarly, albuminuria in
this setting is a non-specificmarker of EC glycocalyx dysfunction.

SUMMARY AND FUTURE
CONSIDERATIONS

The glomerular endothelium is a critically important component
of the size- and charge-selective GCW barrier. Only a very

small fraction of circulating albumin and other macromolecules
can penetrate glomerular EC to reach the underlying GBM
and sub-podocyte space. While glomerular EC fenestrae support
filtration of massive volumes of water and small solutes, they
are not permeable to larger plasma proteins due to a negatively
charged, organized glycocalyx and ESL that covers the EC surface
and fills the fenestrae. This pericellular environment not only
serves as a physical barrier to macromolecules, it also controls
the activity of many mediators, cytokines, growth factors,
complement and coagulation cascades, and circulating cell and
platelet repulsion/adhesion. Glycocalyx degradation in disorders
that cause wide-spread EC dysfunction and/or activation, like the
metabolic syndrome, diabetes, sepsis and other forms of systemic
inflammation, result in glycocalyx degradation and proteinuria.
More specific insults like VEGF pathway interruption and
localized activation of complement and coagulation cascades can
cause somewhat more restricted glomerular EC injury. Many
components of the EC glycocalyx/ESL are known, but it is
expected that there are unique aspects of its composition and
organization in glomerular EC. To define these in health and
disease represents a major, but important challenge for the future,
given that most glycocalyx/ESL components are ubiquitous, and
their function is not just defined by protein expression, but also
by many position-specific polysaccharide modifications.
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