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Abstract: Electrical resistivity is used to obtain various types of information for soil strata. Hence,
the prediction of electrical resistivity is helpful to predict the future behavior of soil. The objective of
this study is to apply deep learning algorithms, including deep neural network (DNN), long-short
term memory (LSTM), and gated recurrent unit (GRU), to determine the reliability of electrical
resistivity predictions to find the discontinuity of porosity and hydraulic conductivity. New DNN-
based algorithms, i.e., LSTM-DNN and GRU-DNN, are also applied in this study. The electrical
resistivity values are obtained using 101 electrodes installed at 2 m intervals on a mountaintop,
and a Wenner array is selected to simplify the electrode installation and measurement. A total of
1650 electrical resistivity values are obtained for one measurement considering the electrode spacing,
and accumulated data measured for 15 months are used in the deep learning analysis. A constant
ratio of 6:2:2 among the training, validation, and test data, respectively, is used for the measured
electrical resistivity, and the hyperparameters in each algorithm are moderated to improve the
reliability. Based on the deep learning model results, the distributions of porosity and hydraulic
conductivity are deduced, and an average depth of 25 m is estimated for the discontinuity depth. This
paper shows that the deep learning technique is well used to predict electrical resistivity, porosity,
hydraulic conductivity, and discontinuity depth.

Keywords: deep learning algorithm; electrical resistivity; field test; hydraulic conductivity; hyperpa-
rameter; porosity

1. Introduction

Among the various geophysical survey methods, the electrical resistivity method has
been used in various fields to analyze the behavior of the soil subsurface. In particular,
electrical resistivity has been theoretically correlated with porosity, hydraulic conductivity,
and water content, which are fundamental properties in geotechnical engineering [1,2].
Thus, efforts have been made to determine slope behavior through electrical resistivity.
Lebourg et al. [3] and Jomard et al. [4] evaluated slope stability by considering an increase in
water content and rock weathering using the electrical resistivity method. Perrone et al. [5]
also used the electrical resistivity method to predict the water content of landslides and
perform a risk assessment with additionally measured horizontal displacement. Electrical
resistivity is an alternative method for evaluating the stability of slopes.

Localized discontinuities of hydraulic conductivity appear as various particles carried
on the outside and inside the slope in this deposited layer. Hydraulic conductivity is
related to the pore water pressure [6]; thus, if the fine content is deposited below the
coarse-grained content, the pore water pressure may rise above the fine content layer
due to relatively low hydraulic conductivity [7]. The different hydraulic conductivities in
even one region have a great influence on soil water infiltration from matric suction [8].
Thus, the observation of hydraulic conductivity alternation is important to understand
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the mechanism of failure in slopes because pore water pressure and infiltration are highly
related to landslides. Hydraulic conductivity refers to the velocity of the fluid flow through
the porous medium, and electrical resistivity denotes the resistance of the current flow
in the porous medium since the soil particles are a non-conductive material. Thus, it is
possible to predict hydraulic conductivity under both saturated and unsaturated conditions
from electrical resistivity because they characterize the same area [9,10].

Deep learning algorithms, which are part of the fourth-era industrial technology, are
used to predict the behavior of land slopes. Gorsevski et al. [11] predicted the possibility of
slope failure by linking artificial neural network techniques to LiDAR results. Six factors
that affect the possibility of landslides were used as the input data: the slope, solar radiation,
catchment, plan curvature, profile curvature, and wetness index. Further, the sigmoid
function was used as the activation function. Yang et al. [12] predicted the probability of
landslides by combining displacement data with the support vector machine (SVM) and
long-short term memory (LSTM) deep learning algorithms. Both sigmoid and hyperbolic
tangent (tanh) were used as the activation function. Huang et al. [13] proposed a fully
connected spare autoencoder to predict landslide susceptibility, comparing it with results
based on a support vector machine and a backpropagation neural network. Liang et al. [14]
also used various deep learning techniques, including gradient boosting decision tree,
random forest, and k-means clustering for susceptibility mapping, and the result based on
the gradient boosting decision tree is the most reliable. Deep learning techniques have been
used to predict subsurface characterization; however, there are limitations when selecting
a suitable algorithm, activation function, or hyperparameter because the selection of these
parameters depends on the data characteristics. Therefore, in this study, the most reliable
algorithm and hyperparameter for predicting the electrical resistivity for each selected
algorithm are proposed.

In this study, among the various deep learning algorithms available, we selected the
deep neural network (DNN), which is a suitable technique for regression analysis, long-
short term memory (LSTM), and gated recurrent unit (GRU), which are frequently used in
time-series data analysis, as the target algorithms. DNN-based complex LSTM-DNN and
GUR-DNN techniques were also used to combine the merits of regression analysis and
time-series computations. This paper begins with a theoretical background of electrical
resistivity and deep learning algorithms, and the field for measuring electrical resistivity is
also described in detail. The measured electrical resistivity was verified by responding to
rainfall and temperature alternation, and the reliability of the determined hyperparameter
was also evaluated. The deep learning algorithms that yielded the best prediction results
were selected under this experimental condition, and the most reasonable hyperparameters
for each algorithm are proposed. Finally, the discontinuity depth based on the bilinear
method through profiles of porosity and hydraulic conductivity converted from electrical
resistivity are discussed.

2. Background Theory

The relationship among electrical resistivity, porosity and hydraulic conductivity, and
deep learning, which were used for analyzing the characteristics of soil and predicting
future soil behavior, are described as follows.

2.1. The Relationship between Electrical Resistivity and Hydraulic Conductivity

Electrical resistivity is the degree of disturbance of the electric flow, and electrical
resistivity is inversely related to electrical conductivity, which indicates how well electricity
passes through a medium. Electrical resistivity can be expressed using the electrical
resistance (R), cross-sectional area (S), and current path (L), as expressed in Equation
(1). However, it is difficult to calculate the correct area and path. Thus, the apparent
electrical resistivity is calculated using the geometric coefficient (K) with the current (I) and
voltage difference (∆V), as expressed in Equation (1). In the electrical resistivity method,
four electrodes are usually used to inject current and measure the voltage. Various array
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methods are available, depending on electrode spacing [15]. The Wenner array, in which the
electrodes are equally spaced, was adopted in this study considering its ease of installation
and measurement efficiency. The geometric coefficient (K) of the Wenner array is expressed
as K = 2πa, with ‘a’ being the distance between two successive electrodes, as indicated in
Equation (1).

ρ = R
(

S
L

)
≈ K

(
∆V

I

)
≈ 2πa

(
∆V

I

)
(1)

where the units of ρ, R, S, L, V, I are Ω·m, Ω, m2, m, V, and A, respectively.
Archie [16] suggested the intrinsic formation factor (FFi) through fluid electrical

resistivity (ρW) and bulk electrical resistivity (ρO) under 100% saturated conditions with the
same fluid. The FFi is related to porosity (ϕ) with the tortuosity factor (α) and cementation
factor (m) shown in Equation (2). The α and m values are determined by the properties
of the soil particles, and the FF can be rearranged with the bulk electrical resistivity (ρ),
saturation (S), and saturation constant (n). The saturation constant can be obtained from
additional experiments based on a semi-log scale.

FFi =
ρO
ρW

= α·ϕ−m =
ρ

ρW
·Sn (2)

Equation (2) is often used in the field of geotechnical and geological engineering to
derive porosity as a design parameter [17,18]. In addition, studies to understand particle
properties were performed by linking the contact characteristics and cementation effects
of soil materials since α and m values were related to particle shape [19,20]. There is
an alternative method to find porosity through dynamic cone penetration index (DCPI)
estimated by dynamic cone penetrometer as follows:

e = 0.43 + 0.0027
DCPI300

D50
(3)

where e is the void ratio. DCPI300 denotes the DCPI at a penetration depth of 300 mm, and
D50 is the average diameter of the particle. The porosity (ϕ) can be obtained from the void
ratio (e) with the relationship of ϕ =e/1+e [21].

In a porous medium, electricity mainly travels through the porosity when the particle
is a non-conductor. The hydraulic conductivity expresses how fast the fluid moves in the
porous medium, and the flow path of the fluid is mainly porous, similar to the movement
of electrical resistivity. Thus, Lesmes and Friedman [10] suggested the relationship between
the apparent formation factor (FFa) and hydraulic conductivity (KS) of unsaturated soil
through the Kozeny–Carmen equation as follows.

KS =
10−5

FFa·(Sp)
C (4)

where SP denotes the specific surface area per unit volume, which can be deduced from
the ratio between the shape factor (SF) and effective diameter (Deff). The ranges of SF
are generally 6.0 to 6.6 for round particles and 7.7 to 8.4 for angular media. The effective
diameter can be calculated through a sieve analysis. c is a constant with a range of 2.8 to
4.6 depending on the material type [22], and it is related to the saturation [23] FFa indicates
the ratio of bulk electrical resistivity to fluid electrical resistivity. FFa and FFi are the same
for a clay-free medium [24].

2.2. Deep Learning Algorithm Theory

Deep learning algorithms are used in various fields to recognize the patterns of objects
after continuous learning and predict the future behavior of objects. In this study, DNN,
which is widely used as an algorithm in various fields, was selected. Additionally, LSTM
and GRU, based on the recurrent neural network (RNN), were also utilized because they
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are specialized for predicting characteristics that change with time. Furthermore, complex
algorithms were constructed by combining LSTM-DNN and GRU-DNN to improve the
reliability of the predicted data.

2.2.1. Deep Neural Network (DNN)

DNN was developed in 1943 [25] for extracting trends from observed data and pre-
dicting the future behavior of objects through regression analysis. DNN has been used in
several fields because of its relative simplicity. DNN is known as a feedforward neural
network because it cannot reflect the recurrent measured value. However, DNN can be
applied to short-term time series [26]. Thus, DNN was applied in this study. DNN is gener-
ally composed of an input layer, a hidden layer combined with three or more nodes, and an
output layer [25]; the nonlinear function is applied to the hidden layer. Each node consists
of input data (X), weight matrices (w), and bias vectors (b). The relationship between the
input data (X) and the final output data (ODNN) can be expressed using Equation (5) with a
calculation function (σ).

ODNN = σ

(
∑
n

X·Wn + bn

)
(5)

2.2.2. Long-Short Term Memory (LSTM)

LSTM, derived from RNN, can be used to connect the previous and current measured
data as a time series and is thus used for predictions considering a time-lapse. In the case
of RNN, if numerous past data exist, the cumulative value, which is calculated using tanh
of the activation function, creates a vanishing gradient problem that quickly converges to
zero when applying the backpropagation method [27]. In other words, the presence of
more data increases the difficulty of reflecting previous data. The LSTM was proposed
in 1997 to compensate for the weakness of the RNN [28]. The memory cells configured
in the horizontal direction cause a time-lapse effect. Each LSTM cell consists of a forget
gate (F), input gate (I), cell update gate (C), and output gate (O). When the input data (X)
and hidden vector sequence (H) are defined as expressed in Equation (6), all the gates are
arranged as a vector convolution, as presented in Equation (7):

X = {x1, x2, x3, . . . xn}
H = {h1, h2, h3, . . . hn}

(6)

Forget gate: Ft = σ (wf · [ht−1, xt] + bf) at time t
Input gate: Fi = σ (wi · [ht−1, xi] + bi) at time t

Cell update gate: Ct = Ft · Ct−1 + (σ (wi · [ht−1, xt] + bi)) · (tanh (wc · [ht−1, xc] + bi) at time t
Output gate: Ot = tanh (Ct) · σ (wo · [ht−1, xt] + bo) at time t

(7)

where σ, w, and b denote the activation functions, weight matrices, and bias vectors,
respectively, as in the DNN. LSTM mainly uses sigmoid functions as an activation function.
The subscripts f, i, and o indicate values corresponding to the forget gate, input gate, and
output gate, respectively [28].

Each memory cell of the LSTM is an output to the cell update gate (Ct) and output
gate (Ht), and Ct represents how much weighting is used in the next step by storing the
previous data using the Ft function. In addition, Ot determines the validity of the output
data and provides information reflected in the next memory cell.

2.2.3. Gated Recurrent Unit (GRU)

Similar to LSTM, GRU, which was developed in 2014 [29], is also derived from RNN.
GRU is an alternative algorithm used for solving the three complicated gates of LSTM, and
only two reset gates (R) and update gates (U) are used for predicting the time-elapsed data
as a lightweight algorithm. The GRU architecture maintains a memory cell format similar
to that of LSTM because the GRU architecture is based on RNN [29]. If the input data (X)
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and hidden vector sequence (H) are the same as those in Equation (6), the reset gate (R)
and update gate (U) are expressed as shown in Equation (8).

Reset gate: Rt = σ (wr · [ht−1, xt] + br) at time t
Update gate: Ut = σ (wu · [ht−1, xt] + bu) at time t

(8)

Therefore, the final output gate (O) is summarized as presented in Equation (9). The
algorithm is constructed without the cell update gate (C) of the LSTM. If the Ut value is 1,
this value is reflected in the current value, but if it is 0, then the corresponding memory cell
is passed. Equation (9) shows that Ut can be used to determine whether the current value
is reflected.

Output gate: Ot = (1−Ut) · ht−1 + Ut · (tanh (wt · [Rt · ht−1, xt])) at time t (9)

The symbols in Equations (8) and (9) have the same meaning as those in Equation (7).

2.2.4. Coupled Algorithms Based on Deep Neural Network (DNN) with Long-Short Term
Memory (LSTM) and Gated Recurrent Unit (GRU)

DNN, LSTM, and GRU can be used to predict nonlinear data and trends. DNN is
specialized for feature extraction, whereas LSTM and GRU are mainly used for the trend
analysis of time-series data. Therefore, different dimensions are used to achieve the pur-
poses of different algorithms. DNN is a two-dimensional array (size x feature), and both
LSTM and GRU have a three-dimensional array (size x feature x time step). Although the
aforementioned deep learning algorithms have different input arrays, similar to DNN, both
LSTM and GRU can be used to derive the output dimension as a two-dimensional array af-
ter reflecting the time step in the calculation. Therefore, it is possible to link each algorithm.
In this study, the LSTM-DNN and GRU-DNN complex algorithms were constructed and
applied by connecting DNN to the LSTM and GRU algorithms to improve the reliability of
the predicted data, thereby exhibiting the advantages of each deep learning algorithm.

2.2.5. Performance Evaluation

The root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R2) were used to evaluate the reliability of each algorithm, as presented
in Equations (10)–(12), respectively. While the RMSE shows the difference between the
measured and predicted electrical resistivity values, both pairs of continuous variables
are used in MAE for calculating the performance [30]. R2 represents the proportion of
the variance.

RMSE =

√
1
n

n

∑
t=1

(Z(st)− (Ž(st))
2

(10)

MAE =
1
n

n

∑
t=1

∣∣∣Z(st)− Ž(st)
∣∣∣ (11)

R2 = 1−

n

∑
t=1

(
Z(st)− Ž(st)

)2

n

∑
t=1

(Z(st)−
.
Z)

2
(12)

where Z(st), Ž(st), and Ż denote the measured electrical resistivity, the predicted electrical
resistivity, and the average value of the measured electrical resistivity, respectively, and n
denotes the number of the measured electrical resistivity.
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3. Data Collection
3.1. Site Description and Measurement

The experimental area of this study was a mountain with a history of landslides,
located in Daejeon Metropolitan City, South Korea, and reinforcement techniques, including
anchor and bolt, used for retaining walls and rockfall prevention networks were applied.
The objective area was located near the downtown area, as depicted in Figure 1; hence,
significant damage may be accompanied by landslides. The objective area was continuously
monitored after the reinforcement technique was applied to analyze the behavior of the
area and prevent landslide occurrence. The coordinates at the top of the mountain are
36◦ 20′ 20′′ N and 127◦ 27′ 16′′ E, and the elevation is approximately 175.8 m.
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Figure 1. Site description: (a) research area; (b) electrode installation.

The straight line of the electrical resistivity was set to a length of 200 m at the moun-
taintop to cover all the reinforced areas. A Wenner array was selected because it is suitable
for vertical measurements. The electrodes were installed at equal spacing intervals of 2 m,
and a total of 101 electrodes were used. Stainless steel, which experienced a small oxidation
reaction, was applied as the electrode material for long-term monitoring, and the length
and diameter of the electrode were 0.5 and 0.01 m, respectively. Sting R1, purchased from
AGI, was utilized to obtain the electrical resistivity. Voltage and current values of 10 V and
250 mV, respectively, were applied.

In this study, the electrical resistivity was measured for 15 months, from January 2019
to April 2020. Even though the values were measured on the 1st day and 15th day of each
month, the electrical resistivity was also recorded in particular cases, including rainfall and
temperature change. The number of measured data points at a given time was 1650, and a
total of 49,500 (1650 × 15 months × 2 times) measurements were performed.

The soil samples were collected at positions of 80 m, 120 m, and 160 m in the horizontal
direction, and sieve analysis was performed to determine the characterization of the slope.
The fine contents of 80 m, 120 m, and 160 m were calculated to be 3.9%, 3.9%, and 3.8%,
respectively, as shown in Figure 2. The coefficients of uniformity (Cu) were estimated to 5.78,
5.71, and 7.89 for each position, and the coefficients of curvature (Cc) of 2.93, 1.65, 2.13 were
deduced at positions of 80 m, 120 m, and 160 m, respectively. Finally, the study area was
distributed with poor-graded sand (SP) through the unified soil classification system (USCS).
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Figure 2. Results of sieve analysis. The D10, D30, and D60 denote the particle diameter corresponding
to 10 [%], 30 [%], and 60 [%] passing percent. The coefficients of uniformity (Cu) and curvature (Cc)
can be calculated for D60/D10 and D30

2/D60D100, respectively.

3.2. Distribution of Electrical Resistivity

The electrical resistivity values measured over 15 months using each of the four
electrodes are displayed in Figure 3, which indicates that the distributions of electrical
resistivity were based on electrode spacings of 1, 4, 7, 10, 13, 16, 19, and 21. The electrodes
were installed at 2 m intervals. For example, electrode spacings of 1 and 21 denote 2 and
42 m intervals of the electrodes, respectively. Temperature and rainfall values were also
recorded and plotted, as shown in Figure 3.
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Figure 3. Distribution of measured electrical resistivity using electrode spacings of: (a) 1; (b) 4; (c) 7; (d) 10; (e) 13; (f) 16;
(g) 19; (h) 21.

The lowest and highest temperatures were observed in January and August, with
values of −5 and 32 ◦C, respectively. Therefore, the electrical resistivity values measured
in January and August were compared with the values obtained during March at 10 ◦C to
assess the reliability of the measured values. The electrical resistivity for January was high,
with ratios of 15.59%, 8.82%, 5.55%, 5.36%, 5.32%, 4.91%, 4.87%, and 3.93% for electrode
spacings of 1, 4, 7, 10, 13, 16, 19, and 21, respectively. However, the measured values for
August were relatively lower, with ratios of 31.12%, 24.32%, 23.62%, 21.84%, 21.80%, 21.31%,
14.78%, and 6.25% with an increase in electrode spacing. The temperature variation was
related to the ionic activity inside the electrode material. When the temperature rises, the
ions become more active, and the electrical conductivity increases [31]. Electrical resistivity,
which is inversely proportional to electrical conductivity, decreases as the temperature
increases, and this behavior was considered for determining the reliable electrical resistivity
through the compensated method.

During the measurement period, 5 and 23.3 mm of rainfall fell in April and July of
2019, respectively. The electrical resistivity results obtained in March and June, which
were the respective preceding months of rainfall, were compared to analyze the electrical
resistivity behavior with respect to the rainfall. When the rainfall was 5 mm (April), the
electrical resistivity decreased to 34.17%, 31.93%, 27.96%, 24.26%, 23.22%, 22.99%, 21.10%,
and 9.17% for electrode spacings of 1, 4, 7, 10, 13, 16, 19, and 21, respectively. The electrical
resistivity measured in July also decreased to 35.48%, 34.20%, 30.43%, 26.71%, 25.71%,
23.70%, 21.18%, and 17.96% with an increase in electrode spacing. This behavior is similar
to that shown in previous research findings, in which the electrical resistivity decreased
with an increase in ground moisture [32]. Furthermore, the electrical resistivity varied
slowly with temperature and rainfall when the electrode spacing was increased because
the deeper the depth, the slower the reaction to external environmental changes.
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The measured electrical resistivity values ranged from 1 to 3700 Ω·m at different
locations and depths. The distribution curve of electrical resistivity is presented in Figure 4.
The average value of the measured electrical resistivity was 1446.67 Ω·m, and the standard
deviation was 1047.31 Ω·m. The reliability of the deep learning algorithms was compared
using the reliable electrical resistivity values measured over the 16 months.
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Figure 4. Normal distribution curve of the measured electrical resistivity.

4. Application of the Deep Learning Algorithm

The deep learning procedure consisted of the normalization process, building model,
and validation. The normalization process was necessary to increase the operation speed.
The min–max scaling method was also used in this study. The measured electrical resistivity
was converted to a range within 0 to 1 using Equation (13):

MinMax =
ER− ERmin

ERmax − ERmin
(13)

where ER denotes the corresponding input electrical resistivity, and ERmax and ERmin
denote the maximum and minimum values of the measured electrical resistivity.

During the model building stage, the DNN, LSTM, GRU, LSTM-DNN, and GRU-DNN
deep learning algorithms were selected, and the activation function, initialization method,
number of hidden layers, number of nodes, optimization technique, iterative method, and
sequence length were set. Six commonly used activation functions—hyperbolic tangent
(tanh), sigmoid, softplus, rectified linear unit (relu), exponential linear unit (elu), and
scaled exponential linear unit (selu) [33,34] were selected to compare the reliability of
the algorithms. The initialization method was classified based on the applied activation
function. In the cases of the tanh, sigmoid, and softplus functions, the Xaviera normal
initialization method was used [35], while the He initialization method was applied to the
relu, elu, and selu functions [36]. In this study, an appropriate initial weighting method was
adopted according to the six selected activation functions. The number of hidden layers
was set to 2, 10, and 20 layers in each of the algorithms. The numbers of nodes in the DNN
algorithm were 20, 30, and 40, and the sequence lengths of LSTM and GRU were set to 1,
10, and 20. In addition, the number of nodes and the sequence lengths of the LSTM-DNN
and GRU-DNN algorithms were identically configured based on the individual algorithm
conditions. The optimization technique is an important method used for determining the
weight and bias of each algorithm. The Adam optimizer, which combines the advantages
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of Adagrad [37] and RMSProp [38], was used. Finally, the early stopping technique was
used as the iterative method to prevent overfitting.

Validation is necessary to examine the reliability of the hyperparameters set in each
algorithm [39], and the hold-out validation approach, which is typically applied, was also
selected in this study. To find the best ratio of validation, the results of loss were plotted
in Figure 5 with ratios of (7:2:1), (6:2:2), (5:2:3), and (4:2:4) for training, validation, and
test data, respectively. Figure 5 shows that the reasonable trend was distributed without
overfitting in selected ratios, and the optimal epoch was automatically selected through the
early stopping technique. The best epoch and loss were summarized in Table 1. The ratio
of 6:2:2 demonstrated the lowest loss in the range of 0.0001 to 0.145, and thus, the ratio was
adopted to increase resolution in this study. To perform the deep learning algorithm, the
Keras (version 2.2.4) package was used with Python language (version 3.7.4).
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Figure 5. Results of loss based on ratio of training, validation and test data: (a) 7:2:1; (b) 6:2:2; (c) 5:2:3;
(d) 4:2:4. The hollow circles denote the optimal epochs.

Table 1. Distribution of best epochs with loss based on the ratio of training, validation, and test data.
The DNN, LSTM and GRU denote deep neural network, long-short term memory, gated recurrent
unit, respectively. The LSTM-DNN and GRU-DNN show coupled algorithms based on DNN with
LSTM and GRU.

Ratio 7:2:1 6:2:2 5:2:3 4:2:4

Algorithms Epochs Loss Epochs Loss Epochs Loss Epochs Loss

DNN 120 0.40 140 0.0001 140 0.65 110 0.20

LSTM 380 0.50 160 0.025 160 0.05 127 0.42

GRU 29 0.88 110 0.15 110 0.15 107 0.65

LSTM-DNN 148 0.43 159 0.025 159 0.07 148 0.43

GRU-DNN 140 0.64 140 0.145 140 0.14 140 0.44
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5. Results

The RMSE, MAE, and R2 were calculated using Equations (10)–(12) to evaluate the
reliability of the hyperparameters set in each algorithm. A reverse min–max scaling method
was applied to obtain the electrical resistivity because the predicted values using the deep
learning algorithms were normalized. In Figure 6, each hyperparameter was divided
into groups depending on the deep learning algorithms for DNN (activation function,
number of hidden layers, and number of nodes) and both LSTM and GRU (activation
function, number of hidden layers, and sequence length). LSTM-DNN and GRU-DNN
were combined with the activation function, number of hidden layers, number of nodes,
and sequence length for comparison with the calculated error. DNN, LSTM, and GRU
were marked as 56 types, and LSTM-DNN and GRU-DNN were classified as 162 cases.
The calculated RMSE, MAE, and R2 are summarized in Table 2. The hyperparameters in
which the RMSE and MAE values were minimum and R2 was maximum were DNN (Relu,
10, 30), LSTM (tanh, 2, 1), GRU (tanh, 2, 1), LSTM-DNN (tanh, 10, 20, 1), and GRU-DNN
(tanh, 10, 20, 1). These conditions were considered the most reliable hyperparameters and
are listed in Table 3. The RMSE, MAE, and R2 were evaluated using DNN (36.38 Ω·m,
22.62 Ω·m, 0.99), LSTM (209.12 Ω·m, 155.47 Ω·m, 0.42), GRU (415.56 Ω·m, 414.59 Ω·m,
0.08), LSTM-DNN (160.71 Ω·m, 80.98 Ω·m, 0.69), and GRU-DNN (375.25 Ω·m, 306.05 Ω·m,
0.09), as shown in Figure 6. Hence, the order of the optimal deep learning algorithms for
predicting electrical resistivity under these experimental conditions was found to be DNN
> LSTM-DNN > LSTM > GRU-DNN > GRU. However, even though LSTM-DNN was the
second most reliable algorithm after DNN, the difference in the error values between these
two algorithms was large. It should be noted that DNN adequately reflected the trend in the
measurement data. A pattern analysis of electrical resistivity was conducted by comparing
the measured values with the predicted values based on the hyperparameters with high
reliability, and the results of each deep learning algorithm are displayed in Figure 7. The
3300 data measured each month were averaged and plotted to represent each month.
Among the deep learning algorithms, DNN showed the most similar trends and values to
the measured data (Figure 7). However, the values predicted using the other algorithms
had a low electrical resistivity range, which resulted in insufficient reliability. Discrepancies
were calculated using Equations (10)–(12) to quantitatively analyze the accuracy of each
algorithm, as shown in Figure 8. The averaged RMSE, MAE, and R2 groupings of the DNN,
LSTM, GRU, LSTM-DNN, and GRU-DNN algorithms were (2.96 Ω·m, 3.29 Ω·m, 0.98),
(60.82 Ω·m, 67.58 Ω·m, 0.77), (175.33 Ω·m, 194.81 Ω·m, 0.59), (25.80 Ω·m, 28.66 Ω·m, 0.92),
and (86.38 Ω·m, 95.98 Ω·m, 0.73), respectively. DNN exhibited greater reliability than the
other deep learning algorithms based on quantitative values. The DNN algorithm clearly
enhances the reliable prediction of electrical resistivity by reflecting the changes in external
environmental conditions, including rainfall and temperature.

Table 2. Root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) based on various
hyperparameters.

Validation DNN LSTM GRU LSTM-DNN GRU-DNN

RMSE 36.38–498.56 [Ω·m] 209.12–498.56 [Ω·m] 415.56–798.56 [Ω·m] 160.72–882.86 [Ω·m] 375.25–782.86 [Ω·m]

MAE 22.62–445.32 [Ω·m] 155.47–441.00 [Ω·m] 414.59–740.98 [Ω·m] 80.98–845.00 [Ω·m] 306.05–775.46 [Ω·m]

R2 0.00–0.99 0.01–0.42 0.00–0.08 0.01–0.69 0.01–0.09



Sensors 2021, 21, 1412 13 of 20

Sensors 2021, 21, x FOR PEER REVIEW 13 of 21 

 

 

Table 2. Root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) based on var-

ious hyperparameters. 

Validation DNN LSTM GRU LSTM-DNN GRU-DNN 

RMSE 36.38–498.56 [·m] 209.12–498.56 [·m] 415.56–798.56 [·m] 160.72–882.86 [·m] 375.25–782.86 [·m] 

MAE 22.62–445.32 [·m] 155.47–441.00 [·m] 414.59–740.98 [·m] 80.98–845.00 [·m] 306.05–775.46 [·m] 

R2 0.00–0.99 0.01–0.42 0.00–0.08 0.01–0.69 0.01–0.09 

 

Figure 6. Comparisons of The root mean square error (RMSE), mean absolute error (MAE), and coefficient of determina-

tion (R2) based on best hyperparameter. The 1), 2), 3), and 4) denote activation function, the number of hidden layers, number 

of nodes, and sequence length, respectively. 

Table 3. Reliable hyperparameters of deep neural network (DNN), long-short term memory (LSTM), and gated recur-

rent unit (GRU), LSTM-DNN, and GRU-DNN. 

Hyperparameter DNN LSTM GRU LSTM-DNN GRU-DNN 

Activation function Relu tanh tanh tanh tanh 

Initialization method He Initialization 
Xavier Normal Ini-

tialization 

Xavier Normal Ini-

tialization 

Xavier Normal Ini-

tialization 

Xavier Normal Ini-

tialization 

Number of hidden lay-

ers 
10 2 2 10 10 

Number of Node 30 - - 20 20 

Sequence length - 1 1 1 1 

Optimizer technique Adam Adam Adam Adam Adam 

0

0.5

1

0

225

450

R
2

R
M

S
E

, 
M

A
E

 [


·m
]

Hyperparameter

DNN LSTM GRU LSTM-DNN GRU-DNN

RMSE

MAE

R2

relu1), 102), 303) tanh1), 22), 14) tanh1), 102), 203), 14)tanh1), 22), 14) tanh1), 102), 203), 14)

Figure 6. Comparisons of The root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination
(R2) based on best hyperparameter. The 1), 2), 3), and 4) denote activation function, the number of hidden layers, number of
nodes, and sequence length, respectively.

Table 3. Reliable hyperparameters of deep neural network (DNN), long-short term memory (LSTM), and gated recurrent
unit (GRU), LSTM-DNN, and GRU-DNN.

Hyperparameter DNN LSTM GRU LSTM-DNN GRU-DNN

Activation function Relu tanh tanh tanh tanh

Initialization method He Initialization Xavier Normal
Initialization

Xavier Normal
Initialization

Xavier Normal
Initialization

Xavier Normal
Initialization

Number of hidden layers 10 2 2 10 10

Number of Node 30 - - 20 20

Sequence length - 1 1 1 1

Optimizer technique Adam Adam Adam Adam AdamSensors 2021, 21, x FOR PEER REVIEW 14 of 21 
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Figure 8. Box plots of DNN, LSTM, GRU, LSTM-DNN, and GRU-DNN between the measured and predicted electrical resistivity.

6. Discussion
6.1. Prediction of Porosity

According to the results of the sieve analysis, the fine content was less than 4.2%,
and the area was almost entirely composed of sand particles based on the unified soil
classification system (USCS). Therefore, the intrinsic formation factor of Equation (2) can
be applied as the apparent formation factor, and the measured value was used for the
bulk electrical resistivity. The alternation of fluid electrical resistivity was assumed to
be small at each position because the change of ions in a porous medium is tiny due to
the small content of the fine particles. Moreover, a constant fluid electrical resistivity of
116.27 Ω·m, measured in the stored rainfall through the 4-electrode technique, was used.
More information on the 4-electrode technique can be found in Taiwo et al. [30]. The
estimated porosity based on a dynamic cone penetrometer test (DCPT) was estimated to
obtain the tortuosity factor and the cementation factor through inversion. The results of
DCPT at a horizontal distance of 80 m, 120 m, and 160 m are shown in Figure 9.
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Figure 9. Results of dynamic cone penetrometer index (DCPI) through a dynamic cone penetrometer
test (DCPT) at horizontal positions of (a) 80 m; (b) 120 m; (c) 160 m.

The DCPI, which provides the penetration depth per blow, revealed about a 50–70 mm/blow
around the surface, with close to 0 mm/blow at the bottom of the depth. The final pen-
etration depth of DCPT was recorded as 0.64 m, 0.53 m, and 0.48 m at distances of 80 m,
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120 m, and 160 m, respectively, due to spatial distribution. The porosity was determined
to be 30.09%, 30.11%, and 30.11% at distances of 80 m, 120 m, and 160 m, respectively,
using the DCPI recorded at the surface and Equation (3). The DCPI300 was estimated as
10, 15, and 10 mm/blow at positions of 80 m, 120 m, and 160 m, respectively, and the D50
was calculated as 0.48, 0.67, and 0.55 at each horizontal distance through a sieve test, as
shown in Figure 2. The measured electrical resistivity values at 80 m, 120 m, and 160 m
were 573 Ω·m, 585 Ω·m, and 567 Ω·m, respectively, in February 2020, when the DCPI ex-
periment was conducted, and the tortuosity factor and cementation factor were calculated
through simultaneous equations with a fluid electrical resistivity of 116.27 Ω·m. The ranges
of the tortuosity factor and cementation factor based on 80 m and 120 m, 80 m, and 160 m
were 0.01-0.69 and 1.65-3.6, as shown in Figure 10, and the averaged tortuosity factor and
cementation factor of 0.37 and 2.62 were used. The distributions of the calculated porosity
based on measured electrical resistivity are plotted in Figure 11. The electrode spacing was
selected as 1, 4, 7, 10, 13, 16, 19, and 21, with the same value of Figure 3, and the ranges of
the calculated porosity based on the measured and predicted electrical resistivities were
20–59% and 33–59%, respectively. The highest porosity was shown in July when rainfall
occurred. Equation (2) shows that the porosity was dependent on the electrical resistivity
when the constant values were fixed.Sensors 2021, 21, x FOR PEER REVIEW 16 of 21 
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Figure 10. Relationship between the formation factor and porosity for the extracted specimens. Here,
a and m denote the tortuosity and cementation factors.
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Thus, the distributions of porosity showed similar behavior to the trend of electrical
resistivity. Although the types of pores, specific surface areas, tortuosity, and overburden
pressure may change when rainfall or external conditions occur, there is a limit to evaluating
the detailed behaviors reflecting seasonal variation. Therefore, porosity distributions were
presented, focusing on the overall behavior.

6.2. Prediction of Hydraulic Conductivity

Hydraulic conductivity was converted using the measured electrical resistivity and
Equation (4). For the shape factor, an average value of 8.4 was used [40], and the average
effective diameter of 0.59 mm was applied, with reference to the result of the sieve analysis,
as shown in Figure 2. Thus, the specific surface area per unit volume (Sp), which is the
ratio between the shape factor and the effective diameter, was calculated as 14.23 (mm−1).
The value of c was derived as another constant by inverting the measured hydraulic
conductivity from the constant head test. The specimens were extracted at the top and
bottom of the slope, and the hydraulic conductivity levels were measured as 0.0005 cm/s
and 0.00049 cm/s, respectively. Finally, the c values were calculated as 3.22 and 3.18
at the top and bottom of the slope, and an average value of 3.2 was used to find the
distributions of hydraulic conductivity, as shown in Figure 12. From January 2019 to
April 2020, which was the range of measured electrical resistivity, hydraulic conductivity
was repeatedly increased and decreased by about 0.00027–0.00194 cm/s. In addition,
hydraulic conductivity tended to increase slightly after May 2020, and the predicted
hydraulic conductivities were observed in the range from 0.00045 cm/s to 0.00143 cm/s.
The hydraulic conductivity also had a strong influence on electrical resistivity when the
constant value was fixed. Thus, the distribution of hydraulic conductivity was similar to
the trend of electrical resistivity. Although it was difficult to capture the detailed input
constant according to monthly strata changes, it was possible to determine the overall
behavior of hydraulic conductivity.
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6.3. Discontinuity Depth

Landslides often occur at the discontinuous surface of a stratum and the interface
between unsaturated and saturated soils [41]. According to Vieira and Fernandes [42],
an area with a highly different ratio of gravel–sand–silt–clay is generally considered
dangerous and can be inferred by changes in design parameters, including porosity and
hydraulic conductivity. In this study, the porosity and hydraulic conductivity in the
horizontal directions of 80 m, 120 m, and 160 m, which indicate a large change in electrical
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resistivity, are addressed in Figure 13 for discontinuity depth with a maximum depth of
52 m, 54 m, and 26 m, respectively considering skin depth of electrical resistivity. The
data were divided into the dry season (February 2019) and wet season (July 2019), and
the range of porosity and hydraulic conductivity in the dry season was 20.97–70.22% and
0.00028–0.002631 cm/s, respectively. During the rainy season, the range of porosity and
hydraulic conductivity was 28.12–73.22% and 0.00049–0.00289 cm/s, and the change ratios
were calculated to be up to 34.08% and 71.82% for porosity and hydraulic conductivity.
The predicted porosity and hydraulic conductivity after May 2020 are also shown, and the
ranges of the porosity and hydraulic conductivity for May, June, July, and August 2020
were 22.26–70.39%, 0.00031–0.0028 cm/s; 22.17–70.39%, 0.00031–0.0026 cm/s; 28.12–93.22%,
0.000486–0.0044 cm/s; and 22.24–70.91%, 0.0031–0.0027 cm/s. The porosity and hydraulic
conductivity in July 2020, when rainfall was predicted, increased by up to 32.43% and
67.94%, respectively, compared to dry (May, June, and August 2020), which was similar
to the measurement results for 2019. The measured porosity and hydraulic conductivity
through DCP and constant head test at a depth of 2 m and 50 m, respectively, are also
demonstrated in Figure 13 with a solid circle, and they show similarity with estimated
values through electrical resistivity. Even though the additional tests for obtaining porosity
and hydraulic conductivity were performed in February 2019, the measured values are
totally described in Figure 13a–f for efficiently comparing values. The tendency of porosity
and hydraulic conductivity gradually increased with depth. However, the opposite trend
was observed under average depths of about 29 m (February 2019), 19 m (July 2019),
28 m (May 2020), 26 m (June 2020), 22 m (July 2020), and 29 m (August 2020), as shown
in Figure 13. However, it was difficult to find the opposite trend at a distance of 160 m
because the skin depth was only 26 m. The estimated depths, in detail, at each position of
80 m, 120 m, and 160 m are addressed in Table 4. The bilinear depth showed discontinuity
of the porosity and hydraulic conductivity. In the dry season, the average depth was
estimated to be 29 m. However, the depth was 19 m on average in the rainy season. The
difference in the discontinuity depth under dry and wet conditions was about 10 m based
on measured data. The predicted data also demonstrated a similar trend, and the different
discontinuous depth of dry and rainy seasons was calculated to 6–7 m. Thus, caution is
needed to find discontinuous areas depending on external conditions. These results show
that discontinuity depths can be predicted through deep learning algorithms, and it is
expected that more precise predictions could be performed with a larger amount of data.

Table 4. Estimated discontinuity depth based on the discontinuity of porosity and hydraulic conductivity.

Measurement Depth
(2019) Predicted Depth (2020)

Horizontal Distance February July May June July August

80 [m] 28 [m] 20 [m] 30 [m] 26 [m] 20 [m] 32 [m]

120 [m] 30 [m] 24 [m] 26 [m] 26 [m] 30 [m] 26 [m]

160 [m] - 14 [m] - - 14 [m] -

Averaged value 29 [m] 19 [m] 28 [m] 26 [m] 22 [m] 29 [m]
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Figure 13. Discontinuity depth assessment based on porosity and hydraulic conductivity: (a) February 2019; (b) July 2019; (c) May 2020; (d) June 2020; (e) July 2020; (f) August 2020. The
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7. Conclusions

Deep learning algorithms have been used in various fields to predict the future
behaviors of objects. In this study, the DNN, LSTM, GRU, LSTM-DNN, and GRU-DNN
deep learning algorithms were applied to predict electrical resistivity, which indicates
the behaviors of geotechnical engineering. The detailed conclusions of this study are as
follows:

• Electrical resistivity was measured on a mountaintop over 15 months, and the number
of accumulated data points was 49,500. The measured electrical resistivity reflected
changes in rainfall and temperature.

• DNN, which is generally used as an algorithm in neural networks, was selected for
predicting electrical resistivity. Additionally, LSTM and GRU, which are based on the
RNN algorithm, were used because they can reflect past and present conditions as a
time series. LSTM-DNN and GRU-DNN, which are complex algorithms, were also
used to improve the reliability.

• The electrical resistivity prediction indicated excellent performance in the following
order: DNN > LSTM-DNN > LSTM > GRU-DNN > GRU.

• Porosity and hydraulic conductivity were predicted through electrical resistivity, and
the discontinuity depth was also estimated by porosity and hydraulic conductivity.
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