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Abstract: For the untargeted analysis of the metabolome of biological samples with liquid chromato-
graphy–mass spectrometry (LC-MS), high-dimensional data sets containing many different metabo-
lites are obtained. Since the utilization of these complex data is challenging, different machine
learning approaches have been developed. Those methods are usually applied as black box classifica-
tion tools, and detailed information about class differences that result from the complex interplay
of the metabolites are not obtained. Here, we demonstrate that this information is accessible by the
application of random forest (RF) approaches and especially by surrogate minimal depth (SMD)
that is applied to metabolomics data for the first time. We show this by the selection of important
features and the evaluation of their mutual impact on the multi-level classification of white asparagus
regarding provenance and biological identity. SMD enables the identification of multiple features
from the same metabolites and reveals meaningful biological relations, proving its high potential for
the comprehensive utilization of high-dimensional metabolomics data.

Keywords: classification; characterization; white asparagus; LC-MS; metabolomics; random forest;
feature selection; feature relations; machine learning; chemometrics; surrogate minimal depth

1. Introduction

Metabolomics is the in-depth analysis of metabolites, small molecules within biological
systems (<1500 Da), that are products of cellular regulatory processes [1]. The composition
of the metabolome is directly influenced by environmental factors such as fertilization,
soil, climate, or proximity to large bodies of water, with genotype also having a dominant
influence [2]. Accordingly, metabolites vary in their chemical structures and concentrations,
corresponding to the environmental influences and include, e.g., lipids, sugars, or amino
acids. Due to the diversity of compound classes, various technologies and methods have
been developed for metabolome analysis, many of which are based on nuclear magnetic
resonance (NMR) and mass spectrometry (MS) [3,4]. These techniques are complementary,
as NMR technologies probe different substances than MS-based platforms [5]. However,
untargeted NMR- and MS data sets are characterized by high numbers of features and
small number of samples, which makes the data analysis challenging and prevents the
application of classical statistical methods [6].

The popular unsupervised multivariate approach principal component analysis (PCA)
reduces the dimensions of data by creating latent variables, which are linear combinations
of the original variables. The generated principal components can be used to detect cor-
relations and identify groups with a similar pattern. However, PCA illustrates the main
variances in the data set that do not necessarily correspond to the differences that the re-
searcher is interested in [7]. To obtain a model that focuses on these differences, supervised
machine learning techniques such as support vector machines (SVM) [8], artificial neural
networks (ANN) [9], partial least squares-discriminant analysis (PLS-DA) [10], and random
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forest (RF) [11] are applied to metabolomics data. RF is particularly suitable because it
considers feature interactions and is well suited for high-dimensional data [12].

RF consists of numerous binary decision trees [13]. Each of these decision trees uses a
different bootstrap sample containing approximately 63% of the samples (some of them
multiple times). For this reason, for each decision tree about 37% of the samples, called out-
of-bag (OOB) samples, are left for evaluation, and RF provides independent error estimates
(OOB errors) that do not require external data. RF is quite flexible in terms of input and
output variables, so it is applied to different data sets, e.g., for classification and regression.
To obtain an optimal classification model, the Gini index is applied at each node of each
tree to identify the optimal partition among the candidate features. The candidates, whose
quantity mtry is an important parameter in RF, are randomly selected from all features in
each node. However, when RF is applied in a classification setting for prediction, only
the assigned class is given and no information about the clarity of the class assignment is
provided. In order to close this gap, probability machines have been developed [14]. As
their name implies, they generate probabilities that can be used to evaluate the possibility
of membership for each class. For this purpose, RF is applied in regression mode providing
probabilities for each class that are averaged over all decision trees.

In addition to the application to build classification and regression models, RF can
also be used to analyze the importance of individual features and rank them according to
their impact on the outcome. This importance measure is either based on the decrease in
accuracy of the model when the feature is permuted or the decrease of (Gini) impurity at the
nodes that use the respective feature. Since the latter is biased, e.g., in favor of features with
many possible split points, an unbiased adaptation called actual impurity reduction (AIR)
has recently been introduced [15]. Based on the importance measures, various selection
techniques have been developed that separate important from unimportant features. In
a comprehensive comparison study, we recently identified Boruta as the best performing
approach [16]. Boruta selects features with higher importance than the maximum value
of so-called shadow variables, which are obtained by the permutation of the data across
observations. For this comparison, a statistical test is applied, assigning significantly larger
and smaller importance values. The generation of shadow variables and the comparison is
repeated until all variables are labeled or a given number of runs (maxRuns) is reached [17].

An alternative approach for feature selection is Surrogate Minimal Depth (SMD),
which incorporates relationships into the selection process and does not treat features
individually, but as collaborating groups [18]. SMD exploits surrogate variables that
have been developed to compensate for missing values in the data [19]. Furthermore,
surrogate variables are also used to analyze the relationships between features based on a
specific relation parameter that is called mean adjusted agreement. This relation parameter
considers the mutual impact of the features to the outcome, and hence goes beyond the
analysis of ordinary correlation coefficients. This is why SMD has been successfully applied
in various fields and to data sets from different analytical techniques, for example to breast
cancer gene expression data [18], FT-NIR food profiling data of hazelnuts [20], and to
data from surface-enhanced Raman scattering [21], e.g., for the analysis of drugs in living
cells [22].

In this study, we show that RF approaches and, in particular, SMD can be applied to
LC-MS data sets for comprehensive multi-level classification and characterization. For this,
we use data from asparagus authentication experiments [23–28].

2. Results and Discussion
2.1. Multi-Level Classification

An asparagus LC-MS data set was used for the classification with RF regarding the
geographical origin and the botanical variety. In Table 1, the results for the determination
of the geographical origin of 213 German, 25 Greek, 31 Dutch, 13 Peruvian, and 35 Polish
samples are summarized. An OOB error rate of 12.9% was reached corresponding to a
total accuracy of 87.1%. German as well as Greek samples and German as well as Peruvian
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samples show values above 90% for sensitivity and specificity, respectively, while the Polish
samples have values below 70% for both parameters. A detailed evaluation of the perfor-
mance of the single samples shows that samples from all classes are misclassified as Polish
and that the misclassification of German, Dutch, and Polish samples frequently happen
among these classes. The reason for these misclassifications probably is the geographical
proximity of the North-European samples that were evaluated. Since Germany borders
the Netherlands and Poland, less pronounced differences between metabolomes are to be
expected here than, for example, in the distinction between Schleswig-Holstein and Bavaria
(distance approximately 850 km). Overall, the classification performance regarding the
determination of the geographical origin is similar to previous work using LC-MS [26] and
other analytical techniques [23–25].

Table 1. Confusion matrix for the classification of the geographical origin.

Germany Greece Netherlands Peru Poland Sensitivity [%]

Germany 196 4 5 0 8 92.0
Greece 0 23 0 0 2 92.0

Netherlands 5 0 23 0 3 74.2
Peru 1 0 0 11 1 84.6

Poland 7 2 3 0 23 65.7

Specificity [%] 93.8 79.3 74.2 100 62.2

The results for botanical diversity classification of 56 Backlim, 23 Cumulus, 42 Gijnlim,
and 29 Grolim samples are shown in Table 2. The OOB error and over-all accuracy are 30.0
and 70.0%, respectively, and the values of specificity and sensitivity for the single classes
range between 60 and 75%. No misclassification patterns can be identified and the mis-
classification is evenly distributed among the classes. An exception is the Gijnlim samples,
which are frequently misclassified as the variety Backlim. Overall, the classification results
are worse than for the determination of the geographical origin. However, previous food
profiling techniques that analyze the metabolome of asparagus did not focus on the deter-
mination of the variety [23–26], for which usually the genome is evaluated [29,30]. Hence,
with this novel approach, we established a new level for the classification of asparagus
LC-MS data showing classification accuracies that are substantially higher than the random
distribution of 25%.

Table 2. Confusion matrix for the classification of the botanical variety.

Backlim Cumulus Gijnlim Grolim Sensitivity [%]

Backlim 41 2 6 7 73.2
Cumulus 3 14 3 3 60.9
Gijnlim 9 1 31 1 73.8
Grolim 1 4 3 19 65.5

Specificity [%] 73.2 66.7 72.1 63.3

The different varieties can be harvested at different times and provide asparagus
with different characteristics. For example, the variety Gijnlim provides high yields and
rather thin stems right at the beginning of the harvest period, while from the variety
Backlim rather thick stems are obtained that can be harvested at the end of the harvest
period. For this reason, farmers typically grow several varieties to ensure that there is
sufficient product available throughout the harvest season. Samples for this study were
all taken in the middle of the harvest season to ensure that, as far as possible, all varieties
were present in sufficient numbers. Our results show that the LC-MS metabolome can be
utilized to reflect genetic variances caused by different taxonomic varieties of asparagus.
However, these are apparently not very large or probably do not affect the composition of
the metabolome very much. However, the analysis shows that the metabolome contains
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comprehensive information that can be used for the detailed RF classification of biological
samples on multiple levels.

2.2. Probability Machines

A disadvantage of classification models regarding their application for unknown
samples is that only the final class assignments are reported, and the user does not obtain
any information about the clarity of this decision. This is why probability machines have
been developed that can be conducted utilizing different machine learning techniques,
including RF [14]. For samples that are analyzed by those machines, probabilities for
each class are provided that enable a more detailed analysis of the assignment and, if
necessary, also the manual labelling as unknown class when the probabilities are too similar.
Tables S1 and S2 show the probabilities for each of the samples for the determination of
the geographical origin and botanical variety. From these probabilities, boxplots for each
class were generated in order to analyze the overall clarity of the decisions. (Figure 1) The
assignment for German, Greek, Dutch, and Peruvian samples is quite clear with values
mostly above 50% for the respective correct geographical origin (Figure 1a). However, for
German and Dutch samples, the probabilities for the respective other North-European
samples are slightly increased. This is in agreement with the misclassification patterns that
were observed in the confusion matrix in the previous section (see Table 1). It is remarkable
that the samples from Poland mainly show comparatively lower probabilities for the
correct class assignment of ca. 25% to 50% and the other class assignment have similar
probabilities between 10% and 20%. Therefore, it can be concluded that the misclassification
of Polish samples is generally caused by a less accurate representation of this group in the
classification model and not only by individual samples that come from a region close to
the German border.
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The probabilities of the correct class assignment for the biological varieties are gen-
erally less clear and mainly range between 25% and 60% (Figure 1b). However, they are
still higher than the probabilities of the other respective classes that mainly show values
between 10% and 30%. Interestingly, the probabilities of the Gijnlim class are slightly
higher for the Backlim samples and the probabilities of the Grolim class for the Cumulus
class and vice versa. Hence, the LC-MS metabolomes of Backlim and Gijnlim and Cu-
mulus and Grolim are slightly more similar to each other, which was not apparent from
the confusion matrix in the previous section (see Table 2). This demonstrates that the
analysis of probabilities can give valuable additional insights about the similarities of the
analyzed classes.

2.3. Feature Selection

In order to characterize the differences between the classes of asparagus samples,
we applied the feature selection approaches SMD and Boruta. For the determination of
the geographical origin 98 features with SMD and 165 features with Boruta and for the
botanical variety 60 features with SMD and 48 features with Boruta were selected. Lists of
the selected features are given in Tables S3 and S4. The overlap of the different approaches
and the classification levels is visualized separately in Figure 2 and together in Figure S1.
The Venn diagrams show that many features are selected by both approaches (Figure 2a,b).
The differences are caused by the fact that the mutual importance of multiple metabolites
is evaluated by SMD, while Boruta evaluates the metabolites individually. The small
overlap between different classification levels that are depicted in Figure 2c,d show that
mainly different metabolites are responsible for the classification regarding provenance and
botanical variety. This means that mostly different subsets of the metabolites are utilized to
build the different classification models.
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Figure 2. Venn diagrams of selected features for the classification on the different levels of geographi-
cal origin (a) and botanical variety (b) utilizing the approaches SMD (c) and Boruta (d). Detailed lists
of the selected features can be found in Tables S3 and S4.

2.4. Analysis of the Relations of Selected Features

We applied SMD in order to analyze the relations between the selected features. As
a result, for each pairwise feature combination, the relation parameter mean adjusted
agreement is obtained, which represents the mutual impact on the outcome (see Tables
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S5 and S6). For a comprehensive characterization of the class differences, we depicted
the results in a heatmap that was obtained by the application of cluster analysis. We
generated heatmaps for both, the selected features by Boruta and SMD. The comparison
of the heatmaps of the different approaches confirms the assumption from the previous
section that Boruta mainly selected important individual features, while SMD selected
important groups (compare Figure 3 with Figures S2 and S3).
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Figure 3. Results of the relation analysis of selected features with SMD for the determination of
geographical origin (a) and botanical variety (b). For the hierarchical cluster analyses, Euclidean
distances and Ward algorithm were applied and the clusters are labeled with I–VI and A–D. The
clusters were assigned to the following molecular groups: I: Triaclyglycerols, II: Oxylipins, III: acylated
monogalactosyldiacylglycerols, IV: Phytosterol esters, V: Triacylglycerols, VI: Various, A: Cycloartenol
derivates, B: Coenzymes Q9 and Q10, C: Stigmasterol derivates, D: Diacylglycerols.

Figure 3a shows the results for the 98 features selected by SMD for the determination
of the geographical origin. Six distinct clusters I-VI that contain metabolites with mainly
similar information for the classification are obtained. In Figure 4, the intensities of two
representative metabolites are shown for each cluster, while boxplots for all selected fea-
tures are depicted in Figures S4–S9. The clusters I–III contain metabolites with similar
classification patterns to separate North-European samples with higher intensities from the
Peruvian and Greek samples that show lower intensities. Each of these clusters are mainly
associated with one specific molecular class. Cluster I contains triacylglycerols with mono
or double unsaturated fatty acids (Figure 4I). The degree of saturated and unsaturated fatty
acids of plants is related to biotic and abiotic stress induced by external influences, which
is why fatty acids have already been utilized to distinguish different geographical origins
of food [26,31–33]. Cluster II consists of triacylglycerols with epoxy-fatty acids like triver-
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nolin (Figure 4II). Cluster III contains different acylated monogalactosyldiacylglycerols
(acMGDG) that also have previously been related to biotic and abiotic stress [32,34–36]
and were identified as markers for the identification of German asparagus samples [26,37].
(Figure 4III) The high relations between the clusters I–III can be explained by the fact that
all, triacylglycerols, triacylglycerols with epoxy-fatty acids, and MGDGs, are involved
in the lipid metabolism of plants to build oxylipins as an environmental response [36].
Oxylipins are major actors in plant defense and have been shown to counteract bacterial
and fungal infestation of plants [36,38]. Hence, it is very plausible that these metabolites
in those clusters are useful interacting markers for the determination of the geographical
origin of asparagus.
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from the relation analysis Figure 3. A. Detailed information about the metabolites can be obtained
from Table S7. Abbreviations: acMGDG: acylated monogalactosyldiacylglycerols; SLBPA: semi-lyso-
bis-phosphatidic acid.

Arguably the most interesting cluster for interpretation is cluster IV, which can be
applied to distinguish Dutch and German from the other samples that have higher in-
tensities. This cluster contains several (18:2)-Phytosterol esters, e.g., (18:2)-Stigmasterol
ester and (18:2)-Episterol ester, but also (18:2)-Campesterol ester and (18:2)-Sitosterol ester.
(Figure 4IV). Also, the molecules of this class that interact in the sterol biosynthesis pathway
have previously been identified as important for the determination of German asparagus
samples because those compounds are affected by environmental changes [26,39,40].

Cluster V shows a similar but slightly different grouping of the classes as the clusters
I to III and consists of triacylglycerols with multiple double bonds and their epoxides
(Figure 4V). However, since those metabolites are arranged in a separate cluster, it can
be concluded that they contribute to the classification model in essentially other ways.
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Cluster VI is quite diverse, including various metabolites such as triacylglycerols and
phospholipids like semi-lyso-bis-phosphatidic acids (SLBPAs), which contribute differently
to the separation of the geographical origins. (Figure 4VI).

Similar as for the classification of the geographical origin, the selected features for the
determination of the botanical variety were evaluated. Figure 3b shows the results of the
relation analysis, while Figure 5 shows boxplots of two representative features for each clus-
ter, and all features are depicted in Figures S10–S13. Also, here the clusters mainly contain
metabolites that carry similar information for the classification. Cluster A is characterized
by cycloartenol derivates that differentiate between low intensities of the varieties Backlim
and Cumulus and high intensities of Gijnlim and Grolim (Figure 5A). Cycloartenol has
been identified as the precursor for phytosterols influencing membrane fluidity, which is
relevant in colder regions [41]. Cluster B consists of different metabolites that also contain
various information for the variety classification. (Figure 5B) These metabolites include
coenzymes Q9 and Q10, both of which are ubiquinones and act as carriers of electrons in
mitochondrial membranes [42] and are involved in the abiotic stress response of plants [43].
Cluster C and D contain stigmasterol derivates and diacylglycerols and both show higher
intensities for the varieties Backlim and Gijnlim. Hence, the metabolites in these clusters are
responsible for the similarities of those botanical varieties that we observed by the analysis
of class similarities by probability machines in Section 3.2.
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Figure 5. Boxplots of the autoscaled intensities for two exemplary features of the clusters (A–D) from
the relation analysis for the determination of botanical variety in Figure 3B. Detailed information
about the metabolites can be obtained from Table S7.

To summarize: The relation analysis that is accessible by the application of SMD en-
ables the comprehensive characterization of the LC-MS metabolome of biological samples.
This analysis goes beyond the analysis of pairwise correlation coefficients, which is demon-
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strated by the comparison of the SMD relation analysis results (Figure 3) to heatmaps that
were generated based on pairwise Pearson correlation coefficients (Figures S14 and S15).
The correlation coefficients do not show the biological context of the metabolites that can
be revealed by SMD, which is apparent by the clear grouping of molecule classes, e.g.,
of the phytosterol esters (Figure 3a, cluster IV) and the Coenzymes (Figure 3b, cluster
B). In future applications, metabolites with mutual impact identified by SMD could be
simultaneously utilized to directly test for specific characteristics, e.g., by the application of
pathways-guided random forest approaches [44].

In all the clusters that we comprehensively analyzed in this section, small groups
of highly related features could be identified. Those groups that consist of two to three
elements contain very similar information for the classification, and we could assign those
features to the same metabolites. In Figure 6, this is exemplarily shown for campesterol ester
(a) and coenzyme Q9 (b). Since we always retained the [M − NH4]+ adduct in preprocessing,
it is not surprising that the respective features can be identified in addition to the [M + Na]+

adduct that is commonly detected. In addition, we also found typical molecular fragments
formed from these molecules during the mass spectrometric measurement, which could
be merged based on their mean adjusted agreement. Hence, SMD relation analysis in
combination with an appropriate threshold could be applied in addition to correlation
coefficients in LC-MS data processing workflows in order to merge features from the
same metabolites.
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3. Materials and Methods
3.1. Data Acquisition and Preprocessing

An LC-MS data set containing 317 samples obtained in the years 2016, 2017, and
2018 was used. For detailed information about the LC-MS measurement, please refer
to [37]. The raw data set comprise the following positively charged adducts: [M + Na]+;
[M + K]+; [M − H2O + H]+; [M − CO2 + H]+; [M − NH3 − H]+. In order to reduce the
features from the same compounds, only the one with the highest intensity was used.
Potential ammonium adducts were taken into account separately, since in a previous study,
in some cases incorrect binning was observed [37]. Subsequently, the data set was further
processed by excluding features that are present in less than 80% of the samples resulting
in 718 features. In addition, missing data points were imputed with missForest [45] and,
since the samples were measured in three batches, autoscaling was conducted separately
for each batch [46]. In Figure S16, it can be observed that autoscaling significantly reduced
the batch effects. For the identification of the important metabolites, MS/MS experiments
were carried out for the features that were selected by SMD (see Table S7).

For the determination of the geographical origin, all 317 samples assigned to the five
classes, Germany, Greece, Netherlands, Peru, and Poland were used (Table 3). In addition,
some samples were used to differentiate between varieties. The focus was on the four most
commonly grown varieties in Germany: Backlim, Cumulus, Gijnlim, and Grolim (Table 4).

Table 3. Overview of the analyzed samples regarding geographical origin.

Origin 2016 2017 2018

Germany 105 77 31
Greece 14 7 4

Netherlands 10 10 11
Peru 7 4 2

Poland 16 11 8

Table 4. Overview of the analyzed samples regarding botanical variety.

Variety 2016 2017

Backlim 33 23
Cumulus 12 11
Gijnlim 22 20
Grolim 18 11

3.2. Software and Analyses

The software R (version 3.6.3) and the R packages missForest (version 1.4, CRAN) [45]
for missing value imputation, Pomona (Version 1.0.1, https://github.com/silkeszy/Pomona,
accessed on 20 December 2021) [16] for Boruta feature selection, SurrogateMinimalDepth
(version 0.2.0, https://github.com/StephanSeifert/Surrogate MinimalDepth, accessed on
20 December 2021) [18] for SMD feature selection and relation analysis, ranger (version
0.12.1, CRAN) [47] for RF analysis (classification and probability forest) and mdatools
(version 0.12.0, CRAN) for PCA were used [48].

The RF approaches were applied in classification and probability mode with the param-
eters summarized in Table 5. In order to compensate for the class imbalance, the parameter
case.weights was chosen accordingly. This means that the samples from rare classes were
sampled more frequently for the bootstrap samples to train the RF. For visualization of the
results of variable relation analysis, heatmaps of the mean adjusted agreement values of
important features were depicted by the R package pheatmap using hierarchical cluster
analysis with Euclidean distance and Ward algorithm [49]. For comparison, heatmaps of
the Pearson correlation coefficients were generated accordingly.

https://github.com/silkeszy/Pomona
https://github.com/StephanSeifert/Surrogate


Metabolites 2022, 12, 5 11 of 13

Table 5. Parameters used for the RF-based approaches with p representing the total number
of features.

Approach Parameter Description Value

RF
ntree number of trees 10,000

min.node.size number of samples in terminal node 1
mtry number of candidate features 138 (p3/4) 1

case.weights weights for sampling of training
observations

chosen according to the
size of the respective class

Boruta
importance applied importance measure impurity_corrected

pValue confidence level 0.01

maxRuns maximum number of importance
source runs 100

SMD s predefined number of surrogate
splits 35 (p · 0.05)

1 Motivated by [50].

4. Conclusions

In this study, we demonstrate the enormous potential that RF approaches, and SMD
in particular, provide for the extensive exploitation of high-dimensional LC-MS data. We
do this through their application to the data of biological samples, which goes far beyond
black box classification. To be more precise, the classification of an asparagus data set
regarding provenance and botanical varieties is complemented by the detailed evaluation
of the class similarities obtained by the application of RF probability machines and the
characterization by feature selection and relation analysis. For the relation analysis, we
investigate the mutual impact of the features on the outcome that is accessible by SMD.
This approach is very promising to get a comprehensive picture of the complex impact
of metabolites on the outcome, as it reveals specific molecular groups and biomolecules
known to interact in biological pathways.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12010005/s1, Figure S1: Venn diagram of all selected features, Figures S2 and S3:
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origin (S1) and botanical variety (S2), Figures S4–S9: Boxplots of the autoscaled intensities for the
features of the cluster I-VI from the relation analysis for the determination of geographical origin in
Figure 3a, Figures S10–S13: Boxplots of the autoscaled intensities for the features of the clusters A–D
from the relation analysis for the determination of botanical variety in Figure 3b, Figures S14 and S15:
Results of the correlation analysis of features selected by SMD for the determination of geograph-
ical origin (S14) and botanical variety (S15), Figure S16: Results of the PCA showing the sample
distribution before and after autoscaling, Tables S1 and S2: Results of the probability machines for
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(S5) and botanical variety (S6), Table S7: Identified key metabolites for the separation of asparagus
samples, Table S8: Feature table.

Author Contributions: Conceptualization, S.W. and S.S.; Methodology, S.W. and S.S.; Validation,
F.G.; Formal analysis, S.W.; Investigation, S.W.; Resources, M.F. and S.S.; Data curation, M.C., S.S. and
S.W.; Writing original draft preparation, S.W., S.S. and J.H.; Writing, review, and editing, S.S., M.F.
and M.C.; Visualization, S.W.; Supervision, S.S.; Project administration, S.S.; Funding acquisition, S.S.
and M.F. All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/metabo12010005/s1
https://www.mdpi.com/article/10.3390/metabo12010005/s1


Metabolites 2022, 12, 5 12 of 13

Funding: This study was performed within the Project “Asparagus Monitoring: Metabolomics-
Based Methods for the Determination of the Geographical Origin of Asparagus (Asparagus officinalis)
using NMR and LC−MS/MS together with Bioinformatics Analysis”. This Industrial Collective
Research (IGF) Project (18349 N) of FEI is supported via AiF within the program for promoting the
IGF of the German Ministry of Economic Affairs and Energy (BMWi) based on a resolution of the
German Parliament.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The unnormalized feature table is included in the Supplementary Materials.

Acknowledgments: We want to thank Silke Szymczak for helpful discussions and Lucas Voges for
technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wishart, D.S. Current Progress in Computational Metabolomics. Brief. Bioinform. 2007, 8, 279–293. [CrossRef] [PubMed]
2. Fiehn, O. Metabolomics—The Link between Genotypes and Phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [CrossRef]
3. Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78.

[CrossRef]
4. Bachmann, R.; Klockmann, S.; Haerdter, J.; Fischer, M.; Hackl, T. H-NMR Spectroscopy for Determination of the Geographical

Origin of Hazelnuts. J. Agric. Food Chem. 2018, 66, 11873–11879. [CrossRef]
5. Ernst, M.; Silva, D.B.; Silva, R.R.; Vêncio, R.Z.N.; Lopes, N.P. Mass Spectrometry in Plant Metabolomics Strategies: From

Analytical Platforms to Data Acquisition and Processing. Nat. Prod. Rep. 2014, 31, 784. [CrossRef]
6. Johnstone, I.M.; Titterington, D.M. Statistical Challenges of High-Dimensional Data. Philos. Trans. Royal Soc. 2009, 367, 4237–4253.

[CrossRef]
7. Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabolomics 2012, 1, 92–107. [CrossRef]
8. Klockmann, S.; Reiner, E.; Cain, N.; Fischer, M. Food Targeting: Geographical Origin Determination of Hazelnuts ( Corylus

Avellana ) by LC-QqQ-MS/MS-Based Targeted Metabolomics Application. J. Agric. Food Chem. 2017, 65, 1456–1465. [CrossRef]
9. Long, N.P.; Lim, D.K.; Mo, C.; Kim, G.; Kwon, S.W. Development and Assessment of a Lysophospholipid-Based Deep Learning

Model to Discriminate Geographical Origins of White Rice. Sci. Rep. 2017, 7, 8552. [CrossRef] [PubMed]
10. Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A Tutorial Review: Metabolomics

and Partial Least Squares-Discriminant Analysis—a Marriage of Convenience or a Shotgun Wedding. Anal. Chim. Acta 2015,
879, 10–23. [CrossRef] [PubMed]

11. Erban, A.; Fehrle, I.; Martinez-Seidel, F.; Brigante, F.; Más, A.L.; Baroni, V.; Wunderlin, D.; Kopka, J. Discovery of Food Identity
Markers by Metabolomics and Machine Learning Technology. Sci. Rep. 2019, 9, 9697. [CrossRef] [PubMed]

12. Qi, Y. Random Forest for Bioinformatics. In Ensemble Machine Learning; Zhang, C., Ma, Y., Eds.; Springer: Boston, MA, USA, 2012;
pp. 307–323; ISBN 978-1-4419-9325-0.

13. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
14. Malley, J.D.; Kruppa, J.; Dasgupta, A.; Malley, K.G.; Ziegler, A. Probability Machines: Consistent Probability Estimation Using

Nonparametric Learning Machines. Methods Inf. Med. 2012, 51, 74–81. [CrossRef] [PubMed]
15. Nembrini, S.; König, I.R.; Wright, M.N. The Revival of the Gini Importance? Bioinformatics 2018, 34, 3711–3718. [CrossRef]
16. Degenhardt, F.; Seifert, S.; Szymczak, S. Evaluation of Variable Selection Methods for Random Forests and Omics Data Sets. Brief.

Bioinform. 2019, 20, 492–503. [CrossRef]
17. Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [CrossRef]
18. Seifert, S.; Gundlach, S.; Szymczak, S. Surrogate Minimal Depth as an Importance Measure for Variables in Random Forests.

Bioinformatics 2019, 35, 3663–3671. [CrossRef]
19. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: Abingdon, UK, 2017;

ISBN 978-1-315-13947-0.
20. Shakiba, N.; Gerdes, A.; Holz, N.; Wenck, S.; Bachmann, R.; Schneider, T.; Seifert, S.; Fischer, M.; Hackl, T. Determination of

the Geographical Origin of Hazelnuts (Corylus Avellana L.) by Near-Infrared Spectroscopy (NIR) and a Low-Level Fusion with
Nuclear Magnetic Resonance (NMR). Microchem. J. 2022, 174, 107066. [CrossRef]

21. Seifert, S. Application of Random Forest Based Approaches to Surface-Enhanced Raman Scattering Data. Sci. Rep. 2020, 10, 5436.
[CrossRef]
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