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Abstract
Fractional order systems of delay differential equations are very advantageous in analyzing
the dynamics of various fields such as population dynamics, neural networking, ecology,
and physiology. The aim of this paper is to present an implicit numerical scheme along
with its error analysis to solve a fractional-order system of delay differential equations. The
proposed method is an extension of the L1 numerical scheme and has the error estimate of
O(h2), where h denotes the step size. Further, we solve various non-trivial examples using
the proposed method and compare the results with those obtained by some other established
methods such as the fractional Adams method and the three-term new predictor–corrector
method. We observe that the proposed method is more accurate as compared to the fractional
Adams method and the new predictor–corrector method. Moreover, it converges for very
small values of the order of fractional derivative.

Keywords Caputo derivative · Fractional delay differential equations · Error analysis ·
Numerical solutions · Fractional Adams method

Introduction

Fractional Calculus (FC), where the derivatives and integrals are considered in arbitrary form
is one of the most currently active areas of research. The genesis of FC began with a question
raised by L’ Hôpital to Leibniz towards the end of the 17th century. However, in the midway
of the 19th century, the pioneering works of various mathematicians such as Liouville, Rie-
mann, Grunwald, and Letnikov led to the formulation of fractional integrals and derivatives
with the subsequent development of FC [1, 2]. Fractional derivatives are non-local in nature
and preserved demonstrative physical characteristics. Hence, it is easy to anticipate and eval-
uate the dynamics of the various natural phenomena. However, FC has a long history but, its
utility and capabilities have been realized in the past two-three decades. The applications of
FC has been noticed in diverse fields such as earth system dynamics, epidemiology, computer
vision, biot-theory, robotics, soil hydrology andmechanics, criminology, artificial neural net-
works, thermodynamics [3–12], and many other branches of science and engineering [13,
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14]. Fractional delay differential equations (FDDEs) are the most suitable tools to model
various real-world problems that incorporate history. Many authors have discussed the exis-
tence and uniqueness of FDDEs in the literature [15–17]. Moreover, widespread applications
of FDDEs have been realized in various fields such as infectious diseases, immune systems,
epidemics, tumor growth, population dynamics, circulating blood the body’s reaction to car-
bon dioxide, ecology, physiology [18]. Recently, various models based on FDDEs such as
corona-virus disease model [19], hand-foot-mouth disease model [20], glucose-insulin inter-
action model [21] and so on have been discussed in the literature. FDDEs are more complex
due to the involvement of fractional derivatives and delay terms. Thus, it is a challenging
task to solve these equations analytically. Moreover, FDDEs do not possess exact solutions
in most cases. Hence, one must depend on numerical methods. Therefore, the development
of new accurate numerical methods for solving FDDEs is highly necessitated. In this pursuit,
various classical methods have been modified and extended to solve FDDEs such as the frac-
tional Adamsmethod (FAM) [22], decomposition, and iterativemethods [23, 24], operational
matrix-based method [25], Runge–Kutta methods [26], wavelet methods [27, 28], Adams–
Bashforth–Moulton method [29], finite difference methods [30], new predictor–corrector
method (NPCM) [31], shifted Jacobi polynomial method [32], and so on. One of the finite
difference methods is L1, where the fractional derivatives are discretized. The method L1
has been used by many researchers directly or indirectly to solve differential equations of
fractional orders [33, 34]. In this paper, we extend the L1 numerical method for solving
FDDEs of the following form:

Dμ
t χ(t) = ψ(t, χ(t), χτ (t)) for t > 0,

χ(t) = ϕ(t) for t ∈ [−τ, 0],
where τ > 0 is a constant delay and the operator Dμ

t denotes Caputo derivative defined as
follows:

Dμ
t χ(t) = 1

�(1 − μ)

∫ t

a
(t − s)−μχ ′(s)ds, t > a μ ∈ (0, 1).

Further, we present its error analysis. Furthermore, we exhibit the utility and applicability
of the proposed method by performing some of the numerical simulations corresponding to
chaotic and non-chaotic systems of FDDEs. We compare the solutions with exact, FAM, and
NPCM. We observe that the proposed method has higher accuracy than FAM and NPCM.
Moreover, the proposedmethod converges for very small values ofμ, when FAM andNPCM
both fail to converge.

This paper is organized as follows: In Sect. 2, we extend the L1 numerical method for
solving FDDEs and present its error analysis in Sect. 3. In Sect. 4, we use the proposed
method to solve various non-linear systems of FDDEs and compare the results with FAM
and NPCM. Finally, in Sect. 5, we draw the conclusions.

Formulation of Numerical Method

In this section, we develop a numerical method for solving fractional delay differential
equations (FDDEs). Consider the following general form of a non-linear system of FDDEs:

Dμ
t χ(t) = ψ

(
t, χ(t), χτ (t)

)
, t ∈ [0, T ], τ > 0, T > 0, 0 < μ < 1,

χ(t) = ϕ(t), t ∈ [−τ, 0],

⎫⎬
⎭ (1)
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where ψ : [0, T ] × R × R → R and ϕ(t) : [−τ, 0] → R are known functions and
χτ (t) = χ(t − τ) a delay term.

Consider a partition of the interval [0, T ] with uniform grid points {t j = jh : j =
−M,−M + 1, . . . ,−1, 0, 1, . . . , K }, where M and K are positive integers such that τ =
Mh and T = Kh. Further, let χτ (t j ) = χ(t j − τ) = χ( jh − Mh) = χ(( j − M)h) =
χ(t j−M ) for j = 0, 1, . . . , K and χ(t j ) = ϕ(t j ) for j = −M,−M + 1, . . . , 0.

A numerical scheme to solve the system (1) is devised as follows: The Caputo derivative
at t = tn is discretized as follows (cf. L1 algorithm [35]):

Dμ
t χ(t)

∣∣∣∣
t=tn

= 1

�(1 − μ)

∫ tn

0
(tn − ς)−μχ ′(ς)dς

= 1

�(1 − μ)

n−1∑
j=0

∫ t j+1

t j
(tn − ς)−μχ ′(ς)dς

≈ 1

�(1 − μ)

n−1∑
j=0

∫ t j+1

t j
(tn − ς)−μ χ(t j+1) − χ(t j )

h
dς

= h−μ

�(2 − μ)

n−1∑
j=0

γ j

(
χ(tn− j ) − χ(tn− j−1)

)
, (2)

where

γ j = ( j + 1)1−μ − j1−μ. (3)

Suppose χ j represents the approximate value of χ(t) at t = t j . The following process
is used to compute the n-th approximation χ(tn), while χ(t j ) for j = −M,−M +
1, . . . ,−1, 0, 1, . . . , n − 1 are already computed. Approximate the fractional Caputo-
derivative term Dμ

t χ(t) that appear in Eq. (1) by the expression (2), we get

h−μ

�(2 − μ)

n−1∑
j=0

γ j

(
χn− j − χn− j−1

)
= ψ

(
tn, χn, χτn

)
, (4)

where χτn denotes the approximate value of χτ (t) at t = tn . After simplifying Eq. (4), we
obtain

n−1∑
j=0

γ j

(
χn− j − χn− j−1

)
= �(2 − μ)hμψ

(
tn, χn, χτn

)
, (5)

Further simplifying Eq. (5), we get

γ0(χn − χn−1) + γ1(χn−1 − χn−2) + · · · + γn−1(χ1 − χ0)

= �(2 − μ)hμψ
(
tn, χn, χτn

)
. (6)

Or

γ0χn + (γ1 − γ0)χn−1 + (γ2 − γ1)χn−2 + · · · + (γn−1 − γn−2)χ1 − γn−1χ0

= �(2 − μ)hμψ
(
tn, χn, χτ (tn)

)
. (7)
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After simplifying Eq. (7), we obtain

γ0χn +
n−1∑
j=1

(γ j − γ j−1)χn− j = γn−1χ0 + �(2 − μ)hμψ
(
tn, χn, χτn

)
. (8)

Set:

ω0 = γ0,

ω j = γ j − γ j−1, j = 1, 2, . . . , n − 1,

ωn = γn−1.

⎫⎪⎬
⎪⎭ (9)

Thus, in view of the Eqs. (8) and (9), we obtain the following numerical scheme to solve
the system of FDDEs (1):

n−1∑
j=0

ω jχn− j = ωnχ0 + hμ�(2 − μ)ψ
(
tn, χn, χτn

)
, (10)

where ω′
j s are calculated by the formulas given in Eq.’s (3) and (9).

Error Analysis

In this section, we establish the error analysis of the proposed numerical method.

Lemma 1 [33, 36, 37] For 0 < μ < 1, the following inequality holds∣∣∣∣∣∣
[
Dμ
t χ(t)

]
t=tn

−
n−1∑
j=0


γ j

(
χn− j − χn− j−1

)∣∣∣∣∣∣ ≤ Ch2−μ, (11)

where 
 = h−μ

�(2−μ)
and C > 0 is a constant.

We set:

δn = �(2 − μ)hμ

[ (
Dμ
t χ(t)

)
t=tn

−
n−1∑
j=0


γ j

(
χn− j − χn− j−1

)]
. (12)

In view of the Eq.’s (11) and (12), we get

|δn | = �(2 − μ)hμ

∣∣∣∣∣∣
(
Dμ
t χ(t)

)
t=tn

−
n−1∑
j=0


γ j

(
χn− j − χn− j−1

)∣∣∣∣∣∣
≤ �(2 − μ)Ch2 = O(h2). (13)

Theorem 1 Suppose ψ(t, χ, ξ) satisfy the Lipschitz condition such that |ψ(t, χ1, ξ1) −
ψ(t, χ2, ξ2)| ≤ L1|χ1 − χ2| + L2|ξ1 − ξ2|, where L1 and L2 are the Lipschitz constants.
Let χ(t) be the exact solution of the system (1) and χ j the approximate solution at t = t j
obtained by the proposed numerical method (10). Subsequently, for a sufficiently small value
of h, we have

max
0≤ j≤N

|χ(t j ) − χ j | = O(h2), where N = �T /h�.
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Proof The numerical scheme given in Eq. (10) can be written as

ω0χn +
n−1∑
j=1

ω jχn− j = ωnχ0 + hμ�(2 − μ)ψ(tn, χn, χτn), (14)

which is equivalent to

ω0
(
χn − χ(tn)

) + ω0χ(tn) +
n−1∑
j=1

ω jχn− j = ωnχ0 + hμ�(2 − μ)ψ
(
tn, χn, χτn

)

+ hμ�(2 − μ)ψ
(
tn, χ(tn), χτ (tn)

) − hμ�(2 − μ)ψ
(
tn, χ(tn), χτ (tn)

)
. (15)

Suppose that χ j = χ(t j ) for j = 0, 1, 2, ..., n − 1. Therefore, Eq. (15) can be written as:

ω0
(
χn − χ(tn)

) +
n−1∑
j=0

ω jχ(tn− j ) = ωnχ(t0) + hμ�(2 − μ)ψ
(
tn, χ(tn), χτ (tn)

)

+ hμ�(2 − μ)
(
ψ

(
tn, χn, χτ (tn)

) − ψ
(
tn, χ(tn), χτ (tn)

))
. (16)

On account of Eq.’s (10) and (12), we have

n−1∑
j=0

ω jχ(tn− j ) = ωnχ(t0) + hμ�(2 − μ)ψ
(
tn, χ(tn), χτ (tn)

)
+ δn (17)

In view of Eq. (17), Eq. (16) turns out to be

ω0
(
χn − χ(tn)

) = hμ�(2 − μ)
(
ψ

(
tn, χn, χτ (tn)

) − ψ
(
tn, χ(tn), χτ (tn)

))

+ δn, (18)

Since ω0 = 1, therefore Eq. (18) implies

∣∣χn − χ(tn)
∣∣ = hμ�(2 − μ)

∣∣∣ψ(
tn, χn, χ(tn − τ)

) − ψ
(
tn, χ(tn), χ(tn − τ)

)∣∣∣
+ Ch2.

≤ hμ�(2 − μ)L1
∣∣χn − χ(tn)

∣∣ + Ch2, (19)

where C is an arbitrary constant and does not depend on h. After simplifying Eq. (19), we
obtain

(
1 − hμ�(2 − μ)L1

)∣∣∣χn − χ(tn)
∣∣∣ ≤ Ch2.

As h is sufficiently small, we have

max
0≤ j≤N

|χ(t j ) − χ j | = O(h2),

which is the desired result. 	


Comment:We proved that the error estimate of the proposed method is O(h2). Whereas,
the error-estimate of FAM is O(h1+μ) and for NPCM it lies between O(h1+μ) and O(h2−μ).
Hence, the proposed method has a better error estimate as compared to FAM and NPCM.
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Table 1 Comparison of absolute
errors for the system (20)

t FAM NPCM Present method (10)

1 0.004391972 0.004392520 0.004117906

2 0.004115289 0.004116835 0.003470192

3 0.003961597 0.003964149 0.002966255

4 0.003855740 0.003859303 0.002522327

5 0.003775297 0.003779873 0.002112362

6 0.003710572 0.003716162 0.001724671

7 0.003656503 0.003663109 0.001352938

8 0.003610120 0.003617743 0.000993328

9 0.003569535 0.003578177 0.000643324

10 0.003533484 0.003543134 0.000301175

Table 2 Comparison of relative
errors for the system (20)

t FAM NPCM Present method (10)

2 0.002057644 0.002058418 0.001735096

3 0.000660266 0.000660691 0.000494376

4 0.000321312 0.000321608 0.000210194

5 0.000188765 0.000188994 0.000105618

6 0.000123686 0.0001238720 5.7489 × 10−5

7 8.7059 × 10−5 8.7217 × 10−5 3.2213 × 10−5

8 6.4466 × 10−5 6.4603 × 10−5 1.7748 × 10−5

9 4.9577 × 10−5 4.9697 × 10−5 8.9351 × 10−6

10 3.9260 × 10−5 3.9368 × 10−5 3.3464 × 10−6

Illustrative Examples

In this section, we demonstrate the applicability of the proposed method by solving some of
the non-trivial systems of FDDEs.

Example 1 Consider the following fractional delay differential equation:

Dμ
t χ(t) = �(3)

�(3 − μ)
t2−μ − 1

�(2 − μ)
t1−μ + ζ(t, τ ), t > 0

χ(t) = 0, − τ ≤ t ≤ 0,

⎫⎬
⎭ (20)

where ζ(t, τ ) = 2tτ−τ 2−τ+χ(t)−χt (τ ). Exact solution of the system (20) isχ(t) = t2−t .
For μ = 0.90, h = 0.001 and τ = 0.1, we solve the system (20) using FAM, NPCM and the
proposed method (10). Absolute and relative errors are calculated at t = 1, 2, . . . , 10 and
compared with FAM and NPCM in Tables 1, 2 and Figs. 1, 2. Obtained results reveal that the
proposed method is more accurate than FAM and NPCM. Further, we compute the execution
time taken by FAM, NPCM, and the present method. We found that FAM, NPCM, and the
present method take 466.51, 234.57, and 425.93 s respectively. Hence the present method is
more time-efficient as compared to FAM.
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Fig. 1 Absolute errors (20)

Fig. 2 Relative errors (20)

Example 2 Consider the following fractional delay differential equation:

Dμ
t χ(t) = 2

�(3 − μ)
t2−μ − χt (τ )2 + (t − τ)4 + t4 − χ(t)2, t > 0

χ(t) = 0, − τ ≤ t ≤ 0.

⎫⎬
⎭ (21)

Exact solution of the system (21) is χ(t) = t2. We solve the system (21) for very small
values of μ i.e. for μ = 0.0001, 0.0005 and τ = 2 by using the proposed method, FAM
and NPCM. At t = 2 the numerical solutions obtained by these methods are compared in
Table 3. Further, for μ = 0.75 these solutions are plotted in Fig. 10. We observe that the
present method is accurate and even converges for very small values of μ while FAM and
NPCM both diverge. Further, it is noticed that FAM, NPCM, and the present method take
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Table 3 Solutions of the system (21) at t = 2

Step size μ FAM NPCM Present method(10) Exact

10−2 0.0001 diverges diverges 4.00001237126 4.0

0.0005 diverges diverges 4.00006184560 4.0

10−3 0.0001 diverges diverges 4.00001245781 4.0

0.0005 diverges diverges 4.00006227827 4.0

Fig. 3 μ = 0.84, τ = 2 (22)

execution times of 94.83, 43.56, and 84.57 s respectively. Hence the present method takes
less computational time as compared to FAM.

Example 3 Consider the following fractional order biological-model [38]:

Dμ
t χ(t) = η1

χτ (t)

1 + χk
τ (t)

− η2χ(t), t > 0,

χ(t) = 1

2
, t ≤ 0,

⎫⎪⎪⎬
⎪⎪⎭

(22)

where η1 = η2 = 1 and k = 9.65. We apply the proposed method to solve the system (22)
numerically. For μ = 0.84, 0.98, τ = 2, t ∈ [0, 200] with step-size h = 0.02; the numerical
solutions are plotted in Figs. 3 and 4 individually. Whereas, its phase portraits in χ(t) versus
χ(t − τ) plane are portrayed in Figs. 5 and 6 separately. Moreover, we found that these
graphs match with those obtained by FAM and NPCM reported in [31] and hence validate
the applicability of the proposed method.

Example 4 Consider the following fractional-order delay system [39]

Dμ
t χ(t) = λ1χt (τ ) + λ2 tanh

(
χt (τ )

)
, t > 0,

χ(t) = ϕ(t), t ≤ 0,

}
(23)
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Fig. 4 μ = 0.98, τ = 2 (22)

Fig. 5 μ = 0.84, τ = 2 (22)

where λ1 = −0.2, λ2 = 0.2 and ϕ(t) = 1. We perform the numerical simulations for the
system (23) using the proposed method. Numerical simulations evidence that this system
shows chaotic behavior for μ = 0.99 and τ = 10. Further, the numerical solutions (t versus
χ(t)) and chaotic phase-portraits (χ(t) versus χ(t−τ)) and (χ(t) versus Dμ

t χ(t)) are plotted
in Figs. 7, 8 and 9 separately. Besides, for μ = 0.85 and τ = 10, the stable trajectories and
orbits are depicted in Figs. 11 and 12 respectively.
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Fig. 6 μ = 0.98, τ = 2 (22)

Fig. 7 μ = 0.99, τ = 10 (23)

Example 5 Consider the following fractional-order logistic DDE:

Dμ
t χ(t) = λχt (τ )

(
1 − χt (τ )

)
− δχ(t), δ > 0, t > 0,

χ(t) = 0.5, t ≤ 0.

⎫⎬
⎭ (24)

We solve the fractional order system of DDEs (24) using the proposed method. This
system shows stable behavior for (τ, λ, δ, μ)=(0.5,70,26,0.90), periodic oscillations for
(τ, λ, δ, μ)=(0.5,79.3,26,0.90) and chaotic behavior for (τ, λ, δ, μ)=(0.5, 104, 26, 0.90). In
each case, we take step-size h = 0.01. All these solutions are represented graphical in Figs.
13, 14, 15, 16, 17 and 18. Moreover, these graphs match with those obtained in [40].
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Fig. 8 μ = 0.99, τ = 10 (23)

Fig. 9 μ = 0.99, τ = 10 (23)

Conclusions

In this paper, an efficient numerical scheme is developed for solving fractional delay differ-
ential equations. Further, the related error analysis of the proposed method is established.
Various non-trivial systems of fractional delay differential equations including fractional-
order biological models and logistic equations and some chaotic and non-chaotic systems are
solved using the proposedmethod. The absolute and relative errors obtained by FAM,NPCM,
and the proposed method are compared numerically and as well as graphically. Numerical
simulations show that the proposed method is more accurate than FAM and NPCM and takes
less computational time than FAM. Besides, we notice that the proposed method converges
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Fig. 10 μ = 0.75, τ = 2 (21)

Fig. 11 μ = 0.85, τ = 10 (23)
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Fig. 12 μ = 0.85, τ = 10 (23)

Fig. 13 λ = 70, δ = 26 (24)
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Fig. 14 λ = 70, δ = 26 (24)

Fig. 15 λ = 79.3, δ = 26 (24)
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Fig. 16 λ = 79.3, δ = 26 (24)

Fig. 17 λ = 104, δ = 26 (24)
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Fig. 18 λ = 104, δ = 26 (24)

even for very small values of the order of fractional derivative operator μ, when FAM and
NPCM diverge.
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