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ABSTRACT

Many analyses for the detection of biological phe-
nomena rely on a multiple sequence alignment as in-
put. The results of such analyses are often further
studied through parametric bootstrap procedures,
using sequence simulators. One of the problems with
conducting such simulation studies is that users cur-
rently have no means to decide which insertion and
deletion (indel) parameters to choose, so that the re-
sulting sequences mimic biological data. Here, we
present SpartaABC, a web server that aims to solve
this issue. SpartaABC implements an approximate-
Bayesian-computation rejection algorithm to infer
indel parameters from sequence data. It does so
by extracting summary statistics from the input. It
then performs numerous sequence simulations un-
der randomly sampled indel parameters. By comput-
ing a distance between the summary statistics ex-
tracted from the input and each simulation, Spar-
taABC retains only parameters behind simulations
close to the real data. As output, SpartaABC pro-
vides point estimates and approximate posterior dis-
tributions of the indel parameters. In addition, Spar-
taABC allows simulating sequences with the inferred
indel parameters. To this end, the sequence simula-
tors, Dawg 2.0 and INDELible were integrated. Using
SpartaABC we demonstrate the differences in indel
dynamics among three protein-coding genes across
mammalian orthologs. SpartaABC is freely available
for use at http://spartaabc.tau.ac.il/webserver.

INTRODUCTION

Sequence simulation is an extremely important component
of phylogenetic studies and many sequence simulators have
been previously developed (1–12). The tasks for which se-
quence simulations are used vary greatly and span a wide
range of scientific questions. For example, Worobey et al.
used sequence simulations to investigate the origins of in-
fluenza A virus within and between hosts (13). Shapiro
et al. utilized sequence simulations in their study of early
events of ecological differentiation of bacterial genomes
(14). Gossmann and Schmid included sequence simulations
as part of their analysis of post-duplication selective forces
on genes in Arabidopsis thaliana (15). Sequence simulators
are also often used in studies that aim to evaluate the per-
formance of alignment and tree reconstruction algorithms
(16–23). Finally, sequence simulations are an integral part
of parametric bootstrap test procedures, which are used, for
example, to test for the constancy of evolutionary rates (24),
to study the fit of various evolutionary models to real se-
quences (25,26), to detect traits that impact the rate of evo-
lution (27,28) and to compare competing tree topologies
(29–31).

Sequence simulators provide in-silico generated datasets
under different evolutionary scenarios. The complete evo-
lutionary process relies on a substitution model (e.g. 32–38)
as well as a model of insertion and deletion. The occur-
rence of indel events is defined relative to the substitution
process and is controlled by the IR parameter––the indel-
to-substitution rate ratio. The length of the indel is often
modeled using a power–law distribution, controlled by its
shape parameter ‘A’. This distribution is characterized by
a reverse relationship between an indel size and its prob-
ability. Finally, the root length parameter RL controls the
length of the sequence at the root of the tree (the start of
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the simulation). Although the root length is not a pure in-
del parameter, it strongly affects the resulting multiple se-
quence alignment (MSA). Until recently, no methodology
was available for users to determine the values of these pa-
rameters in a way that best reflects the indel dynamics in
their datasets of interest.

We recently developed the SpartaABC algorithm (Levy
Karin, Shkedy et al. submitted for publication), an approx-
imate Bayesian computation rejection algorithm to infer in-
del parameters from sequence data. SpartaABC focuses on
the inference of the above-mentioned three indel parame-
ters. To this end, SpartaABC extracts a vector of summary
statistics from its input; it then performs repeated simula-
tions using an integrated sequence simulator (8,12) under
various indel parameters. From each such simulated dataset
it extracts a vector of summary statistics and computes its
distance from the vector extracted for the input using a
weighted Euclidean distance. SpartaABC retains a subset
of the simulations for which the distance from the input was
small enough. The parameter sets from simulations with a
small distance are used to estimate the indel parameters be-
hind the input. Using a simulation study, the SpartaABC
algorithm was shown to accurately infer indel parameter
values under various conditions (Levy Karin, Shkedy et al.
submitted for publication). Thus, sequences simulated us-
ing the SpartaABC inferred indel parameters resemble the
input data in terms of their indel properties, much more so,
than when sequence simulators are run with default param-
eters.

Here we use the SpartaABC algorithm as part of a
broader web service, which provides the following: (i)
MSA reconstruction (optional), (ii) tree reconstruction (op-
tional), (iii) inference of indel dynamics and (iv) sequence
simulation based on the inferred indel parameters (op-
tional). Visual and textual outputs of these services are of-
fered as downloadable files.

MATERIALS AND METHODS

Input

The SpartaABC web server requires sequence data (either
nucleotide or protein) as input. The user can provide either
an MSA or a set of unaligned sequences. If unaligned data
are provided, the user will be asked to choose between the
programs MAFFT (39,40) and PRANK (41) to align them.
An optional input to the SpartaABC web server is a phylo-
genetic tree. If the user does not provide a phylogenetic tree,
the maximum likelihood tree will be computed based on the
MSA of the sequences, using RAxML (42). SpartaABC in-
tegrates two sequence simulators: Dawg 2.0 (12), which is
the default, and INDELible (8). Finally, the user can indi-
cate the number of simulated datasets to produce based on
the indel parameters inferred from the input. An illustration
of the computational stages performed by the SpartaABC
web server is presented in Figure 1.

Summary statistics

The summary statistics computed by SpartaABC are de-
tailed in the OVERVIEW section of the web server. Among
them are the average gap length, the total number of

gaps and the MSA length. Based on the summary statis-
tics extracted from the input MSA and each simulation,
SpartaABC computes a weighted Euclidean distance. The
weights used by SpartaABC are also available for download
from the SOURCE & USAGE section of the web server. In
addition, the extracted summary statistics values from the
input MSA and each simulation in the SpartaABC run are
available for download.

Indel parameters search space

Throughout its computation, SpartaABC proposes 100,000
indel parameter combinations by sampling values of each of
the parameters from a prior uniform distribution. Specifi-
cally, the ‘A’ parameter value is sampled from a wide range:
(1, 2]; the IR parameter value is sampled by default from the
range: [0, 0.05], but this range can be extended by the user
up to [0, 0.1]. Finally, the RL parameter range is determined
empirically according to the input provided by the user. Let
L denote the longest sequence in the user-provided input,
then the search range of the RL parameter is [50, 1.1 × L].

Output

SpartaABC provides a step-by-step progress report and es-
timation of the expected run time. Upon completion of
the SpartaABC computation, all examined indel parameter
combinations and their distance from the input dataset are
available to the user as a downloadable file. Out of these,
the 50 parameter combinations with the smallest distance
are used to approximate the posterior distributions of the
indel parameters. These distributions are presented to the
user in three plots, where the x-axis is the entire search range
of each indel parameter and the y-axis is the density. An ex-
ample for such plots is given in Figure 2. In addition, Spar-
taABC computes the posterior expectations based on the
inferred posterior distributions to yield point estimates of
the indel parameters. As its final step, the web server sim-
ulates datasets using the indel parameters point estimates,
according to the number of replicates determined by the
user. The substitution model and parameters used in the se-
quence simulation step are estimated and selected according
to the AICc (43) criterion by jModelTest (44) or protTest
(45), for DNA or protein input, respectively. The user can
download a zipped file of these simulated datasets as well
as the sequence simulator control file. Finally, the MSA and
phylogenetic tree from which SpartaABC inferred the indel
parameters are presented visually using Wasabi (46).

Implementation

The SpartaABC web server runs on a Linux cluster of 2.6
GHz AMD Opteron processors, equipped with 4 GB RAM
per quad-core node. The server runs up-to-date versions of
the supported multiple alignment and tree reconstruction
programs. The SpartaABC algorithm was implemented in
C++. We provide its source code, a precompiled version for
UNIX systems, a short manual and a run example in the
SOURCE & USAGE section of the web server. In addition,
the web server contains a frequently asked questions page
to provide additional information concerning the algorithm
and methodology.
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Figure 1. An illustration of the computational stages performed by the SpartaABC web server.

CASE STUDY

SERPINA7, PTH1R and CFTR are genes known to play
a role in the human diseases: thyroxine-binding globu-
lin deficiency, chondrodysplasia and cystic fibrosis, respec-
tively (47–49). In order to examine their indel dynamics,
we obtained their sets of unaligned coding sequences across
>30 mammalian orthologous species from the OrthoMam
database (50). These datasets are available for download at
the GALLERY section of the web server. We then analyzed
each of these sets using the SpartaABC web server. First,
an MSA was computed for each unaligned set of sequences
using the server’s default MSA program, MAFFT (40). Sec-
ond, a phylogenetic tree was reconstructed using RAxML
(42). Third, the MSA and the tree were used to infer in-
del parameters. We found, that in spite of the fact that all
three analyzed coding sequences are involved in human dis-
eases and have roughly the same number of mammalian or-
thologs, they display substantially different indel dynamics
(Figure 2). Specifically, the IR parameter inferred for SER-
PINA7 is 5-fold smaller than that inferred for CFTR, with
PTH1R taking an IR value in between the other two. In ad-
dition, the inferred RL parameters corresponded to the dif-

ferent lengths of the genes. Finally, all genes displayed a ten-
dency for longer indels as evident by their inferred ‘A’ pa-
rameter. All three inferred ‘A’ values were close to 1.0, yield-
ing power low distributions where longer indels are more
probable compared to power low distributions with a high
‘A’ value. From these results we conclude that even when ex-
amining orthologous genes within the same taxonomic class
and similar biological contexts, it is important to character-
ize the indel dynamics of each gene individually in order to
best mimic biological data.

In the following example, we demonstrate the utility of
the SpartaABC web server to test specific evolutionary hy-
potheses using a parametric bootstrap procedure, in which
the sequences are generated based on the indel parameters
inferred from the data. Here, we focused on the compar-
ison of the indel dynamics between the coding region of
SERPINA7 (as analyzed above) to the entire SERPINA7
gene (exons and introns included). To this end, we obtained
the full SERPINA7 gene sequences across 35 mammalian
orthologs from the ENSEMBL database (51). Using Spar-
taABC web server, we found that over the whole gene, the
IR parameter is much higher (0.0166) compared to that in-
ferred in the coding sequence only (0.004), suggesting that
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Figure 2. SpartaABC analyses of three genes involved in human diseases across mammalian orthologs. The point estimates of each of the indel parameters
are presented above the approximated posterior distribution plots. IR: indel to substitution rate ratio; A: the shape parameter controlling the power–law
distribution describing indel lengths; RL: root length.

indels are much more frequent when intronic regions are in-
cluded in the analysis compared to examining only exonic
regions. A much smaller difference was found in the inferred
‘A’ parameter (1.036 and 1.2 for the full and coding-only
SERPINA7, respectively), suggesting that the main differ-
ence between the full and coding-only SERPINA7 is the
frequency of indels, rather than their size. We hypothesized
that such a difference may stem from selection against the
introduction of indels in a specific region that resides within
the exons of the analyzed gene. To statistically test this hy-
pothesis, we first measured the longest stretch of consec-
utive columns without gap characters in the MSA of the
full SERPINA7 gene. We found that this stretch was 174
columns in length, which reside within the second human
exon of this gene (starting at position 3726 of the MSA). Us-
ing simulations which do not prefer one sequence position
over the other for indel events, we could test how likely it is
to observe a gap-free stretch of consecutive columns of such
length. We thus compared the length of the SERPINA7
stretch to those computed from 100 simulated MSAs pro-
duced by the SpartaABC web server according to the SER-
PINA7 inferred indel parameters using Dawg 2.0 (12). In
all 100 simulated datasets we found that the longest stretch
without any gap characters did not exceed 85 columns in
length, suggesting the SERPINA7 stretch is significantly
longer than one could expect (empirical P-value < 0.01).
The data (e.g., MSAs and trees) and the analyses associated
with this example are provided in the GALLERY section
of the web server. In conclusion, indel dynamics can vary
along a specific gene and using sequence simulations it is
possible to detect gene regions that deviate from the aver-
age indel dynamics inferred for the entire sequence.
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20. Löytynoja,A., Vilella,A.J. and Goldman,N. (2012) Accurate
extension of multiple sequence alignments using a phylogeny-aware
graph algorithm. Bioinformatics, 28, 1684–1691.

21. Thi Nguyen,M.A., Gesell,T. and von Haeseler,A. (2012) ImOSM:
intermittent evolution and robustness of phylogenetic methods. Mol.
Biol. Evol., 29, 663–673.

22. Ashkenazy,H., Cohen,O., Pupko,T. and Huchon,D. (2014) Indel
reliability in indel-based phylogenetic inference. Genome Biol. Evol.,
6, 3199–3209.

23. Sela,I., Ashkenazy,H., Katoh,K. and Pupko,T. (2015) GUIDANCE2:
accurate detection of unreliable alignment regions accounting for the
uncertainty of multiple parameters. Nucleic Acids Res., 43, W7–W14.

24. Adell,J.C. and Dopazo,J. (1994) Monte Carlo simulation in
phylogenies: an application to test the constancy of evolutionary
rates. J. Mol. Evol., 38, 305–309.

25. Goldman,N. (1993) Simple diagnostic statistical tests of models for
DNA substitution. J. Mol. Evol., 37, 650–661.

26. Goldman,N. (1993) Statistical tests of models of DNA substitution.
J. Mol. Evol., 36, 182–198.

27. Mayrose,I. and Otto,S.P. (2011) A likelihood method for detecting
trait-dependent shifts in the rate of molecular evolution. Mol. Biol.
Evol., 28, 759–770.

28. Levy Karin,E., Wicke,S., Pupko,T. and Mayrose,I. (2017) An
integrated model of phenotypic trait changes and site-specific
sequence evolution. Syst. Biol., doi:10.1093/sysbio/syx032.

29. Bull,J.J., Cunningham,C.W., Molineux,I.J., Badget,M.R. and
Hillis,D.M. (1993) Experimental molecular evolution of
bacteriophage T7. Evolution (N. Y)., 47, 993–1007.

30. Swofford,D.L., Olsen,G.J., Waddell,P.J. and Hillis,D.M. (1996)
Phylogenetic inference. In: Hillis,DM, Moritz,C and Mable,BK (eds).
Molecular Systematics. Sinauer Associates, Inc., Sunderland, pp.
407–514.

31. Levy Karin,E., Susko,E. and Pupko,T. (2014) Alignment errors
strongly impact likelihood-based tests for comparing topologies. Mol.
Biol. Evol., 31, 3057–3067.

32. Jukes,T.H. and Cantor,C.R. (1969) Evolution of protein molecules.
In: Munro,HN and Allison,JB (eds). Mammalian Protein
Metabolism. Academic Press, NY, pp. 21–132.

33. Tavare,S. (1986) Some probabilistic and statistical problems on the
analysis of DNA sequences. Lect. Math. Life Sci., 17, 57–86.

34. Hasegawa,M., Kishino,H. and Yano,T. (1985) Dating of the
human-ape splitting by a molecular clock of mitochondrial DNA. J.
Mol. Evol., 22, 160–174.

35. Jones,D.T., Taylor,W.R. and Thornton,J.M. (1992) The rapid
generation of mutation data matrices from protein sequences.
Bioinformatics, 8, 275–282.

36. Goldman,N. and Yang,Z. (1994) A codon-based model of nucleotide
substitution for protein-coding DNA sequences. Mol. Biol. Evol., 11,
725–736.

37. Whelan,S. and Goldman,N. (2001) A general empirical model of
protein evolution derived from multiple protein families using a
maximum-likelihood approach. Mol. Biol. Evol., 18, 691–699.

38. Le,S.Q. and Gascuel,O. (2008) An improved general amino acid
replacement matrix. Mol. Biol. Evol., 25, 1307–1320.

39. Katoh,K., Misawa,K., Kuma,K. and Miyata,T. (2002) MAFFT: a
novel method for rapid multiple sequence alignment based on fast
Fourier transform. Nucleic Acids Res., 30, 3059–3066.

40. Katoh,K. and Standley,D.M. (2013) MAFFT multiple sequence
alignment software version 7: improvements in performance and
usability. Mol. Biol. Evol., 30, 772–780.
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