

Development and Validation of an Mesenchymal-Related Long Non-Coding RNA Prognostic Model in Glioma

OPEN ACCESS

Edited by:

Haotian Zhao, New York Institute of Technology, United States

Reviewed by:

Zaixiang Tang, Soochow University Medical College, China Jiye Li, Capital Institute of Pediatrics, China

*Correspondence:

Erbao Bian aydbeb@126.com Bing Zhao aydzhb@126.com

[†]These authors have contributed equally to this work and share first authorship

Specialty section:

This article was submitted to Neuro-Oncology and Neurosurgical Oncology, a section of the journal Frontiers in Oncology

Received: 17 June 2021 Accepted: 16 August 2021 Published: 03 September 2021

Citation:

Huang K, Yue X, Zheng Y, Zhang Z, Cheng M, Li L, Chen Z, Yang Z, Bian E and Zhao B (2021) Development and Validation of an Mesenchymal-Related Long Non-Coding RNA Prognostic Model in Glioma. Front. Oncol. 11:726745. doi: 10.3389/fonc.2021.726745 Kebing Huang^{1,2†}, Xiaoyu Yue^{1,2†}, Yinfei Zheng^{1,2}, Zhengwei Zhang^{1,2}, Meng Cheng^{1,2}, Lianxin Li^{1,2}, Zhigang Chen^{1,2}, Zhihao Yang^{1,2}, Erbao Bian^{1,2*} and Bing Zhao^{1,2*}

¹ Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China, ² Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China

Glioma is well known as the most aggressive and prevalent primary malignant tumor in the central nervous system. Molecular subtypes and prognosis biomarkers remain a promising research area of gliomas. Notably, the aberrant expression of mesenchymal (MES) subtype related long non-coding RNAs (IncRNAs) is significantly associated with the prognosis of glioma patients. In this study, MES-related genes were obtained from The Cancer Genome Atlas (TCGA) and the Ivy Glioblastoma Atlas Project (Ivy GAP) data sets of glioma, and MES-related IncRNAs were acquired by performing co-expression analysis of these genes. Next, Cox regression analysis was used to establish a prognostic model, that integrated ten MES-related IncRNAs. Glioma patients in TCGA were divided into highrisk and low-risk groups based on the median risk score; compared with the low-risk groups, patients in the high-risk group had shorter survival times. Additionally, we measured the specificity and sensitivity of our model with the ROC curve. Univariate and multivariate Cox analyses showed that the prognostic model was an independent prognostic factor for glioma. To verify the predictive power of these candidate IncRNAs, the corresponding RNA-seq data were downloaded from the Chinese Glioma Genome Atlas (CGGA), and similar results were obtained. Next, we performed the immune cell infiltration profile of patients between two risk groups, and gene set enrichment analysis (GSEA) was performed to detect functional annotation. Finally, the protective factors DGCR10 and HAR1B, and risk factor SNHG18 were selected for functional verification. Knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of gliomas. Collectively, we successfully constructed a prognostic model based on a ten MES-related IncRNAs signature, which provides a novel target for predicting the prognosis for glioma patients.

Keywords: mesenchymal, IncRNA, prognosis, glioma, TCGA, CGGA, immune

INTRODUCTION

Glioma accounts for 40% of intracranial tumors, which is the most common primary malignant tumor in the central nervous system (CNS) (1). According to the World Health Organization (WHO) classification, gliomas are divided into four different grades (grades I~IV). Among them, WHO II and WHO III are classified as lower grade glioma (LGG) and WHO IV as glioblastoma (GBM), which is the most aggressive type of brain tumor; neo-angiogenesis and invasion are the hallmarks of GBM (2, 3). Despite the existence of surgery, supplemented by chemotherapy, radiotherapy, and other treatment methods, the median survival of GBM patients is approximately 15 months (4, 5), and the 5-year survival rate is below 10% (6, 7). Additionally, based on differences in gene expression, TCGA classifies GBMs into classical, mesenchymal, neural, and proneural subtypes (8). Notably, approximately 45% of GBM tissues have been classified as the mesenchymal subtype, which is particularly malignant as compared to the other subtypes. The mesenchymal subtype is dominated in the relapses of GBM, and it has been revealed that cells of this subtype may have a higher therapy resistance (9). The overexpression of mesenchymal subtype (MES) related genes is adequate to induce invasive behavior in tumors and result in poor prognosis in patients (10).

LncRNA is a type of RNA that is longer than 200 nucleotides and lacks protein-coding ability (11). However, they are identified as having multiple biological functions, including the regulation of transcription, splicing, and translation (12). The biological function and carcinogenic mechanism of lncRNAs have been widely explored. Increasing evidence suggests that abnormal lncRNA expression has important significance in tumorigenesis and aggressiveness. For example, lncRNA ROR1-AS1 promotes glioma progression by inhibiting miR-4686 (12). The expression level of NEAT1 significantly increases in glioma tissues and promoted cell migration and invasion by regulating the miR-139-5p/CDK6 pathway (13). MES-related lncRNA miR155HG binds to miR-185 to affect proliferation, cell cycle progression, and apoptosis in GBM cell lines (14). MES-related lncRNA FAM181A-AS1 promotes the growth and survival of glioma cells by enhancing ZRANB2 expression (15). The mesenchymal subtype is characterized by higher percentages of cycling cells and neo-angiogenesis, with a highly invasive nature and poor prognosis (16). Furthermore, biological function analysis revealed that immune checkpoint receptor target was highly enriched in mesenchymal subtype glioma and might be a potential marker of mesenchymal subtype (17, 18).

Although the WHO classification system has been used to predict the prognosis of glioma patients for many years, it is sometimes inaccurate considering the heterogeneity of the tumor. New advances in bioinformatics and genome sequencing technology have helped to predict the prognosis of cancer patients in addition to identifying potential biomarkers (18, 19). Studies have shown that the prognostic value of a single candidate lncRNA biomarker is limited, integrating multiple biomarkers into a single model would be much better (20). For example, based on the metastasis-associated competing endogenous RNA (ceRNA) network, three lncRNAs were confirmed to have the ability to predict colorectal cancer (CRC) prognosis (21). By mining the TCGA data, a fourlncRNA signature could effectively predict the survival time of lung adenocarcinoma (LUAD) (22). Recently, some lncRNA prognostic models have been constructed, and their ability to predict have been validated in glioma. For example, an immunerelated lncRNA formula provides a powerful prognostic prediction ability for glioma patients; similarly, ten autophagyrelated lncRNAs have prognostic potential for glioma (23, 24).

Therefore, we speculated that identification of MES-related lncRNAs act as prognostic models is of great significance for discovery of prognostic biomarkers, evaluating therapeutic effect and development of more accurate treatment processes. In this study, we first analyzed the MES-related mRNA expression profile data in the TCGA and Ivy GAY databases. Then, the corresponding lncRNAs were obtained through co-expression analysis, and differentially expressed lncRNAs were identified between LGG and GBM samples. Next, MES-related lncRNAs with prognostic value based on Cox analysis were screened. Ultimately, we identified that a ten-lncRNA signature acts as an independent predictive factor for prognosis prediction in glioma patients. Based on the median risk score, glioma patients in the TCGA and CGGA databases were divided into high- and lowrisk groups, and the results of the immune cell infiltration profile and GSEA revealed that the high-risk group was closely related to the tumor immune microenvironment and many aspects of glioma progression compared to the low-risk group. In addition, functional experiments further reveal the biological characteristics of glioma cell lines, which will be helpful in advancing the development of targeted treatment in glioma.

MATERIALS AND METHODS

Data Acquisition

The RNA-seq data of MES-related genes were downloaded from TCGA (https://cancergenome.nih.gov/) and Ivy GAP (http://glioblastoma.alleninstitute.org/). Ivy GAP is a freely accessible online data resource for exploring the anatomic and genetic basis of glioblastoma at the cellular and molecular levels, including digitized tissue pathology slides, and corresponding transcriptomic data of GBM patients (25, 26).

In TCGA, clinical information included gender, cancer type and Karnofsky Performance Score (KPS) score, etc. After 11 patients with incomplete clinical information were excluded, the training set included 666 samples from TCGA. In order to further validated the accuracy of the results, the testing set included 618 samples from the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/, freely available) dataset, the clinical information included primary-recurrent-secondary (PRS) type, grade, gender, age, radio status, chemo status, IDH mutation status, 1p19q codeletion status, etc.

Identification of MES-Related LncRNAs

We obtained 303 MES-related encoding genes (mRNAs) from two datasets (TCGA and Ivy GAP). Then, 47 MES-related lncRNAs were identified by constructing MES-related mRNA-lncRNA co-expression network according to the criteria of |Correlation Coefficient| > 0.7 and P <0.001 by Pearson correlation analysis using the Limma R package. Next, we carried out a difference analysis between LGG and GBM samples with the R programming language (http://cran.r-project.org) and 42 differentially expressed lncRNAs were identified.

Construction of a Prognostic Model With MES-Related LncRNA

In order to narrow the scope, univariate and multivariate Cox regression was performed in the TCGA data set, and ultimately, 10 MES-related lncRNAs were used as candidates for the prognostic model. HR<1 was considered a protective factor, whereas HR>1 was considered a risk factor. In order to compute the risk score of each glioma patient, multivariate regression analysis was performed to evaluate the relative contribution of candidate lncRNAs as prognostic models. The formula was as follows:

Risk Score =
$$\sum_{i=1}^{n} coef(i) \times x(i)$$

Coef (i) and X(i) represent the regression coefficient and expression value of MES-related lncRNAs, respectively.

Evaluation of the Prognostic Model

Using the median risk score as the demarcation point, glioma patients were divided into high-risk and low-risk groups. Kaplan-Meier survival curves were used to compare the OS of the two groups of glioma patients. In order to determine whether the risk score model is an independent factor for glioma patients, we performed univariate and multivariate Cox regression analysis of these prognostic factors, and the ROC curves were used to assess the predictive value of the prognostic model. P<0.05 was considered statistically significant.

Estimation of the Immune Cell Composition and Bioinformatics Analysis

The single sample gene set enrichment analysis (ssGSEA) was carried out to explore the different infiltration degrees of 24 immune cell types in two kind risk groups with the R package "GSV A". We evaluate tumor purity by the R package "ESTIMA TE," which is based on the estimation of stromal and immune cell markers (27). PCA was performed with R software to explore the expression patterns between low- and high-risk groups based on the ten MES-related lncRNAs. GSEA software (4.0.1) (http:// www.broadinstitute.org/gsea/index.jsp) was used for gene set enrichment analysis to discern differences in gene sets between the low- and high-risk groups. To validate these lncRNA expression levels, the Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/) was applied to analyze the RNA sequencing data.

Cell Culture and Transfection

The glioma cell lines LN18, SNB19, SW1088, T98G, and U251 were purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences (Shanghai, China). All cell lines were cultured in Dulbecco's Modified Eagle's medium (DMEM : SH30022.01; HyClone) containing with 10% fetal bovine serum (FBS, Gibco) at the culture condition of 37°C with 5% CO2 in a humidified incubator. The cells grew in a monolayer, with the medium needing to be changed every 48 hours. Then, we used IncRNA Smart Silencer, antisense oligonucleotides (ASOs), and small interfering RNAs (siRNAs), designed by RIBOBIO (Guangzhou Ribobio Co.), to target and knockdown the expression of DGCR10, HAR1B, and SNHG18. The sequences were as follows: DGCR5 Smart Silencer, CCTTCACTCTG GTCATCGTT; ASO-HAR1B, CAACACTTGAACAAGC AAGG; si-SNHG18, CCACTTGGATTTCACCAAA. Next, in accordance with the manufacturer's instructions in Opti-MEM (Gibco; Thermo Fisher Scientific, Inc.), transfection reagent jetPRIME (Poly plus-transfection[®]) was used to carry out cell transfection.

RNA Extraction and RT-qPCR

TRIzol reagent (Invitrogen, Thermo Fisher Scientific) was used to extract total RNA from LN18, U251, and T98G cells according to the manufacturer's protocol. Reverse transcription was performed using PrimeScript RT Master Mix (Perfect Real Time) (RR036A; Takara). Next, RT-qPCR was carried out with TB GreenTM Premix Ex TaqTM II (Tli RNaseH Plus) (RR820A; Takara); the steps for RT-qPCR reaction were as follows: predenaturation at 95°C, 30s, one cycle; quantitative analysis at 95°C for 5s, 60°C for 31s, 40 cycles; dissolution curve at 95°C for 15s, 60°C for 1min, 95°C for 15s, 1 cycle. The relative expression level of each lncRNA was calculated using the 2– $\Delta\Delta$ Ct method. The primer sequences of GAPDH, DGCR10, HAR1B, and SNHG18 are shown in **Table 1**.

Transwell Migration Assay and Matrigel Invasion Assay

First, transwell migration assay were performed to measure LN18, U251, and T98G cell migration ability. Transfected (2×10^4) cells were added into the upper chamber that contained 200 µl of serum-free DMEM. Meanwhile, the lower chamber contained 600 µl of DMEM with 30% FBS and was cultured at 37°C for 24h. For the invasion assay, 1×10^5 cells were

TABLE 1	The primer sequences of DGCR10, HAR1B, and SNHG18.

GAPDH	F primer(5'-3')	CGCTCTCTGCTCCTCCTGT
	R primer(5'-3')	ATCCGTTGACTCCGACCTA
DGCR10	F primer(5'-3')	TGTTTCAGAAGCACCGTCAG
	R primer(5'-3')	CCCTCACTTGAATGGATGCT
HAR1B	F primer(5'-3')	CCTGGGGCTAAATGAATGAA
	R primer(5'-3')	GTTGAGTGAGGGCAGTCTCC
SNHG18	F primer(5'-3')	GTTGCACTTTGCCACTGCTA
	R primer(5'-3')	GGAATGTGGTTCTCCCTTGA

F primer, forward primer; R primer, reverse primer.

plated in each chamber that was pre-coated with Matrigel (356234; BD Biosciences) and cultivated for 48h in a culture environment of 37°C and 5% CO2. After incubation, 4% polyoxymethylene and 0.5% crystal violet were used to fix and stain the cells, respectively. Then, a cotton swab was used to remove cells remaining on the upper surface of the parietal chamber. Quantify under a microscope and perform three independent experiments.

Statistical Analysis

GraphPad Prism 8 was used for statistical analysis. A coexpression network of the 47 MES-related mRNA-lncRNA was established and visualized using Cytoscape software(version 3.4.0) (28). ImageJ software for Microsoft Windows was used for the cell number counts. The univariate and multivariate Cox regression analyses were carried out using R version 3.6.2 and relevant packages. Perl version 5.30.2 (http://www.perl.org) was used to process above data.

Statistical significance was denoted as follows: *P < 0.05, **P < 0.01, ***P < 0.001.

RESULTS

Identification and Differential Expression Profiles of MES-Related LncRNAs

A flowchart describing the construction and verification of our prognostic model was first drafted (Figure 1A). The MES-related mRNAs were obtained from the TCGA and Ivy GAP databases, with 204 MES-related mRNAs from TCGA and 120 from Ivy GAP. The Venn diagram shows a total of 303 MES-related mRNAs contained in the two databases (Figure 1B). Next, A total of 47 MES-related lncRNAs were obtained by constructing the co-expression networks with 303 MES-related mRNAs (Figure 1C and Table 2). Then, 42 differentially expressed lncRNAs were identified between the LGG samples and GBM samples in the TCGA database (Figure 2). In order to narrow the scope, 18 MES-related lncRNAs were screened by performing univariate Cox regression analysis (Figure S1A). Multivariate Cox regression analysis showed that 10 MES-related lncRNAs (GDNF-AS1, CRNDE, FAM201A, HAR1B, AGAP2-AS1, RNF219-AS1, DGCR10, SNHG18, LINC00906, HAR1A) were significantly associated with prognosis (Figure S1B), out of

FIGURE 1 | Identification of MES-related IncRNAs. (A) Flowchart of our study. (B) Venn diagram: the sum aggregate of MES-related mRNAs in the TCGA and Ivy GAP data sets. (C) Network of MES-related IncRNAs with co-expressed MES-related genes in glioma. In the centric position, green nodes indicate MES-related IncRNAs and the sky blue indicates MES-related genes, diamonds indicate positive correlation, ellipses indicate negative correlation. The coexpression network is visualized by CYTOSCAPE 3.4 software.

Regulation

postive

postive

postive

postive

negative

postive

postive

postive

postive

postive

postive

postive

negative

negative

negative

negative

postive

negative

negative

negative negative

negative

negative

negative

negative

negative

negative negative

negative

negative

negative

negative

negative

negative

negative

negative

negative

negative

negative

postive

postive

postive

postive

negative

negative

negative

negative

negative

negative postive

postive

negative

negative (Continued)

TABLE 2	Correlation	between	the ME	3-related	IncRNAs	and	MES-re	lated
genes in glid	oma.							

TABLE 2 | Continued

MES gana	IncDNA	Correlation	Dualua	Population	MES-gene	INCRNA	Correlation	Pvalue
MES-gene	IIICHNA	Correlation	Pvalue	Regulation	SERPINA1	H19	0.764942099	9.68E-130
BCL3	ADGRA1-AS1	-0.723251249	1.68E-109	negative	SLC10A3	H19	0.742151142	3.44E-118
SP100	ADGRA1-AS1	-0.737913942	3.55E-116	negative	TRADD	H19	0.854298278	5.33E-192
PLAUR	ADGRA1-AS1	-0.73035445	1.12E-112	negative	GRN	H19	0.77322545	2.86E-134
EMP3	AGAP2-AS1	0.731906206	2.18E-113	postive	SHC1	HAR1A	-0.766667477	1.14E-130
RAB34	AGAP2-AS1	0.715618947	3.42E-106	postive	PLAU	HAR1A	-0.764539245	1.59E-129
EFEMP2	AGAP2-AS1	0.703334457	4.29E-101	postive	COL5A1	HAR1A	-0.714744644	8.04E-106
PDPN	AGAP2-AS1	0.75489171	1.72E-124	postive	LAMB1	HAR1A	-0.720832383	1.93E-108
TIMP1	AGAP2-AS1	0.720369625	3.08E-108	postive	COL4A2	HAR1B	-0.78360979	3.15E-140
PLK3	CARD8-AS1	0.704190201	1.93E-101	postive	TNFRSF1A	HAR1B	-0.798349091	2.83E-149
SCPEP1	CARD8-AS1	0.742354745	2.75E-118	postive	MSR1	HAR1B	-0.745131067	1.25E-119
CASP4	CARD8-AS1	0.848233137	1.48E-186	postive	DOK3	HAR1B	-0.735007986	8.11E-115
RAC2	CARD8-AS1	0.76374507	4.21E-129	postive	SERPINH1	HAR1B	-0.71561448	3.43E-106
LCP2	CRNDE	0.767587393	3.63E-131	postive	CD151	HAR1B	-0.706972547	1.41E-102
SIGLEC7	CRNDE	0.722199506	4.88E-109	postive	FGFRL1	HAR1B	-0.722729715	2.86E-109
FCGR2A	CRNDE	0.790736168	1.64E-144	postive	MS4A4A	HLA-DQB1-AS1	0.705436576	6.01E-102
TNFRSF1B	CRNDE	0.739270954	8.13E-117	postive	PTPN6	HLA-DQB1-AS1	0.891936216	1.88E-232
TRIM38	CRNDE	0.734919647	8.91E-115	postive	FXYD5	HLA-DQB1-AS1	0.767059922	7.01E-131
PTPRC	CRNDE	0.703111811	5.28E-101	postive	SIGLEC9	HLA-DQB1-AS1	0.778864005	1.83E-137
ESM1	CRNDE	0.808731041	4.11E-156	postive	UCP2	HLA-DQB1-AS1	0.703534982	3.56E-101
ANXA1	CYTOR	0.768664703	9.41E-132	postive	IOGAP1	HOTAIRM1	0 703927818	2 47E-101
ZYX	CYTOR	0.704194157	1.93E-101	postive	CAST	HOTAIRM1	0.712165787	9.86E-105
TES	CYTOR	0.822364252	9.32E-166	postive	I GALS3	ISX-AS1	-0 715131654	5.51E-106
S100A4	CYTOR	0.728910892	5.03E-112	postive	CL CE1	ISX-AS1	-0 711788793	1.42E-104
BAB32	CYTOR	0 789578834	8.36E-144	postive	MYO1E	ISX-AS1	-0 784811149	6 14E-141
ANGPT2	CYTOR	0 751804533	6.28E-123	postive	CD14	ISX-AS1	-0.718910966	1.32E-107
CHI3I 1	CYTOR	0.841494355	8.83E-181	postive		ISX-AS1	0.718192731	2 70E-107
ADAM12	CYTOR	0.801655282	2.08E-151	postive	OSMR	ISX-AS1	-0 72350741	1 30E-100
HSD3B7	CYTOR	0 777152401	1 74E-136	postive		1445-491	-0.72000741	1.50E-109
FAM20C	CYTOR	0.728020205	1.74E 100	postive	DDMC1		0.744900321	5.42E 100
RARGAP1I	CYTOR	0.817769613	2.04E-162	postive			-0.722094740	3.43E-109
MGAT1	CYTOR	0.824710651	1.68E-167	postive	30033 MADOKO		-0.734236324	1.21E 1E0
HEE	CYTOR	0.881760834	3.55E-220	postive		LINC00403	-0.600421734	1.31E-130
		0.75110787	1.07E 100	positivo	SERPINEI	LINC00463	-0.741260119	9.00E-110
010	DGCR10	0.721074245	5.04E 112	negative	SEC24D	LINC00463	-0.730246934	1.20E-112
	DCCR10	0.712540452	0.24L-110	negative	CULTAZ	LINC00463	-0.75052645	2.74E-122
	DGCR10	0.710049402	2.00E-100	negative	RUNXI	LINC00836	-0.708421807	3.58E-103
	DGCR10	-0.729190076	3.74E-112	negative	ARSJ	LINC00836	-0.708790773	2.52E-103
		-0.7418703	4.70E-118	negative	LOX	LINC00844	-0.70708702	1.27E-102
NOFA		0.700273705	1.29E-100	poslive	IIGA5	LINC00844	-0.730485681	9.72E-113
NGF4	DINIVIBP-AST	-0.720949302	1.72E-108	negative	HEXB	LINC00844	-0.744550631	2.39E-119
		-0.734240073	1.04E-114	negative	SLC16A3	LINC00844	-0.743016749	1.32E-118
FES	DINIVIBP-AST	-0.719778576	5.56E-108	negative	IGFBI	LINC00844	-0.713897087	1.84E-105
SATT	DNMBP-AS1	-0.712540126	6.87E-105	negative	COL1A1	LINC00844	-0.724914541	3.10E-110
CECR2	DNMBP-AS1	-0.70918087	1.73E-103	negative	ITGA1	LINC00844	-0.703582656	3.41E-101
IMBIM1	DNMBP-AS1	-0.725498591	1.70E-110	negative	FNDC3B	LINC00844	-0.701689348	1.98E-100
SWAP70	FAM181A-AS1	0.709042986	1.98E-103	postive	LIF	LINC00906	-0.724510168	4.68E-110
LGALS1	FAM201A	-0.721622653	8.74E-109	negative	ZNF217	LINC00906	-0.784182605	1.45E-140
LCP1	FAM222A-AS1	-0.792884013	7.79E-146	negative	OSBPL3	LINC00906	-0.707498089	8.60E-103
CTSZ	FAM222A-AS1	-0.726745712	4.73E-111	negative	PLA2G5	LINC00906	-0.713940109	1.76E-105
S100A11	FOXD3-AS1	0.792119816	2.31E-145	postive	LHFPL2	LINC01150	0.82591464	2.10E-168
LAPTM5	FOXD3-AS1	0.90175565	1.59E-245	postive	CLEC2B	LINC01150	0.731082239	5.20E-113
CASP1	FOXD3-AS1	0.821130902	7.51E-165	postive	CD4	LINC01150	0.741416973	7.74E-118
VAMP5	FOXD3-AS1	0.741324059	8.57E-118	postive	RRAS	LINC01150	0.775058945	2.68E-135
ASL	FOXD3-AS1	0.736419271	1.78E-115	postive	SYNGR2	LINC01532	-0.705471341	5.82E-102
CASP8	GDNF-AS1	0.701231718	3.02E-100	postive	STXBP2	LINC01532	-0.748283615	3.56E-121
MMP14	GDNF-AS1	-0.741238825	9.42E-118	negative	CCR5	LINC01532	-0.725695514	1.39E-110
CSTA	GDNF-AS1	-0.701958292	1.54E-100	negative	NCF2	LINC01561	-0.794295627	1.03E-146
CEBPB	GDNF-AS1	-0.751505331	8.88E-123	negative	DEF6	LINC01561	-0.701078216	3.48E-100
ALOX5	GDNF-AS1	-0.701965706	1.53E-100	negative	LY96	LINC01561	-0.791651035	4.50E-145
MGST2	GDNF-AS1	-0.71173905	1.49E-104	negative	C5AR1	LINC01579	0.716187996	1.95E-106
		0 700802754	2 42E-109	negative	GNA15	LINC01579	0.71409515	1.52E-105
JNC93B1	GDNF-AST	=0.122033134						
UNC93B1 SLAMF8	GDNF-AST GDNF-AS1	-0.716235612	1.86E-106	negative	RHOG	LINC02058	-0,705534286	5,49E-102

TABLE 2 Co	ontinued				TABLE 2 Continued				
MES-gene	IncRNA	Correlation	Pvalue	Regulation	MES-gene	IncRNA	Correlation	Pvalue	Regulation
CTSB	LINC02058	-0.702585144	8.62E-101	negative	ARHGAP29	MIR4435-2HG	0.834929266	2.08E-175	postive
EFNB2	LINC02058	-0.735097141	7.37E-115	negative	STAT6	MIR4435-2HG	0.737255287	7.24E-116	postive
ITGB2	LINC02058	-0.768725875	8.71E-132	negative	FHL2	MIR4435-2HG	0.813810352	1.30E-159	postive
FHOD1	LINC02283	-0.705970009	3.64E-102	negative	MFSD1	MIR4435-2HG	0.739073012	1.01E-116	postive
FCGR2B	LINC02283	-0.706014089	3.49E-102	negative	LRRFIP1	MIR4435-2HG	0.731647538	2.87E-113	postive
TNFAIP3	LINC02283	-0.705000341	9.06E-102	negative	GCNT1	MIR4435-2HG	0.740228347	2.86E-117	postive
ECE1	LINC02283	-0.707997246	5.35E-103	negative	DCBLD2	MIR4435-2HG	0.750334768	3.42E-122	postive
KLF16	LINC02283	-0.720161694	3.79E-108	negative	ACSL1	MIR4435-2HG	0.739373668	7.27E-117	postive
COL8A2	LINC02308	0.768037977	2.07E-131	postive	PLEKHF1	MIR4435-2HG	0.759259499	9.69E-127	postive
IFITM2	LINC02308	0.866781293	5.03E-204	postive	ITGA7	MIR4435-2HG	0.709824827	9.37E-104	postive
CTSC	LINC02308	0.863165639	2.02E-200	postive	BDKRB2	MIR4435-2HG	0.798435123	2.49E-149	postive
VDR	LINC02308	0.753456102	9.23E-124	postive	JUNB	MIR4435-2HG	0.764253243	2.26E-129	postive
RELB	LINC02308	0.872315674	9.40E-210	postive	PTGER4	MIR4435-2HG	0.732071605	1.83E-113	postive
RAB11FIP1	LINC02308	0.711018372	2.98E-104	postive	ICAM3	MIR4435-2HG	0.734477655	1.43E-114	postive
PROCR	LINC02308	0.796816986	2.67E-148	postive	AMPD3	MIR4435-2HG	0.714384219	1.14E-105	postive
PML	LINC02440	-0.754426179	2.97E-124	negative	UGP2	MIR4435-2HG	0.757307838	9.94E-126	postive
CYBRD1	LINC02440	-0.70405237	2.20E-101	negative	DLC1	MIR4435-2HG	0.704999721	9.06E-102	postive
PI3	LINC02587	0.743298904	9.66E-119	postive	ACPP	MIR4435-2HG	0.819570192	1.03E-163	postive
BLVRB	LINC02587	0.716151583	2.02E-106	postive	DAB2	MIR4435-2HG	0.719984278	4.52E-108	postive
KIAA1429	LINC02587	0.792798264	8.81E-146	postive	MYH9	MIR4435-2HG	0.700146587	8.20E-100	postive
EMP1	LINC02587	0.716079473	2.17E-106	postive	THBS1	MIR4435-2HG	0.747407845	9.62E-121	postive
NRP1	LINC02587	0.734206645	1.91E-114	postive	FMNL1	MIR4435-2HG	0.799316551	6.78E-150	postive
HOMER3	LINC02593	-0.711446705	1.97E-104	negative	TRIM47	MIR4435-2HG	0.7222386	4.70E-109	postive
HKH1	LNCTAM34A	0.730068811	1.50E-112	postive	INC	MIR4435-2HG	0.764180611	2.47E-129	postive
	LINGTAM24A	0.729646902	2.34E-112	postive	CASPO	MIR4435-2HG	0.837173036	3.23E-177	postive
		0.701211542	3.07E-100	postive		MIR4435-2HG	0.719065775	1.11E-107	postive
		0.712000892	0.47E-105	postive	SALL4		0.701001217	4.20E-139	postive
		0.712304444	8.03E-103	postive		MIR4433-2HG	0.71929111	9.04E-100	postive
		0.719393964	0.14E-100	postive		MIR4433-2HG	0.700475275	2.20E-102	postive
I TRP1		0.732368484	2.73E-101	postive		MIR4435-2HG	0.741034910	3.80E-105	postive
	MIR124-2HG	-0.700312718	7.03E-100	positive	NRP2	MIR4435-2HG	0.713130870	5.08E-110	postive
STAR1	MIR155HG	0.722595743	3.27E-109	nostive	MAPK13	MIR4435-2HG	0.703625559	3.27E-101	postive
ARPC1B	MIR155HG	0.738460751	1.96E-116	postive	PHF11	MIR4435-2HG	0.70010623	3.51E-144	postive
FBN1	MIR155HG	0 734528187	1.35E-114	postive	TRIM56	MIR4435-2HG	0.802025431	1 19E-151	postive
SGSH	MIR155HG	0 705974156	3.63E-102	postive	MAN2A1	MIR4435-2HG	0.786706621	4 54E-142	postive
TNFAIP8	MIR155HG	0.760144672	3.34E-127	postive	PLS3	MIR4435-2HG	0.767311168	5.12E-131	postive
ST14	MIR155HG	0.738271492	2.41E-116	postive	B4GALT1	MIR4435-2HG	0.769066299	5.68E-132	postive
MYL9	MIR155HG	0.706645124	1.93E-102	postive	DSE	MIR4435-2HG	0.766587417	1.26E-130	postive
ITGAM	MIR155HG	0.760274296	2.86E-127	postive	SLC39A8	MIR4435-2HG	0.808986476	2.75E-156	postive
TEC	MIR155HG	0.773521683	1.95E-134	postive	ALDH3B1	MIR4435-2HG	0.866695373	6.14E-204	postive
MRC2	MIR210HG	0.795149892	3.01E-147	postive	ARAF	SOCS2-AS1	0.89099436	2.90E-231	postive
S100A13	MIR210HG	0.829105423	7.75E-171	postive	SPRY4	SOCS2-AS1	0.818257665	9.11E-163	postive
IL4R	MIR210HG	0.805398731	7.13E-154	postive	EDEM3	SOCS2-AS1	0.837284715	2.62E-177	postive
RUNX2	MIR210HG	0.772935587	4.15E-134	postive	LTBP2	MIR9-3HG	-0.712240856	9.17E-105	negative
PTPN22	MIR210HG	0.84141244	1.03E-180	postive	TGFBR2	MIR9-3HG	-0.72743999	2.31E-111	negative
ACTA2	MIR210HG	0.786386666	7.06E-142	postive	GGN	MIR9-3HG	0.733151826	5.85E-114	postive
KYNU	MIR4435-2HG	0.776398014	4.68E-136	postive	MVP	MIR9-3HG	-0.83583869	3.87E-176	negative
TGOLN2	MIR4435-2HG	0.812878293	5.80E-159	postive	DSC2	MIR9-3HG	-0.724407928	5.20E-110	negative
P4HA2	MIR4435-2HG	0.731736263	2.61E-113	postive	TLR4	MIR9-3HG	-0.724246436	6.13E-110	negative
POLD4	MIR4435-2HG	0.797478571	1.01E-148	postive	THBD	MIR9-3HG	-0.790971292	1.18E-144	negative
RBKS	MIR4435-2HG	0.759140903	1.12E-126	postive	ENG	PCED1B-AS1	0.723371373	1.49E-109	postive
ANPEP	MIR4435-2HG	0.822239751	1.15E-165	postive	FOSL2	PCED1B-AS1	0.702507585	9.26E-101	postive
WIPF1	MIR4435-2HG	0.800866984	6.76E-151	postive	LILRB3	PCED1B-AS1	0.717062191	8.25E-107	postive
ELF4	MIR4435-2HG	0.771481816	2.66E-133	postive	FURIN	PCED1B-AS1	0.70082055	4.41E-100	postive
LILRB2	MIR4435-2HG	0.736658612	1.38E-115	postive	BACE2	PCED1B-AS1	0.714396517	1.13E-105	postive
IIGA3	MIR4435-2HG	0.812569108	9.52E-159	postive	ICAM1	PCED1B-AS1	0.765958992	2.75E-130	postive
MAN1A1	MIR4435-2HG	0.836831098	6.12E-177	postive	PAPPA	PCED1B-AS1	0.704269589	1.79E-101	postive
MAFB	MIK4435-2HG	0.748383139	3.18E-121	postive	SH2B3	PCED1B-AS1	0.864760075	5.36E-202	postive
CA12	MIR4435-2HG	0.783922964	2.06E-140	postive	FGG	PCED1B-AS1	0.856117366	1.11E-193	postive
	IVIIK4435-2HG	0.723400705	1.45E-109	postive	FULK2	PUEDIB-AST	0.838224528	4.48E-178	postive
SYPL1	MIR4435-2HG	0.713675544	2.28E-105	postive	EHU2	PCED1B-AS1	0.711737081	1.49E-104	postive
LZIDI	MIR4435-2HG	0.79261516	1.14E-145	postive	II GA4	PUEDIB-ASI	0.711254985	2.38E-104	postive

(Continued)

(Continued)

TABLE 2 | Continued

MES-gene	IncRNA	Correlation	Pvalue	Regulation
EPAS1	PCED1B-AS1	0.793249908	4.62E-146	postive
PDGFA	PCED1B-AS1	0.727126202	3.20E-111	postive
CDCP1	PCED1B-AS1	0.833678947	2.06E-174	postive
CD2AP	PCED1B-AS1	0.92306236	2.23E-279	postive
TAGLN	PCED1B-AS1	0.711187785	2.53E-104	postive
C1QTNF1	PCED1B-AS1	0.836914503	5.23E-177	postive
TRPM2	PCED1B-AS1	0.848905907	3.79E-187	postive
YAP1	PCED1B-AS1	0.701301968	2.83E-100	postive
BNC2	PCED1B-AS1	0.806250958	1.93E-154	postive
PYGO2	PCED1B-AS1	0.850788541	8.06E-189	postive
TNFRSF10D	PCED1B-AS1	0.745288608	1.05E-119	postive
RRBP1	PCED1B-AS1	0.798978139	1.12E-149	postive
RAB27A	PCED1B-AS1	0.770905481	5.55E-133	postive
ANXA4	PCED1B-AS1	0.846256873	7.82E-185	postive
SLC12A9	PCED1B-AS1	0.816362784	2.06E-161	postive
LY75	PCED1B-AS1	0.747018761	1.49E-120	postive
FLNA	PCED1B-AS1	0.870700202	4.70E-208	postive
IGFBP6	PCED1B-AS1	0.752096749	4.48E-123	postive
IFITM3	PCED1B-AS1	0.775535902	1.44E-135	postive
PDGFRL	PCED1B-AS1	0.791857393	3.36E-145	postive
SET2D2	PCED1B-AS1	0 718097667	2 96E-107	postive
IFI30	PIK3CD-AS2	0 735644783	4 10E-115	postive
CNN2	PIK3CD-AS2	0.807751526	1.89E-155	postive
BYB3	PIK3CD-AS2	0 739708812	5.04F-117	postive
HK3	PLBD1-AS1	0 735197544	6.62E-115	postive
TNFRSF11A	BNE219-AS1	-0 709996671	7 95E-104	negative
II 15BA	BNF219-AS1	-0 710121925	7.05E-104	negative
PTRE	BNF219-AS1	-0.731269659	4 27E-113	negative
NCSTN	SI C25A21-AS1	-0.716286662	1 77E-106	negative
NUCB1	SI C25A21-AS1	-0 723659314	1 11F-109	negative
SPRY1	SI C25A21-AS1	-0.831746912	6.88E-173	negative
GANAB	SI C25A21-AS1	-0 772856391	4 59E-134	negative
ARFRP1	SI C25A21-AS1	-0.828270791	3.39E-170	negative
SOX2	SI C25A21-AS1	-0 796417235	4 78E-148	negative
ADAM19	SNHG18	0 774459433	5.82E-135	postive
TM9SF4	SNHG18	0 715187227	5.22E-106	postive
TRIP10	SNHG18	0 70858243	3.07E-103	postive
KDELB1	SNHG18	0 704554996	1.37E-101	postive
FGFB1	SNHG18	0 723702946	1.07E-109	postive
TM9SE1	SNHG18	0.705392111	6.27E-102	postive
TRAF6	SNHG18	0.775102908	2.53E-135	postive
AP3B1	SNHG18	0 750317134	3 49E-122	postive
RAX	SNHG18	0.713940133	1 76E-105	postive
SPRED2	SNHG18	0 744691209	2.05E-119	postive
ARAF	TMEM220-AS1	0.779995802	4.06E-138	postive
PDGER	TMEM220-AS1	0.730451083	1.00E 100	postive
BCAT1	TMEM220-AS1	0.725993195	1.03E-110	postive
CTGE	TMEM220-4S1	0 700062581	8.85E-100	nostive
FOS	TMEM220-401	0.717566049	5.01E-107	nostive
	TMEM220-401	0.770718505	7 03E-132	nostive
SERP2	TMEM220-AS1	0.7306822281	5 10E-117	nostive
PDGFC	TMEM220-AS1	0.752499999	2.81E-123	postive

A Mesenchymal-Related LncRNA Prognostic Model

according to the linear combination of regression coefficients and lncRNA expression values in the TCGA database. Based on the median risk score, the patients from TCGA were separated into high- and low-risk groups (Figure 3A); patients with a higher risk score demonstrated lower survival time (Figure 3B). The heatmap showed distinct differences in the expression levels of the ten prognostic-related lncRNAs in the low- and high-risk groups (Figure 3C). In the TCGA data set, compared with the high-risk group, the overall survival (OS) of glioma patients in the low-risk group was longer (Figure 4A). The time-dependent receiver operating characteristic (ROC) curve showed an area under curve (AUC) of 0.878 (Figure 4C), indicating that the model provided higher prediction accuracy. In the CGGA validation data set, we also adopted a median risk score to distinguish between high- and low-risk groups (Figure 3D). As expected, patients in the database with a higher risk score demonstrated lower survival time and the expression patterns of these lncRNAs were similar to those in the TCGA data set (Figures 3E, F). Supplementally, the high-risk group showed poor prognosis in the CGGA dataset, with an AUC of 0.762 (Figures 4B, D).

The Ten MES-Related LncRNAs as a Prognostic Model Is an Independent Factor for Glioma Patients

To determine whether the prognostic model of the above ten MES-related lncRNAs was an independent factor for glioma patients, we conducted univariate and multivariate Cox regression analyses in with the TCGA dataset. The hazard ratio (HR) of the risk score and 95% CI were 1.331 and 1.279-1.386 (P<0.001) in univariate (Figure 5A), and 1.236 and 1.162-1.315 (P<0.001) in multivariate Cox regression analyses (Figure 5B), respectively. In order to evaluate the predictive accuracy of the risk score on the prognosis of glioma patients, the AUC of the risk score was calculated to be 0.902, which was more than the AUCs of gender, cancer type, and KPS score (Figure 5C). Furthermore, we conducted the same analysis with the CGGA database for verification. The HR of the risk score and 95% CI were 1.184 and 1.149-1.219 (P< 0.001) in univariate (Figure 5D), and 1.068 and 1.021-1.117 (P< 0.05) in multivariate Cox regression analyses (Figure 5E), respectively. The ROC curve showed that the AUC of the risk score was 0.775, similar to the AUC of grade (0.778) (Figure 5F). These results indicate that the ten MES-related lncRNAs signature as a prognostic model is a significant independent prognostic factor for glioma patients.

which three lncRNAs were unfavorable (CRNDE, AGAP2-AS1, and SNHG18) and the remaining seven were favorable factors.

Construction and Assessment of the Ten MES-Related LncRNAs Risk Score Model for Glioma Patients

Risk score model was constructed by perform multivariate Cox regression analysis. The risk score of each patient was calculated

PCA and Immune Infiltration in Different Risk Groups

Principal component analysis (PCA) showed a distinctive distribution between low- and high-risk groups based on the ten MES-related lncRNAs in TCGA, suggesting that the risk model could divide glioma patients into two parts. The samples in the low- and high-risk groups are represented by green and red dots, respectively in **Figure S2**. MES subtype is closely

FIGURE 2 | The Heatmap shows that 42 MES-related IncRNAs with obvious discrepancies between LGG and HGG. The color from green to red shows an increasing trend from low levels to high levels.

FIGURE 3 | Examination and validation prognostic models based on candidate IncRNAs signatures. (A) Risk score distribution in the TCGA database. (B) Survival status and time of glioma patients in the TCGA database. (C) The heatmap shows the expression profiles of 10 MES-related IncRNAs between the high- and low-risk groups in the TCGA database. (D) Risk score distribution validation in CGGA database. (E) Survival status and time of glioma patient validation in CGGA database. (F) The heatmap shows the expression profiles of 10 MES-related IncRNAs between the high- and low-risk groups validation in CGGA database. (F) The heatmap shows the expression profiles of 10 MES-related IncRNAs between the high- and low-risk groups validation in the CGGA database.

associated with immune. Next, we calculated the stromal score, immune score, ESTIMA TE score and tumor purity of every glioma patients adopting the ESTIMA TE algorithm. Compared with high-risk group, the box chart showed that the low-risk group was significantly lower in stromal score, immune score and ESTIMA TE score, meanwhile, had higher tumor purity (**Figures 6A–D**). The heatmap and violin plot showed that there were marked differences in the relative proportions of 6 out of 22 immune cells. Among them, T cells regulatory(Tregs), T cells gamma delta, Macrophages M0 and Macrophages M2(all above p < 0.001) presented higher proportions in high-risk group compared with low-risk group, and Monocytes and Eosinophils (all above p < 0.001) were significantly upregulated in the low-risk group (**Figures 6E, F**).

Functional Enrichment Analysis based on the Ten MES-Related LncRNAs Signature

Further functional annotation was conducted using GSEA. In the high-risk group, we discovered that a total of six gene sets were significantly enriched in tumor-related pathways, including inflammatory response, interleukin (IL)2/signal transducer and activator of transcription (STAT) 5 signaling and tumor necrosis factor α (TNF α) signaling *via* nuclear factor- κ B (NF κ B) were closely associated with tumorigenesis and malignant phenotypes such as migration and invasion of glioma (**Figures 7A–C**). Additionally, hypoxia, angiogenesis, and epithelial mesenchymal transition (EMT) were closely related to the invasion and metastasis of glioma (**Figures 7D–F**). The above results further revealed that the prognosis model based on the ten MES-related lncRNAs may illustrate the underlying mechanism of the occurrence and development of glioma, which leads to a worse prognosis for the patients.

Knocking Down the Expression of DGCR10, HRA1B, and SNHG18 Can Significantly Impact Glioma Cells Migration and Invasion

Based on the samples from the TCGA and Genotype-Tissue Expression Portal (GTEx) datasets, the RNA sequencing expression data retrieved from the GEPIA website were used to analyze the differential expression level of the ten lncRNAs between the normal group and tumor group of glioma (**Figures 8A, D, G** and **Figure S3**). Given that the functions of

DGCR10, HAR1B, and SNHG18 are rarely studied in gliomas, the patients from the TCGA database were classified into highand low-expression groups according to the median expression level of these three lncRNAs. Disease-free survival and overall survival rates showed that the expression of DGCR10 and HAR1B are positively correlated with the OS of glioma patients (Figures 8B, C, E, F). In contrast, the expression levels of SNHG18 are negatively correlated with OS (Figures 8H, I). Subsequently, functional studies were carried out in different glioma cell lines. Real-time quantitative PCR (RT-qPCR) was carried out to detect the expression levels of DGCR10, HAR1B, and SNHG18 in five glioma cell lines. It was found that DGCR10 and HAR1B were expressed at a relatively high level in LN18 and T98G, whereas SNHG18 was expressed at a high level in U251 and T98G (Figure 9A). Next, nucleocytoplasmic fractionation was performed to determine the locations of DGCR10, HAR1B, and SNHG18 in glioma cells. The results revealed that DGCR10 and SNHG18 were mainly expressed in the cytoplasm, whereas HAR1B were mainly expressed in the nucleus(Figures 9B-**D**). To verify the effects of these lncRNAs on the migration and invasion of glioma cells, we knocked down the expressions of DGCR10, HAR1B, and SNHG18 in glioma cells (Figures 9E-G and Table 3), and the knockdown efficiency was verified in T98G cells (Figures 9H–J and Table 3). The results of transwell and matrigel invasion assays showed that T98 cells' ability to migrate and invade was significantly increased after knockdown of DGCR10 and HAR1B, while the ability was significantly decreased after knockdown of SNHG18 (Figures 10A-L and Table 4). In addition, we obtained the

FIGURE 7 | Functional enrichment analysis based on the prognostic model in the TCGA data set. GSEA indicated obvious enrichment of (A) inflammatory response, (B) IL 2/STAT5 signaling, (C) TNFα signaling *via* NF-κB, (D) hypoxia, (E) angiogenesis, and (F) EMT in the high-risk group.

same results of migration and invasion in LN18 and U251 cell lines (**Figures S4A-L**).

DISCUSSION

Glioma, especially glioblastoma, is the most destructive tumor of the human nervous system (29). In recent years, despite the progress in the diagnosis and treatment owing to the infiltration and rapid proliferation of gliomas, the tumor is difficult to cure by surgery alone. The prognosis of patients who relapse after surgery is poor, and the median survival time is only extended by a few months (23, 24, 30). The complexity of glioma is reflected by molecular heterogeneity; molecular subtyping offers better predictions of the development of polymorphisms in glioma, and guides scientific treatment strategies (31). The mesenchymal subtypes are especially malignant as compared to the others (neural, classic, and pre-neural types), and the relapsed GBM is always lethal and usually shows a mesenchymal phenotype (32-35). In addition, mesenchymal tumors express higher levels of angiogenic markers besides higher levels of necrosis (8, 33). The transition from proneural to mesenchymal subtype is closely related to treatment resistance and poor prognosis (36).

Next-generation sequencing technology in a growing number of cancer transcriptomes has revealed thousands of lncRNAs whose aberrant expression is associated with the tumor cell biology function, including cell cycle, proliferation, apoptosis, metastasis, invasion, and migration (37, 38). For example, in colorectal cancer (CRC), LINC00460 increases and adjusts the expression of ANXA2, which is associated with the expression of E-cadherin and N-cadherin, which promote cell invasion and EMT (39). Many lncRNAs are upregulated in gliomas and promote the malignant progression of glioma cells. NEAT1 is an lncRNA confirmed to be upregulated in gliomas and promotes cell migration and invasion, in addition to suppressing apoptosis in glioma cells (40). MES-related lncRNAs such as CRNDE can promote cell proliferation, migration, and invasion (41). Notably, the MES is a more malignant molecular subtype with a higher tendency for relapse, metastasis, and increased vascularity compared with the others (42). The study of molecular characteristics aims to determine new markers for the prognosis of cancer patients and therapeutic targets. In the past decade, new advances in bioinformatics and high-throughput technologies have helped improve our ability to understand the pathogenesis and predict the prognosis of cancer patients besides identifying potential biomarkers (43). For example, recent research has shown that ten autophagy-related lncRNAs possess prognostic

value for glioma patients (24).Wang et al. confirmed a prognosis model consisting of nine immune-related lncRNAs in anaplastic glioma patients (44). Given the molecular diversity of glioma and the malignant manifestations of mesenchymal subtypes, it is essential to construct a prognostic model based on molecular characteristics (45).

In this work, we used bioinformatics and statistical tools to systematically analyze the prognostic accuracy of lncRNAs associated with mesenchymal subtype, similar to the construction of immune-related lncRNAs model (46). We integrated multiple MES-related lncRNAs into a single model and explored whether the model played a more important role in the prognostic evaluation of gliomas. First, 303 MES-related genes were obtained from the TCGA and Ivy GAP data sets, and 47 corresponding lncRNAs were acquired by performing co-expression analysis (47). Then, 42 differentially expressed lncRNAs were screened between LGG and GBM samples. Finally, a candidate prognosis model consisting of ten OS-related lncRNAs was constructed by performing univariate and multivariate Cox analyses. The accuracy and predictability of the model were tested and verified in TCGA and CGGA databases. The results showed that the risk score model could accurately predicted the prognosis of glioma. In clinical work, risk scores of glioma patients can be calculated based on the regression coefficients and the expression values of the ten MES-related

lncRNAs, and determine whether the patient is low- or high-risk group and predict their prognosis.

Increasing evidence indicated that immune checkpoint receptor target was highly enriched in mesenchymal subtype glioma and might be a potential marker of mesenchymal subtype (17, 18). Moreover, research shows that Tumorinfiltrating immune cells (TIICs) play diverse roles in glioma and low tumor purity is related to unfavorable prognosis in glioma (48-50). Our ESTIMA TE algorithm showed high-risk group had higher stromal score, immune score, ESTIMA TE score and lower tumor purity. Regulatory T-cells (Tregs) are immunosuppressive T-cells that normally prevent autoimmunity when the human immune response is evoked. In addition, hypoxia is characteristic of tumor development and is also correlated with induction of Tregs (51). The phenotype of glioma-associated macrophages might be quite different from the other malignant solid tumors and is prone to M0-like phenotype (52). Study indicates that M2-like macrophages drove glioma Vasculogenic mimicry (VM) through amplifying IL-6 secretion in glioma cells via PKC pathway (53). Monocytes bridge innate and adaptive immune responses and can affect the tumor microenvironment through give rise to antitumor effectors and activate antigenpresenting cells (54). A negative correlation between peripheral eosinophils and glioma grade was found in one study. Numerous

FIGURE 9 | Selection of cell lines and verification of the knockdown effect. (A) Relative expression levels of DGCR10, HAR1B, and SNHG18 in five cell lines. (B) The nuclear and cytoplasmic percentage of DGCR10 and HAR1B in LN18 cells. (C) The nuclear and cytoplasmic percentage of SNHG18 in U251 cells. (D) The nuclear and cytoplasmic percentage of DGCR10, HAR1B, and SNHG18 in T98 cells. (E) The relative expression level of DGCR10 in LN18 cells after knockdown. (F) The relative expression level of SNHG18 in U251 cells after knockdown. (H) The relative expression level of DGCR10 in T98G cells after knockdown. (I) The relative expression level of HAR1B in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown. (J) The relative expression level of SNHG18 in T98G cells after knockdown.

TABLE 3 | The relative expression level of DGCR10, HAR1B and SNHG18 in different glioma cell lines after knockdown.

Cell lines		Control		DGCF	R10 Smart S	ilence
LN18	1.00	1.00	1.00	0.09	0.11	0.13
T98G	1.00	1.00	1.00	0.31	0.28	0.34
Cell lines		Control			ASO-HAR1E	6
LN18	1.00	1.00	1.00	0.2	0.21	0.19
T98G	1.00	1.00	1.00	0.3	0.28	0.31
Cell lines		Control			si-SNHG18	
U251	1.00	1.00	1.00	0.13	0.15	0.17
T98G	1.00	1.00	1.00	0.11	0.09	0.13

cytokines derived from eosinophils could regulate the immune response and affect the tumor microenvironment (55). Consistent with above conclusions, the landscape of immune infiltration indicated that T cells regulatory(Tregs), Macrophages M0 and Macrophages M2 presented higher proportions in high-risk group compared with low-risk group. The relative proportions of Monocytes and Eosinophils were significantly upregulated in the low-risk group. These results suggest that the heterogeneity of TIICs in gliomas is evident and may play a role in the malignant progression of glioma.

Next, we further explored the potential mechanisms by functional analysis. Inflammatory factors such as TNF- α was reported to be significantly associated with the malignant progression of glioma cells and sustained activation of NF κ B,

which is caused by $TNF\alpha$, leading to neuroblastoma recrudescence and regulation of cell invasion and metastasis (56, 57). As an inflammatory mediator, STAT5 also promotes motility and proliferation of glioma cells (58). In addition, hypoxia acquires the process of carcinogenesis and angiogenesis, which leads to the migration and invasion of glioma cell lines, and angiogenesis significantly worsens prognosis of cancer patients (59-62). Notably, hypoxia has been shown to promote EMT, which is crucial for malignant progression of tumors (63-65). Consistent with these studies, the results of GSEA showed that the high-risk group was enriched in the inflammation-related pathways and malignant biological processes such as hypoxia, angiogenesis, and EMT. Considering that the high-risk group is closely related to the malignant progression of tumors, especially the migration and invasion of cells, we selected the protective factors DGCR10 and HAR1B, and risk factor SNHG18 for migration and invasion experiments. Compared with other lncRNAs in our prognostic model, the effect of these three lncRNAs on the function of glioma cells is rarely reported. Overexpression of DGCR10 inhibits nonsmall cell lung cancer (NSCLC) cell migration and invasion. Moreover, DGCR10 acts as a tumor suppressor via sequestering miR-2861 in papillary thyroid carcinoma (66, 67). Research has confirmed that elevated expression of HAR1B was significant for better OS in hepatocellular carcinoma (68). High expression of SNHG18 may be a marker of poor prognosis in multiple myeloma (MM) (69). Similar to the function of these lncRNAs reported in

TABLE 4 | Representative counting of migration and invasion assays after knockdown of DGCR10, HAR1B, and SNHG18 in different glioma cell lines.

Migration Control	cell numb	ers in T98G		DGCR10 Smart Silence	
170 Control	174	173	370	368 ASO-HAR1B	373
220 Control	218	216	330	326 si-SNHG18	332
305	302	301	185	183	186
Invasion c	ell numbe	ers in T98G			
Control				DGCR10 Smart Silence	
145	143	140	262	261	263
Control				ASO-HAR1B	
126	128	130	255	256	253
Control				si-SNHG18	
240	236	242	98	101	99

other types of tumors, in our study, knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of glioma cells.

In summary, we screened ten MES-related lncRNAs and classified low- and high-risk groups based on the median risk score, which can be used to identify glioma patients with poor prognosis. Further GSEA and functional experiments confirmed that DGCR10, HAR1B, and SNHG18 can be potentially used as personalized biomarkers to predict treatment outcomes. In recent years, there have been many studies based on the generation of models for prediction of prognosis for glioma patients, but there have been no similar studies using MESrelated lncRNAs as a prognostic model (70). We believe that these ten MES-related lncRNAs are potential prognostic markers, which will provide a good reference for cancer researchers. In order to complete a more comprehensive research, focus on the following points is required in the future. First, other well-known clinical prognostic factors that could not be obtained from the database should be the focus of research. Second, in-depth studies of the 10 MES-related lncRNAs, such as molecular mechanisms and animal experiments, are needed.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**. Further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

BZ and EB designed this article and provided funding support. KH and XY were responsible for software analysis and conducting experience. YZ and ZZ was responsible for collating the data and recording the experience results. MC and LL was in charge of article figure. ZC and ZY drafted the article. All authors contributed to the article and approved the submitted version.

FUNDING

This project was supported by the National Natural Science Foundation of China (No. 81972348), Key Research and Development Plan Project of Anhui Province (No.1804h08 020270), College Excellent Youth Talent Support Program in Anhui Province (No.gxypZD2019019), Key Projects of Natural Science Research in Anhui Province (KJ2019A0267), Academic Funding Project for Top Talents in Colleges and Universities in Anhui Province (No. gxbjZD10), Nova Pew Plan of the Second Affiliated Hospital of Anhui Medical University (No.2017KA01). Open Projects of Key Laboratory in Medical Physics and Technology of Anhui Province (LHJJ202001).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021. 726745/full#supplementary-material

REFERENCES

- Fan R, Wang H, Zhang L, Ma T, Tian Y, Li H. Nanocrystallized Oleanolic Acid Better Inhibits Proliferation, Migration and Invasion in Intracranial Glioma via Caspase-3 Pathway. J Cancer (2020) 11:1949–58. doi: 10.7150/ jca.38847
- Cooper LA, Gutman DA, Chisolm C, Appin C, Kong J, Rong Y, et al. The Tumor Microenvironment Strongly Impacts Master Transcriptional Regulators and Gene Expression Class of Glioblastoma. *Am J Pathol* (2012) 180:2108–19. doi: 10.1016/j.ajpath.2012.01.040
- Wang K, Huang R, Li G, Zeng F, Zhao Z, Liu Y, et al. CKAP2 Expression is Associated With Glioma Tumor Growth and Acts as a Prognostic Factor in High –Grade Glioma. Oncol Rep (2018) 40:2036–46. doi: 10.3892/or.2018.6611
- Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of Radiotherapy With Concomitant and Adjuvant Temozolomide Versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. *Lancet Oncol* (2009) 10:459– 66. doi: 10.1016/s1470-2045(09)70025-7
- Roos A, Ding Z, Loftus JC, Tran NL. Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion. *Front Oncol* (2017) 7:120. doi: 10.3389/fonc.2017.00120
- Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma. *New Engl J Med* (2005) 352:987–96. doi: 10.1056/NEJMoa043330
- Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma Multiforme, Diagnosis and Treatment; Recent Literature Review. *Curr Med Chem* (2017) 24:3002–9. doi: 10.2174/0929867324666170516123206
- Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell* (2010) 17:98–110. doi: 10.1016/j.ccr.2009.12.020
- Barnes JM, Kaushik S, Bainer RO, Sa JK, Woods EC, Kai F, et al. A Tension-Mediated Glycocalyx-Integrin Feedback Loop Promotes Mesenchymal-Like Glioblastoma. Nat Cell Biol (2018) 20:1203–14. doi: 10.1038/s41556-018-0183-3

Supplementary Figure 1 | Construction of MES-related IncRNAs prognostic models in glioma patients. (A) The forest plot showing the candidate 18 MES-related IncRNAs correlated with OS by univariate Cox analysis in the TCGA data set.
 (B) Multivariate Cox analysis showing the 10 MES-related IncRNAs correlated with OS in the TCGA data set.

Supplementary Figure 2 | PCA between low- and high- risk groups based on the 10 MES-related IncRNAs expression profiles.

Supplementary Figure 3 | The relative expression of the remaining 7 IncRNAs contained in the prognostic model. (A) Differences in GDNF-AS1 expression between the normal and glioma groups from the TCGA and GTEX data sets. (B) Differences in CRNDE expression between the normal and glioma groups from the TCGA and GTEX data sets. (C) Differences in FAM201A expression between the normal and glioma groups from the TCGA and GTEX data sets. (D) Differences in AGAP2-AS1 expression between the normal and glioma groups from the TCGA and GTEX data sets. (D) Differences in AGAP2-AS1 expression between the normal and glioma groups from the TCGA and GTEX data sets. (E) Differences in RNF219-AS1 expression between the normal and glioma groups from the TCGA and GTEX data sets. (F) Differences in LINC00906 expression between the normal and glioma groups from the TCGA and GTEX data sets. (G) Differences in HAR1A expression between the normal and glioma groups from the TCGA and GTEX data sets. **p < 0.01; ***p < 0.001.

- Liang Q, Guan G, Li X, Wei C, Wu J, Cheng P, et al. Profiling Pro-Neural to Mesenchymal Transition Identifies a lncRNA Signature in Glioma. J Trans Med (2020) 18:378. doi: 10.1186/s12967-020-02552-0
- Xiao L, Wu J, Wang JY, Chung HK, Kalakonda S, Rao JN, et al. Long Noncoding RNA Uc.173 Promotes Renewal of the Intestinal Mucosa by Inducing Degradation of MicroRNA 195. *Gastroenterology* (2018) 154:599– 611. doi: 10.1053/j.gastro.2017.10.009
- Ulitsky I, Bartel DP. lincRNAs: Genomics, Evolution, and Mechanisms. Cell (2013) 154:26–46. doi: 10.1016/j.cell.2013.06.020
- Chai Y, Wu HT, Liang CD, You CY, Xie MX, Xiao SW. Exosomal lncRNA ROR1-AS1 Derived From Tumor Cells Promotes Glioma Progression via Regulating miR-4686. Int J Nanomed (2020) 15:8863–72. doi: 10.2147/ ijn.S271795
- Wu DM, Wang S, Wen X, Han XR, Wang YJ, Fan SH, et al. Long Noncoding RNA Nuclear Enriched Abundant Transcript 1 Impacts Cell Proliferation, Invasion, and Migration of Glioma Through Regulating miR-139-5p/CDK6. *J Cell Physiol* (2019) 234:5972–87. doi: 10.1002/jcp.27093
- Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y. The Mir155hg/miR-185/ ANXA2 Loop Contributes to Glioblastoma Growth and Progression. J Exp Clin Cancer Res: CR (2019) 38:133. doi: 10.1186/s13046-019-1132-0
- Jiang X, Chen D. LncRNA FAM181A-AS1 Promotes Gliomagenesis by Sponging miR-129-5p and Upregulating ZRANB2. Aging (2020) 12:20069– 84. doi: 10.18632/aging.103391
- Zhang Q, Zhong H, Fan Y, Liu Q, Song J, Yao S, et al. Immune and Clinical Features of CD96 Expression in Glioma by in Silico Analysis [Published Correction Appears in Front Bioeng Biotechnol. Front Bioeng Biotechnol (2020) 8:592. doi: 10.3389/fbioe.2020.00592
- Wang ZL, Wang Z, Li GZ, Wang QW, Bao ZS, Zhang CB, et al. Immune Cytolytic Activity Is Associated With Genetic and Clinical Properties of Glioma. Front Immunol (2019) 10:1756. doi: 10.3389/fimmu.2019.01756
- Iwadate Y. Epithelial-Mesenchymal Transition in Glioblastoma Progression. Oncol Lett (2016) 11:1615–20. doi: 10.3892/ol.2016.4113
- Huang da W, Sherman BT, Lempicki RA. Bioinformatics Enrichment Tools: Paths Toward the Comprehensive Functional Analysis of Large Gene Lists. *Nucleic Acids Res* (2009) 37:1–13. doi: 10.1093/nar/gkn923

- Tian X, Zhu X, Yan T, Yu C, Shen C, Hong J, et al. Differentially Expressed lncRNAs in Gastric Cancer Patients: A Potential Biomarker for Gastric Cancer Prognosis. J Cancer (2017) 8:2575–86. doi: 10.7150/jca.19980
- Liu S, Cao Q, An G, Yan B, Lei L. Identification of the 3-IncRNA Signature as a Prognostic Biomarker for Colorectal Cancer. *Int J Mol Sci* (2020) 21(24):9359. doi: 10.3390/ijms21249359
- Sui J, Yang S, Liu T, Wu W, Xu S, Yin L, et al. Molecular Characterization of Lung Adenocarcinoma: A Potential Four-Long Noncoding RNA Prognostic Signature. J Cell Biochem (2019) 120:705–14. doi: 10.1002/jcb.27428
- Luan F, Chen W, Chen M, Yan J, Chen H, Yu H, et al. An Autophagy-Related Long non-Coding RNA Signature for Glioma. *FEBS Open Bio* (2019) 9:653– 67. doi: 10.1002/2211-5463.12601
- Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, et al. An Anatomic Transcriptional Atlas of Human Glioblastoma. *Science* (2018) 360 (6389):660–3. doi: 10.1126/science.aaf2666
- Shah N, Feng X, Lankerovich M, Puchalski R, Keogh B. Data From Ivy Gap. Cancer Imaging Arch (2016). doi: 10.7937/K9/TCIA.2016.XLwaN6n
- Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring Tumour Purity and Stromal and Immune Cell Admixture From Expression Data. *Nat Commun* (2013) 4:2612. doi: 10.1038/ ncomms3612
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Res* (2003) 13(11):2498–504. doi: 10.1101/ gr.1239303
- Xia P, Li Q, Wu G, Huang Y. An Immune-Related lncRNA Signature to Predict Survival In Glioma Patients. *Cell Mol Neurobiol* (2020) 41(2):365–75. doi: 10.1007/s10571-020-00857-8
- Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in Oncology: More Than Meets the Eye. *Lancet Oncol* (2015) 16:e173–80. doi: 10.1016/s1470-2045(14)71116-7
- Wirsching HG, Galanis E, Weller M. Glioblastoma. *Handb Clin Neurol* (2016) 134:381–97. doi: 10.1016/b978-0-12-802997-8.00023-2
- Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. *Eur Urol* (2014) 65:1140–51. doi: 10.1016/j.eururo.2013.12.003
- 33. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular Subclasses of High-Grade Glioma Predict Prognosis, Delineate a Pattern of Disease Progression, and Resemble Stages in Neurogenesis. *Cancer Cell* (2006) 9:157–73. doi: 10.1016/j.ccr.2006.02.019
- 34. Kwon SM, Kang SH, Park CK, Jung S, Park ES, Lee JS, et al. Recurrent Glioblastomas Reveal Molecular Subtypes Associated With Mechanistic Implications of Drug-Resistance. *PloS One* (2015) 10:e0140528. doi: 10.1371/journal.pone.0140528
- Wood MD, Reis GF, Reuss DE, Phillips JJ. Protein Analysis of Glioblastoma Primary and Posttreatment Pairs Suggests a Mesenchymal Shift at Recurrence. *J Neuropathol Exp Neurol* (2016) 75:925–35. doi: 10.1093/jnen/nlw068
- Yoon SJ, Shim JK, Chang JH, Moon JH, Roh TH, Sung KS, et al. Tumor Mesenchymal Stem-Like Cell as a Prognostic Marker in Primary Glioblastoma. Stem Cells Int (2016) 2016:6756983. doi: 10.1155/2016/6756983
- Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal Differentiation Mediated by NF-κb Promotes Radiation Resistance in Glioblastoma. *Cancer Cell* (2013) 24:331– 46. doi: 10.1016/j.ccr.2013.08.001
- Zhu Y, Luo C, Korakkandan AA, Fatma YHA, Tao Y, Yi T, et al. Function and Regulation Annotation of Up-Regulated Long non-Coding RNA LINC01234 in Gastric Cancer. J Clin Lab Anal (2020) 34:e23210. doi: 10.1002/jcla.23210
- 39. Zhao L, Wang J, Li Y, Song T, Wu Y, Fang S, et al. NONCODEV6: An Updated Database Dedicated to Long non-Coding RNA Annotation in Both Animals and Plants. *Nucleic Acids Res* (2021) 49:D165–71. doi: 10.1093/nar/ gkaa1046
- Hong W, Ying H, Lin F, Ding R, Wang W, Zhang M. IncRNA LINC00460 Silencing Represses EMT in Colon Cancer Through Downregulation of ANXA2 via Upregulating miR-433-3p. Mol Ther Nucleic Acids (2020) 19:1209–18. doi: 10.1016/j.omtn.2019.12.006
- 41. Gong W, Zheng J, Liu X, Ma J, Liu Y, Xue Y. Knockdown of NEAT1 Restrained the Malignant Progression of Glioma Stem Cells by Activating

microRNA Let-7e. Oncotarget (2016) 7:62208-23. doi: 10.18632/ oncotarget.11403

- 42. Zheng J, Li XD, Wang P, Liu XB, Xue YX, Hu Y, et al. CRNDE Affects the Malignant Biological Characteristics of Human Glioma Stem Cells by Negatively Regulating miR-186. *Oncotarget* (2015) 6:25339-55. doi: 10.18632/oncotarget.4509
- 43. Jeanmougin M, Håvik AB, Cekaite L, Brandal P, Sveen A, Meling TR, et al. Improved Prognostication of Glioblastoma Beyond Molecular Subtyping by Transcriptional Profiling of the Tumor Microenvironment. *Mol Oncol* (2020) 14:1016–27. doi: 10.1002/1878-0261.12668
- 44. Sun Z, Jing C, Xiao C, Li T. An Autophagy-Related Long non-Coding RNA Prognostic Signature Accurately Predicts Survival Outcomes in Bladder Urothelial Carcinoma Patients. *Aging* (2020) 12:15624–37. doi: 10.18632/ aging.103718
- 45. Yerukala Sathipati S, Sahu D, Huang HC, Lin Y, Ho SY. Identification and Characterization of the lncRNA Signature Associated With Overall Survival in Patients With Neuroblastoma. *Sci Rep* (2019) 9:5125. doi: 10.1038/s41598-019-41553-y
- 46. Lemetre C, Vieites B, Ng CK, Piscuoglio S, Schultheis AM, Marchiò C, et al. RNASeq Analysis Reveals Biological Processes Governing the Clinical Behaviour of Endometrioid and Serous Endometrial Cancers. Eur J Cancer (Oxford England: 1990) (2016) 64:149–58, 64. doi: 10.1016/j.ejca.2016.05.028
- Zhou M, Zhang Z, Zhao H, Bao S, Cheng L, Sun J. An Immune-Related SixlncRNA Signature to Improve Prognosis Prediction of Glioblastoma Multiforme. *Mol Neurobiol* (2018) 55:3684–97. doi: 10.1007/s12035-017-0572-9
- Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer Immunoediting: From Immunosurveillance to Tumor Escape. *Nat Immunol* (2002) 3(11):991– 8. doi: 10.1038/ni1102-991
- Silver DJ, Sinyuk M, Vogelbaum MA, Ahluwalia MS, Lathia JD. The Intersection of Cancer, Cancer Stem Cells, and the Immune System: Therapeutic Opportunities. *Neuro Oncol* (2016) 18(2):153–9. doi: 10.1093/neuonc/nov157
- Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, et al. Tumor Purity as an Underlying Key Factor in Glioma. *Clin Cancer Res* (2017) 23(20):6279–91. doi: 10.1158/1078-0432.CCR-16-2598
- Ooi YC, Tran P, Ung N, Thill K, Trang A, Fong BM, et al. The Role of Regulatory T-Cells in Glioma Immunology. *Clin Neurol Neurosurg* (2014) 119:125–32. doi: 10.1016/j.clineuro.2013.12.004
- Huang L, Wang Z, Chang Y, Wang K, Kang X, Huang R, et al. EFEMP2 Indicates Assembly of M0 Macrophage and More Malignant Phenotypes of Glioma. *Aging* (*Albany NY*) (2020) 12(9):8397–412. doi: 10.18632/aging.103147
- 53. Zhang L, X u Y, Sun J, Chen W, Zhao L, Ma C, et al. M2-Like Tumor-Associated Macrophages Drive Vasculogenic Mimicry Through Amplification of IL-6 Expression in Glioma Cells. Oncotarget (2017) 8(1):819–32. doi: 10.18632/oncotarget.13661
- Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes in the Tumor Microenvironment. Annu Rev Pathol (2021) 16:93–122. doi: 10.1146/ annurev-pathmechdis-012418-013058
- Huang Z, Wu L, Hou Z, Zhang P, Li G, Xie J. Eosinophils and Other Peripheral Blood Biomarkers in Glioma Grading: A Preliminary Study. BMC Neurol (2019) 19(1):313. doi: 10.1186/s12883-019-1549-2
- Kong L, Wu Q, Zhao L, Ye J, Li N, Yang H. Identification of Messenger and Long Noncoding RNAs Associated With Gallbladder Cancer via Gene Expression Profile Analysis. J Cell Biochem (2019) 120:19377–87. doi: 10.1002/jcb.28953
- Aravindan S, Natarajan M, Herman TS, Aravindan N. Radiation-Induced Tnfα Cross Signaling-Dependent Nuclear Import of Nfκb Favors Metastasis in Neuroblastoma. *Clin Exp Metastasis* (2013) 30:807–17. doi: 10.1007/ s10585-013-9580-y
- Feng Y, Wang J, Tan D, Cheng P, Wu A. Relationship Between Circulating Inflammatory Factors and Glioma Risk and Prognosis: A Meta-Analysis. *Cancer Med* (2019) 8:7454–68. doi: 10.1002/cam4.2585
- Feng C, Cao S. Activation of STAT5 Contributes to Proliferation in U87 Human Glioblastoma Multiforme Cells. *Mol Med Rep* (2014) 10:203–10. doi: 10.3892/mmr.2014.2223
- Elstner A, Holtkamp N, von Deimling A. Involvement of Hif-1 in Desferrioxamine-Induced Invasion of Glioblastoma Cells. *Clin Exp Metastasis* (2007) 24:57–66. doi: 10.1007/s10585-007-9057-y

- Lebelt A, Dziecioł J, Guzińska-Ustymowicz K, Lemancewicz D, Zimnoch L, Czykier E. Angiogenesis in Gliomas. *Folia Histochem Cytobiol* (2008) 46:69– 72. doi: 10.2478/v10042-008-0009-4
- Onishi M, Ichikawa T, Kurozumi K, Date I. Angiogenesis and Invasion in Glioma. Brain Tumor Pathol (2011) 28:13–24. doi: 10.1007/s10014-010-0007-z
- 63. Qi L, Wang ZY, Shao XR, Li M, Chen SN, Liu XQ, et al. ISL2 Modulates Angiogenesis Through Transcriptional Regulation of ANGPT2 to Promote Cell Proliferation and Malignant Transformation in Oligodendroglioma. Oncogene (2020) 39:5964–78. doi: 10.1038/s41388-020-01411-y
- 64. Xi Y, Wei Y, Sennino B, Ulsamer A, Kwan I, Brumwell AN, et al. Identification of Py654β-Catenin as a Critical Co-Factor in Hypoxia-Inducible Factor-1α Signaling and Tumor Responses to Hypoxia. Oncogene (2013) 32:5048–57. doi: 10.1038/onc.2012.530
- Behnan J, Stangeland B, Hosainey SA, Joel M, Olsen TK, Micci F, et al. Differential Propagation of Stroma and Cancer Stem Cells Dictates Tumorigenesis and Multipotency. Oncogene (2017) 36:570–84. doi: 10.1038/onc.2016.230
- Dongre A, Weinberg RA. New Insights Into the Mechanisms of Epithelial-Mesenchymal Transition and Implications for Cancer. Nat Rev Mol Cell Biol (2019) 20:69–84. doi: 10.1038/s41580-018-0080-4
- Chen F, Yin S, Zhu J, Liu P, Yang C, Feng Z, et al. lncRNA DGCR5 Acts as a Tumor Suppressor in Papillary Thyroid Carcinoma via Sequestering miR-2861. Exp Ther Med (2019) 17:895–900. doi: 10.3892/etm.2018.7012
- He Z, Long J, Yang C, Gong B, Cheng M, Wang Q, et al. LncRNA DGCR5 Plays a Tumor-Suppressive Role in Glioma via the miR-21/Smad7 and miR-23a/PTEN Axes. Aging (2020) 12:20285–307. doi: 10.18632/aging.103800

- 69. Shi Z, Luo Y, Zhu M, Zhou Y, Zheng B, Wu D, et al. Expression Analysis of Long Non-Coding RNA HAR1A and HAR1B in HBV-Induced Hepatocullular Carcinoma in Chinese Patients. *Lab Med* (2019) 50:150–7. doi: 10.1093/labmed/lmy055
- Desany B, Zhang Z. Bioinformatics and Cancer Target Discovery. Drug Discov Today (2004) 9:795–802. doi: 10.1016/s1359-6446(04)03224-6

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Huang, Yue, Zheng, Zhang, Cheng, Li, Chen, Yang, Bian and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.