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Introduction
Microfibrillar-associated protein 4 (MFAP4) is an extracellular 
matrix protein, which binds to extracellular matrix (ECM) fib-
ers like collagen, elastin and fibrillin.1-6 MFAP4 is localized 
primarily to sites rich in elastic fibers comprising aorta,4,7,8 
skin,5,6,9 and a range of internal organs including lung, intes-
tine, kidney, spleen, liver, and heart.1,3,10 Immunohistochemical 
staining reveals a major site of expression in blood vessels, 
where MFAP4 is synthesized by vascular smooth muscle cells.1 
Furthermore, MFAP4 synthesis is demonstrated in dermal 
fibroblasts5 and hepatic stellate cells.11,12

While embedded in the ECM, MFAP4 exposes a cell 
adhesion motif (RGD-sequence) enabling integrin ligation 
and focal adhesion for cellular activation.13 MFAP4 is ligand 
for integrins αVβ3/5.13,14 Mice with genetic ablation of 
MFAP4 are protected from aberrant healing responses when 
challenged by vascular injury,13 chronic airway inflamma-
tion14 or fibrosis.15,16 In these pathologies, MFAP4-
deficiency decreases inflammation, vascular and bronchial 
remodeling and fibrotic deposition.

Soluble MFAP4 has been detected in bronchoalveolar lav-
age17 and in blood.1 These levels of soluble MFAP4 are likely to 
partly represent turnover of ECM. However, the level of serum 
MFAP4 also varies with sex, age and smoking,18 and is moder-
ately affected by the presence of stable atherosclerosis,1 periph-
eral artery disease,19 presence of abdominal aorta aneurysms,20 
asthma,21 and chronic obstructive lung disease22 in addition to 
more markedly induced levels in liver fibrosis/cirrhosis.11,23-26

Considering sMFAP4 as a biomarker for chronic fibrosing 
disease warrants detailed evaluation of both technical and normal 
physiological variation. In this regard, we have previously shown 
that MFAP4 has a remarkable pre-analytical stability.18 The aim 
of the present study was thus to determine the sMFAP4 variation 
in healthy persons both during a single day, throughout a period 
of 3 weeks, and before and after standardized physical activity.

Materials and Methods
Study populations
Peripheral blood samples from healthy persons in 3 different 
settings were collected as previously described.27 The study was 
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carried out according to the Helsinki declaration; all partici-
pants gave their signed informed consent. The study protocol 
was approved by the Regional Ethics Committee ( J. No. KF 
01-138/03 and M02359-02).

Circadian variation of sMFAP4

Fifteen healthy individuals were admitted to Hvidovre hospital 
for successive blood sampling. Six males and 9 females with a 
median age at 50 years (range 32-66) were included. The sub-
jects were self-reportedly healthy and did not take any medica-
tion besides non-prescription drugs. Blood samples were drawn 
7 times during a 24-hour period, starting at 10 AM followed by 
samples every 3 hours until 10 pm. Time and numbers of meals 
were standardized, but meal size was individual. A fasting sam-
ple was drawn the following day at 7 AM before getting out of 
bed and was followed by a non-fasting sample at 10 AM. 
sMFAP4 measurements from 3 individuals at 10 AM the fol-
lowing day were not available. During the daytime, the partici-
pants were allowed to do normal activities, but they did not 
participate in heavy physical activities such as running.

Week-to-week variation of sMFAP4

Thirty-two healthy individuals (13 men and 19 women) with 
median age 42.5 years (range 24-66) were included. Eight 
persons had minor diseases with only rare and mild symp-
toms (seasonal allergy, mild arterial hypertension and inter-
mittent minor reflux symptoms). Five blood samples were 
collected from each individual over 3 weeks. Samples were 
collected at 8 AM initially, 1 day later and subsequently after 
1, 2, and 3 weeks.

Physical exercise-induced variation of sMFAP4

Thirteen healthy individuals (4 men and 9 women) with a 
median age of 50 years (range 35-64 years) were included and 
performed a biphasic exercise program using a bike-test 
(Monarch Viktergometer model 90814 E). The first part of 
the program was a 5-minute warming-up session, aiming to 
reach a submaximal level at 70%-80% of their maximal pulse 
capacity. The submaximal level was maintained for 20 min-
utes with 4 minutes cycles with increasing loads of 0.5, 0.7, 
0.9, 1.1, and 1.3 kg, respectively. The participants started the 
exercise program in the period from 6.30 AM to 9.45 AM. 
Blood samples were collected prior to physical activity, imme-
diately after, and subsequently 1 and 3 hours after cessation of 
the physical exercise.

Preanalytical handling and measurement of 
sMFAP4 by AlphaLISA

Peripheral blood samples were collected in endotoxin-free sili-
conized glass tubes without additives. The samples were kept at 
room temperature for 1 hour prior to centrifugation at 2,500 

rpm for 10 minutes. Serum was collected and stored at −80°C 
until use. The AlphaLISA technique was based on inhouse 
produced mouse monoclonal antibodies HG-HYB 7-14 and 
HG-HYB 7-18 and used and validated for measuring of 
sMFAP4 as previously described.1 HG-HYB 7–14 was conju-
gated to AlphaLISA Acceptor beads (Perkin Elmer) at a con-
centration of 0.1 mg antibody/mg acceptor beads following the 
manufacturer’s instructions. HG-HYB 7–18 was modified by 
labeling with (+)-biotin N-hydroxysuccinimide ester (Sigma 
H1759) to permit binding to AlphaLISA streptavidin-coated 
donor beads. The AlphaLISA procedure was performed using 
384-well microtiter plates (white opaque OptiPlateTM from 
Perkin Elmer) containing 5 ml of diluted serum (final dilution 
1:100), 2 nM biotinylated HG-HYB 7-18, and 10 mg/ml 
HG-HYB 7-14 conjugated to Acceptor beads in a total of 
20 ml AlphaLISAHHiBlock Buffer (PerkinElmer). The reac-
tion mixture was incubated at room temperature for 60 min-
utes. Streptavidin donor beads were then added to reach a final 
concentration of 40 mg/ml, and the plate was incubated at 
room temperature in the dark for another 30 minutes, after 
which time it was read on an EnVision reader (PerkinElmer) 
using the AlphaScreen protocol. Briefly, the AlphaScreen pro-
tocol used AlphaScreen label 384-well Packard OptiPlates and 
the AlphaScreen 570 emission filter, a flash/time ratio of 0.55, 
a measurement height of 1 mm, an excitation time of 0.18 sec-
onds, and an emission time of 0.37 seconds.

The experiments were performed in duplicate except for the 
standards and quality controls, which were performed in quad-
ruplicate. The duplicate sample covariance was accepted if it 
was <10%. Standards were prepared by the serial dilution of 
MFAP4 overexpressing CHO cell culture supernatant in 
AlphaLISAHHiBlock Buffer. The concentration of the stand-
ard was estimated by the spiking of a known concentration of 
rMFAP4 into the samples. Standards included serial dilutions 
from 8000  to 7.8 mU/ml. The concentration of rMFAP4 was 
determined using Amino Acid Analysis by Alphalyse A/S 
(Odense, Denmark). When measured in serum, 1 U/ml = 38 ng/
ml. Quality controls were diluted freshly for each run from fro-
zen aliquots of a human serum pool and from frozen aliquots 
of rMFAP4 spiked pools. One control was prepared to contain 
a low content of human MFAP4 (QLow), and 2 controls were 
prepared using purified rMFAP4 (QMid) and (QHigh). The 3 
quality controls were included in each plate. Interplate varia-
tion was accepted if all quality control measurements were 
within 2 standard deviations obtained from 10 consecutive 
runs. Within and between assay coefficient of variation was 
8.7% and 9.5%, respectively.

Statistical methods

All statistical analyses were performed using STATA version 
11.2 and R version 3.3.4 for Mac OS. The sMFAP4 measure-
ments were normalized by a log-transformation. Mean levels 
and 95% confidence intervals (CI) were calculated at the log 
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scale and subsequently back-transformed to the scale of observa-
tions. The statistical questions addressed in this paper used a 
sampling structure with multiple measurements for each indi-
vidual. Measurements from the same individual will be corre-
lated, and data were consequently analyzed by mixed effects 
regression models. Sex and age were included as covariates. Time 
was included as a simple linear effect or in terms of trigonomet-
ric functions to accommodate periodic variations. For assessing 
the potential effect of physical activity upon the sMFAP4 level, 
we considered the persons to be in different states before and 
after the physical activity. The first measurement represented 
pre-physical activity and was drawn just before the activity com-
menced. Potential seasonal effects in the data on physical activity 
were accounted and tested for in our models. Intra-individual 
coefficient of variation (CV) was the mean logarithmically 
transformed sMFAP4 divided by the standard deviation for all 
measures performed on each subject. Confidence limits for the 
empirical means were obtained by bootstrapping within each 
time point with a bootstrap replication of 4000 samples.

All final models were tested for goodness of fit by residual 
plots.

Results
Circadian variation of sMFAP4

Mean sMFAP4 measurements obtained during a 24-hours 
period are summarized in Table 1.

Mixed effects linear regression using age, gender and time 
of the day as covariates, revealed a complex pattern for the cir-
cadian variation of the sMFAP4. Harmonic curves showed 
good fit. Time of peak and nadir and amplitude varied with age 
and gender (Figure 1A and D).

For a 50-year-old male the time of nadir and peak were esti-
mated to 4 PM and 4 AM respectively, with sMFAP4 values of 
9.4 U/ml and 10.4 U/ml respectively. For a 50-year-old female, 
the corresponding numbers were 10:20 PM and 10:20 AM 
with nadir and peak values of sMFAP4 of 8.9 U/ml and 11.6 U/
ml respectively.

The magnitude of the circadian variation appeared to 
increase with age for females and decrease for males. In addi-
tion, the time points of nadir and peak increased with age, 
however most pronounced for males.

Week-to-week variation of sMFAP4

Mean sMFAP4 measurements for each sampling time dur-
ing a 3-week period of observation are shown in Table 2. A 
daily increase in sMFAP4 of 4‰ was estimated using a 
mixed effects linear regression model. However, there was 
considerable variation, both within and between individuals, 
as can be seen in Figure 1B and E. No effects of age or gen-
der could be detected. Mean sMFAP4 intra-individual coef-
ficient of variation (CV) was determined to be 23.3% 
(SD ± 10.7%).

Table 1. Circadian variation of sMFAP4.

TIME SEx EMPIRICAL MODEL

MEAN LOw HIGH MEAN LOw HIGH

10 F 12.91 10.35 15.31 11.56 9.73 13.73

13 F 11.00 9.00 13.64 11.12 9.33 13.25

16 F 10.11 7.07 13.34 10.06 8.48 11.94

19 F 9.72 7.80 12.67 9.07 7.66 10.75

22 F 9.60 7.01 12.47 8.67 7.24 10.38

7 F 10.38 8.87 12.42 11.04 9.28 13.13

10 F 14.92 11.05 19.72 11.56 9.73 13.73

10 M 9.27 8.36 10.24 9.83 8.25 11.72

13 M 9.21 8.24 10.27 9.29 7.76 11.11

16 M 7.29 6.40 8.75 9.17 7.71 10.89

19 M 8.68 7.17 11.20 9.52 8.04 11.28

22 M 10.08 8.39 11.92 10.19 8.48 12.24

7 M 8.61 6.79 11.18 10.52 8.84 12.52

10 M 10.22 8.46 13.26 9.83 8.25 11.72

Data is presented as geometric means of sMFAP4 (U/ml) with the lowest (Low) and highest (High) value of 95% confidence intervals. Empirical means and mixed effects 
regression model estimated means are shown.
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Physical exercise induced variation of sMFAP4
Mean sMFAP4 measurements at each sampling time, before 
and after physical exercise, are shown in Table 3.

Individual and mean variations are shown in Figure 1C and 
F. An initial mixed effects linear regression included pre/post-
state, effects of circadian variation, and time after physical 
activity. Only time after physical activity appeared to have a 

significant effect. The sMFAP4 level decreased by 2.8% per 
hour (P = .03) as compared to the initial measurement. The sera 
were collected at varying times of the day; however, the circa-
dian pattern observed in the study above was not detected. 
Similarly, we found no effect of data being collected at varying 
seasons over the year. Still, these effects might add to the ran-
dom variation between individuals, which constituted 94% of 

(A) (B) (C)

(D) (E) (F)

Figure 1. Variation of sMFAP4. Microfibrillar associated protein 4 (MFAP4) was measured in serum collected from 3 groups of volunteers to determine 

empirical variation of serum MFAP4 (sMFAP4) due to: (A) circadian variation, (B) week-to-week variation, and (C) variation after physical activity. 

Moreover, model estimated variation of sMFAP4 is shown for: (D) circadian variation, (E) week-to-week variation, and (F) variation after physical activity. 

Red = women, blue = men.
Abbreviations: h, hour; U/ml, units pr. ml.

Table 2. week-to-week variation of sMFAP4.

DAY EMPIRICAL MODEL

MEAN LOw HIGH MODEL LOw HIGH

1 6.41 5.21 7.78 12.43 11.35 13.62

2 8.55 7.37 9.62 12.47 11.4 13.65

8 8.22 7.44 8.99 12.75 11.68 13.91

15 8.06 7.05 9.21 13.07 11.96 14.28

22 8.79 7.60 10.13 13.4 12.18 14.75

Data is presented as geometric means of sMFAP4 (U/ml) with the lowest (Low) and highest (High) value of 95% confidence intervals. Empirical means and mixed effects 
regression model estimated means are shown.
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the total random variation. The inter-individual variation was 
larger among females than males; this is in accordance with the 
observation in the study on circadian variation.

Model controls

The final model in each of the 3 sub-studies were checked for 
goodness of fit, by means of residual plots. In all cases we 
obtained good fits and this part of analysis indicated no cause 
for concern of the chosen models.

Discussion
In the present study of the normal physiological variation of 
sMFAP4, we demonstrate a slight increase in the marker dur-
ing the observation period of 3 weeks, decrease with physical 
activity, and slight circadian variation. Moreover, we estimated 
a mean sMFAP4 intra-individual CV of 23.3% using measure-
ments obtained at 8 AM during the three-week period.

The observed CV compares with our previous observation 
that plasma MFAP4 varied less than 25% between the baseline 
and a 3-month follow-up in 83% of patients that presented 
with stable chronic obstructive lung disease at enrolment.22 All 
participants in the study regarding long-term variation were 
included at the same time of the year; therefore, no definite 
conclusions regarding seasonal variation can be reached. Peak 
values were found during nighttime/morning followed by a 
gradual decline during daytime. Time of peak and nadir dif-
fered between males and females and also, a larger magnitude 
of variation was seen among females. Moreover, variation 
increased with increasing age for females whereas variation 
decreased with age for males. The mechanisms underlying 
these different patterns of diurnal rhythmicity of sMFAP4 are 
unknown but may reflect parallel oscillations in hormonal or 
cytokine regulators. Moreover, it is not known whether the 
variation of sMFAP4 during the day is influenced by dietary 
intake. However, the larger inter-individual variation among 
females is in accordance with previous observations among 
twins, finding sMFAP4 level to be influenced by tobacco 
smoking in interaction with gender,18 with tobacco smoking 
causing a larger decrease in sMFAP4 in females than males. In 
the present study, no information regarding tobacco smoking 

was available, thus, it can only be speculated whether smoking 
may account for the observed variation among females. 
Moderate physical activity induced a limited significant 
decrease in the hours following exercise. There was no detailed 
information about the sMFAP4 level from time zero (just 
before physical activity) and until the first post physical activity 
measurement. Hence, we could not make inference about how 
the sMFAP4 level evolved in the time span of activity.

Previously, we identified sMFAP4 as a biomarker candidate 
for liver fibrosis and cirrhosis in hepatitis C patients possibly 
reflecting the underlying ECM metabolism. sMFAP4 was able 
to reliably identify patients with severe fibrosis stages11,25,26,28 
in these studies. The accepted best available standard for deter-
mining the presence and degree of liver fibrosis is liver biopsy, 
despite well-documented limitations regarding sampling and 
interpretation variation as well as procedure related complica-
tions.29,30 These limitations have encouraged the development 
of reliable biochemical markers to reduce the need to perform 
liver biopsies, and to cover the need for biomarkers to diagnose 
fibrosis, to stage the fibrosis, and to grade current fibrogenesis. 
Despite the numerous biochemical biomarkers and panels 
reported none has yet proven ideal.31 One of the obstacles is 
the analytical imprecision, which was recently described to be 
relatively high for example, for the biomarker hyaluronic acid 
in healthy subjects as well as patients suffering from hepatitis.32 
Thus, a CV of 62% for hyaluronic acid was reported for healthy 
subjects and 38% for patients suffering from hepatitis C.32 
Compared to these observations, the CV for sMFAP4 pre-
sented here along with the pre-analytical and biological stabil-
ity and a significant, yet, limited circadian variation support a 
proposed biomarker potential of sMFAP4.

sMFAP4 is robust to preanalytical sample handling.18 Thus, 
in clinical practice the mild changes (few units) in sMFAP4 
due to physical activity or over intervals of weeks may be neg-
ligible compared to the log-fold increased levels found in 
fibrotic liver disease.25 In contrast, the diurnal variation sug-
gests all blood sampling is performed at the same time of day.

Limitations of the study include the lack of detailed infor-
mation on tobacco smoking history and the limited numbers of 
subjects. Moreover, samples from the 3 different populations 
were stored frozen for different periods and this may have 

Table 3. Physical exercise-induced variation of sMFAP4.

SAMPLE EMPIRICAL MODEL

MEAN LOw HIGH MEAN LOw HIGH

Right before 9.23 7.64 11.28 9.26 8.45 10.14

Right after 9.49 7.62 12.01 9.00 8.22 9.85

1 h after 9.23 7.36 11.70 8.75 8.00 9.57

3 h after 8.50 6.97 10.49 8.51 7.78 9.30

Data is presented as geometric means of sMFAP4 (U/ml) with the lowest (Low) and highest (High) value of 95% confidence intervals. Empirical means and mixed effects 
regression model estimated means are shown.
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contributed to the different mean sMFAP4 levels observed in 
the 3 populations. However, it should be underscored that sam-
ples from each sub-study were analyzed using reagents from 
the same batches.

In summary, sMFAP4 remains relatively stable at the indi-
vidual level over a prolonged period of time yet exhibiting cir-
cadian variation. The latter variation of sMFAP4 emphasizes 
the importance of standardized blood sampling conditions in 
future studies on sMFAP4 as biomarker of fibrosis.

Data access
Contact corresponding author for data access.
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