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AbsTrACT
background We have previously reported, in a systematic 
review of 181 studies, that restriction of antibiotic use in 
food-producing animals is associated with a reduction in 
antibiotic-resistant bacterial isolates. While informative, 
that report did not concretely specify whether different 
types of restriction are associated with differential 
effectiveness in reducing resistance. We undertook a sub-
analysis of the systematic review to address this question.
Methods We created a classification scheme of 
different approaches to antibiotic restriction: (1) complete 
restriction; (2) single antibiotic-class restriction; (3) 
single antibiotic restriction; (4) all non-therapeutic 
use restriction; (5) growth promoter and prophylaxis 
restriction; (6) growth promoter restriction and (7) other/
undetermined. All studies in the original systematic review 
that were amenable to meta-analysis were included into 
this substudy and coded by intervention type. Meta-
analyses were conducted using random effects models, 
stratified by intervention type.
results A total of 127 studies were included. 
The most frequently studied intervention type was 
complete restriction (n=51), followed by restriction of 
non-therapeutic (n=33) and growth promoter (n=19) 
indications. None examined growth promoter and 
prophylaxis restrictions together. Three and seven studies 
examined single antibiotic-class and single antibiotic 
restrictions, respectively; these two intervention types 
were not significantly associated with reductions in 
antibiotic resistance. Though complete restrictions were 
associated with a 15% reduction in antibiotic resistance, 
less prohibitive approaches also demonstrated reduction in 
antibiotic resistance of 9%–30%.
Conclusion Broad interventions that restrict global 
antibiotic use appear to be more effective in reducing 
antibiotic resistance compared with restrictions that 
narrowly target one specific antibiotic or antibiotic class. 
Importantly, interventions that allow for therapeutic 
antibiotic use appear similarly effective compared with 
those that restrict all uses of antibiotics, suggesting that 
complete bans are not necessary. These findings directly 
inform the creation of specific policies to restrict antibiotic 
use in food-producing animals.

InTroduCTIon
Antimicrobial resistance (AMR) has been 
recognised as a threat to public health 
worldwide, being associated with increased 
morbidity, mortality and societal costs.1–4 It is 

Key questions

What is already known?
 ► Antimicrobial resistance (AMR) is a threat to public 
health, with the Tripartite Collaboration (WHO, the 
Food and Agriculture Organisation of the United 
Nations and the World Organisation for Animal 
Health) calling for a One Health approach to address 
this crisis.

 ► A recent systematic review and meta-analysis sug-
gested that, in general, interventions that restrict an-
tibiotic use in food-producing animals are effective 
in reducing AMR in these animals and in certain sub-
groups of human population, though whether certain 
types of interventions are more effective than others 
remains unknown.

What are the new findings?
 ► A wide spectrum of interventions, from limiting anti-
biotics for growth promoter or feed additive purpos-
es only to limiting all uses of antibiotics (including for 
therapy), were associated with a 9%–30% absolute 
reduction in antibiotic resistance.

 ► Interventions that restrict the use of only one antibi-
otic or antibiotic class were not significantly associ-
ated with a reduction in antibiotic resistance.

What do the new findings imply?
 ► Highly targeted interventions that limit the use of only 
a single antibiotic or antibiotic class may have lim-
ited effectiveness in reducing antibiotic resistance.

 ► Interventions that broadly target overall antibiot-
ic use or that restrict the use of multiple antibiotic 
classes are recommended as these appear to be 
associated with reductions in antibiotic resistance, 
though a complete restriction of antibiotics does not 
appear to be necessary.

http://gh.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjgh-2019-001710&domain=pdf&date_stamp=2019-08-31
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estimated that by 2050, AMR will contribute to 10 million 
deaths per year, a 2%–3.5% reduction in gross domestic 
product, and cost $100 trillion US$ worldwide.5 Over-pre-
scription and unnecessary non-prescription antibiotic use 
are the main contributors to increase AMR in humans.6 
Widespread antibiotic use in agriculture and aquaculture 
also likely plays a role,7–9 especially as many of the anti-
biotics used in animals are the same, or are in the same 
class, as antibiotics used in humans.8 10–12 The WHO, 
the Food and Agriculture Organisation of the United 
Nations and the World Organisation for Animal Health, 
known as the Tripartite Collaboration, have called for 
a One Health approach, with recognition that animal, 
human and environmental health are linked, to address 
the problem of AMR.13

A systematic review conducted by our group showed 
that interventions that aimed to reduce antibiotic use in 
food-producing animals are associated with a reduction 
in AMR in these animals, as well as in certain subgroups 
of the human population (particularly those with direct 
contact with animals).14 These findings were critical in 
demonstrating that reducing antibiotic use in agriculture 
is an effective avenue by which to combat the growing 
problem of AMR worldwide. However, the studies 
included in the systematic review used many different 
approaches to reduce and/or to restrict antibiotic use. 
Our report did not address whether different types and 
extent of antibiotic restriction lead to different levels of 
reduction in antibiotic resistance. That is, though antibi-
otic restrictions appear, in a broad sense, to be effective 
in reducing resistance, it is unclear whether specific types 
of restrictions are more effective than others.

Antibiotics can be used in food-producing animals 
for therapeutic purposes (ie, to treat existing infectious 
disease), for disease control within a herd or flock, and 
for non-therapeutic purposes.15 This results in a wide 
spectrum of possible approaches to antibiotic restric-
tion. The least restrictive approaches would include 
those that prohibit the use of only one antibiotic or anti-
biotic class, and those that restrict the use of antibiotics 
for specific non-therapeutic indications only such as for 
growth promotion. On the opposite end of the spectrum 
is the complete prohibition of the use of all antibiotics, 
for any indication. With the least restrictive approaches, 
there is risk of increased use of other antibiotics in the 
place of the restricted drug(s), thereby raising the ques-
tion of whether such measures actually reduce AMR.16 17 
On the other hand, while antibiotic-free strategies may 
be effective in reducing AMR, the inability to use antibi-
otics, even to treat diagnosed clinical infectious diseases, 
is detrimental for animal production and economics as 
well as to animal welfare.18 19

The development of national and international guide-
lines and policies requires greater detail about the 
effectiveness of different interventions so that specific 
recommendations can be made as to what type of anti-
biotic restrictions should be implemented. We were 
commissioned by the WHO to undertake a subanalysis 

of the original systematic review and meta-analysis to 
explore the associations between different interventions 
that restrict antibiotic use in food-producing animals 
and antibiotic resistance in these animals, to inform the 
WHO Guidelines on the use of antibiotics in food-pro-
ducing animals.20 Our findings provide crucial insights 
into the type and extent of antibiotic restriction that opti-
mises desired effects of reducing AMR.

MeTHods
The methods for the broader systematic review and 
meta-analysis, of which this is a substudy, have been 
described in detail in a prior publication.14 The system-
atic review and meta-analysis was conducted following 
a predetermined protocol and in accordance with 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses reporting standards.21 Ethics approval 
was not required, as the study is based on a review of 
published literature.

search strategy
The search strategy consisted of controlled vocabulary 
and keywords, under three themes: animal populations 
of interest (theme 1), resistance to antibiotics (theme 
2)22 23 and interventions to restrict antibiotic use (theme 
3). These three themes were combined with the Boolean 
operator ‘AND’. Electronic databases were searched 
in initially searched in July 2016, and again in January 
2017. Databases included Agricola (1970–present), 
AGRIS (http:// agris. fao. org), BIOSIS Previews (1980–
present), CAB Abstracts (1910–present), MEDLINE 
(1946–present), EMBASE (1974–present), Global Index 
Medicus (http://www. globalhealthlibrary. net; non-MED-
LINE indices included AIM (AFRO), LILACS (AMRO/
PAHO), IMEMR (EMRO), IMSEAR (SEARO), WPRIM 
(WPRO), WHOLIS (KMS) and SciELO), ProQuest 
Dissertations and Science Citation Index (1899–
present). No limits were placed based on publication 
date or language. An update to the search was conducted 
on 8 July 2019, focusing on the electronic databases 
MEDLINE, EMBASE, CAB Abstracts, and AGRIS.

Reference lists of included articles (published 2010 
onward) were manually searched. Grey literature 
searching included websites of relevant health agencies, 
professional associations and other specialised data-
bases. The WHO Guideline Development Group as well 
as experts in antimicrobial use and resistance, veteri-
nary medicine and animal health policy were contacted 
to identify potential missed, ongoing or unpublished 
studies.

Abstract screening and full-text review
Two authors independently reviewed all identified titles 
and abstracts for eligibility. Only articles reporting orig-
inal research that described an intervention aimed to 
reduce antibiotic use in animals and described antibi-
otic resistance in animals or humans were selected for 
full-text review. At the full-text review stage, articles were 

http://agris.fao.org
http://www.globalhealthlibrary.net
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Table 1 Definitions for terms used in the classification scheme for interventions

Terminology Definition

Antibiotic growth promoter Administration of subtherapeutic doses of antibiotics to stimulate growth in animals or to 
increase feed efficiency.27 167

Non-therapeutic antibiotic use Administration of antibiotics to animals without identifiable infectious disease.167 This 
includes antibiotic use for growth promotion, disease prophylaxis and metaphylaxis.

Metaphylaxis Treatment of a group of animals without evidence of disease, but which are likely in an 
incubation phase, due to being in close contact with clinically diseased animals.26

Prophylaxis Administration of antibiotics to animals at high risk of infectious disease (but without 
current disease and where there is no known disease in the herd or flock).167 Prophylaxis 
is commonly used when environmental conditions or changes portend increased risk for 
infection. Examples of such conditions include transport of animals and confining animals to 
small, crowded spaces.167

Therapeutic antibiotic use Administration of antibiotics to treat animals with clinical evidence of infectious disease 
only.27 167

retained and ultimately included into this substudy if they 
were original research meeting the following inclusion 
criteria: (1) population studied included food-producing 
animals (within the classifications of avian, swine, bovine, 
caprine, camel, equine, rabbit, ovine, fish, bees, molluscs 
and crustaceans); (2) interventions restricted the use of 
antibiotics in food-producing animals; (3) presence of 
a comparator group without antibiotic use restrictions 
(historical comparators were considered eligible); (4) 
outcomes reported phenotypic antibiotic resistance in 
bacteria in food-producing animals and (5) sufficient 
data reported to calculate risk differences (RDs) in 
proportion of isolates with antibiotic resistance in the 
intervention versus the comparator group (to allow for 
meta-analysis).

data extraction and assessment of individual study quality
Two authors (KT and NC) extracted data from each 
included study using a predesigned form. Data extracted 
included study design, country, animal characteristics, 
sampling characteristics, description of intervention, 
description of comparator, bacteria investigated, and 
prevalence of antibiotic resistance in intervention and 
comparator groups. The same authors independently 
assessed the methodological quality of each study 
based on pre-specified study quality indicators adapted 
from the Downs and Black checklist.24 The results of 
the quality assessment are described in a prior publi-
cation.14

Patient and public involvement
Due to the nature of the research question, which was 
defined by the WHO and which used data from our prior 
review of published literature, patients were not involved 
in this study.

Creation of an intervention classification scheme
The WHO commissioned this study to inform the devel-
opment of Guidelines on this topic. The initial request 
for a classification scheme therefore originated from 
the WHO Advisory Group on Integrated Surveillance 

of Antimicrobial Resistance (WHO AGISAR) Guideline 
Development Group committee members. Because there 
is no widely accepted classification scheme to catego-
rise interventions that restrict and/or reduce antibiotic 
use, we developed one from the ground-up, based on 
the types of interventions found in the literature. The 
preliminary categories that were developed were then 
presented to WHO AGISAR for input and feedback, and 
then iteratively refined.

We began by establishing standard terminology to be 
used in this classification scheme, as different jurisdic-
tions may use terminology differently. For example, the 
definition for metaphylaxis provided by the US Depart-
ment of Agriculture includes the prophylactic use of 
antibiotics in healthy animals to prevent disease (even 
when there are no clinically affected animals present),25 
whereas the definition from the European Medicines 
Agency does not.26 Furthermore, some consider metaphy-
laxis to be a therapeutic indication of antibiotic use (ie, 
it is considered to be ‘group treatment’ of animals)26 
while others note that antibiotic use is only therapeutic 
if administered in clinically infected animals.27 The latter 
definition would therefore consider metaphylaxis not to 
be therapy, but rather disease prevention. We consulted 
the veterinary experts on the study team along with the 
WHO Guideline Development Group for definitions for 
the terms ‘antibiotic growth promotor’, ‘metaphylaxis’, 
‘prophylaxis’, ‘non-therapeutic antibiotic use’ and ‘ther-
apeutic antibiotic use’. Consensus was reached for the 
definitions provided in table 1, which were then used in 
our classification scheme.

In total, we created seven categories of interventions 
(table 2): (1) complete restriction; (2) restriction of 
use of a single antibiotic class; (3) restriction of use of 
a single antibiotic; (4) all non-therapeutic use restric-
tion; (5) growth promoter and prophylaxis restriction; 
(6) growth promoter restriction and (7) other/unde-
termined. Each intervention was assigned only one cate-
gory. If a study included more than one intervention, 
then each intervention was classified separately based on 
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Table 2 Classification of interventions that restrict antibiotic use in food-producing animals

Category Description

Complete restriction Restriction on the use of all antibiotics

Single antibiotic-class restriction Restriction on the use of one class of antibiotics, for all indications of use

Single antibiotic restriction Restriction on the use of a single individual antibiotic, for all indications of use

All non-therapeutic use restriction Restriction on the use of antibiotics for all non-therapeutic indications including growth 
promotion, prophylaxis and metaphylaxis (treatment of diseased animals permitted 
only)

Growth promoter and prophylaxis 
restriction

Restriction on the use of antibiotics for the non-therapeutic indications of growth 
promotion and prophylaxis (treatment and metaphylaxis permitted)

Growth promoter restriction Restriction on the use of antibiotics for purposes of growth promotion only (treatment, 
metaphylaxis and prophylaxis permitted)

Other/undetermined Inability to classify the intervention type into one of the above categories, or where the 
indication for antibiotic use that is targeted by the intervention is not specified

the above approach. The ‘growth promoter restriction’ 
category did not require the restriction of all available 
antibiotic growth promoters. That is, interventions that 
restricted one or more growth promoters were eligible 
to be included in this category, even if there was residual 
use of other non-restricted growth promoters (eg, iono-
phores and flavophospholipols). The ‘other/undeter-
mined’ category captures studies that did not specify 
the type of antibiotic use or indication that was targeted 
in the antibiotic restriction strategy. This includes 
studies, for example, that compare regions or farms 
using ‘more’ versus ‘less’ antibiotics with no indication 
of what is specifically targeted or described, or studies 
that assess the impact of reducing antibiotic use in a 
jurisdiction without delineating how this is achieved. An 
algorithm was created to ensure reproducibility in how 
interventions are classified into the different categories 
(figure 1).

We anticipated that some studies may use labels to 
define the intervention, without further description. 
Such labels might include ‘organic’ or ‘antibiotic-free’ 
production. We established a set of decision rules a priori. 
These included the following:
a. Interventions involving organic production in the 

USA were classified as ‘complete restriction’, as organ-
ic certification in the USA specifies that animals are 
raised without any exposure to antibiotics.28

b. Interventions involving organic production in Europe 
were classified as ‘all non-therapeutic use restriction’ 
as the European Commission on organic production 
specifies that animals are allowed limited antibiotics 
for therapeutic purposes.29 30

c. We referred to organic certification standards, if cit-
ed, for interventions involving organic production in 
countries outside of the USA and Europe.

d. Interventions where no such certifications exist (eg, 
‘antibiotic-free’, ‘pasture’ or ‘free range’) were classi-
fied as ‘undetermined/other’ unless sufficient detail 
was provided for classification into any other category.

outcome measure
Antibiotic resistance was considered a dichotomous 
outcome, as classified by the individual primary studies. 
Intermediate susceptibility was considered susceptible. 
Absolute RDs were calculated for each individual anti-
biotic in each study by subtracting the proportion of 
resistant isolates in the control group from the propor-
tion in the intervention group.

Meta-analysis
All meta-analyses were stratified by intervention type. 
To allow for meaningful and adequately powered anal-
ysis within each intervention stratum, all included 
studies were pooled, regardless of the animal popula-
tions, sample types or bacterial species studied. A single 
effect estimate (absolute RD) was generated for each 
study by conducting within-study meta-analysis using 
random effects models.

Absolute RDs across all studies were then pooled 
using DerSimonian and Laird random-effects models. 
This method was chosen due to the known clin-
ical heterogeneity across studies, with studies from 
different regions examining different animal popu-
lations, sample types and bacteria.31 A lower preva-
lence of antibiotic resistance in the intervention group 
compared with the control group would result in a 
negative pooled absolute RD. Recognising that RDs 
must be interpreted in the context of baseline preva-
lence of antibiotic resistance, we conducted additional 
meta-analysis, pooling the prevalence of antibiotic 
resistance in the comparator groups, stratified by 
intervention type, using random-effects models. 
Heterogeneity across studies was evaluated using the I2 
statistic.32 33 Meta-regression was conducted, with each 
intervention type being a covariate. A joint test for all 
covariates was conducted, to test whether intervention 
type was associated with the size of the outcome effect 
(ie, antibiotic resistance).34
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Figure 1 Algorithm for the classification of interventions to restrict antibiotic use in food-producing animals.

role of the funding source
The WHO was involved in both the original system-
atic review and meta-analysis, as well as this substudy. 
They were involved in developing the research ques-
tion, the study design and the study protocol. They had 
no involvement in data extraction or interpretation of 
findings. The authors have been given permission by 
the WHO to publish this article.

resulTs
Identification of studies
The initial search strategy identified 9008 citations from 
electronic databases. An additional 56 studies were iden-
tified by contacting experts, and another 82 by searching 
reference lists. After removal of duplicates, 5945 records 
underwent title and abstract review. Of these, 5559 
records were not relevant to the research objective, and 
386 full-text articles were reviewed. A total of 181 studies 
were included in the larger original systematic review. 
Of these, two were excluded as they examined AMR 
outcomes in humans but not animals, 17 were excluded 
as they reported presence of resistant genetic elements 
with no phenotypic resistance outcomes, and 48 were 
excluded as there were insufficient data to allow for 

meta-analysis. Therefore, 114 studies from the original 
systematic review were included in this substudy. In addi-
tion, an update to the search was conducted July 2019, at 
which time a total of 1208 new records were identified. 
After duplicates were removed, 703 underwent title and 
abstract review. Of these, 659 were excluded as were not 
relevant to the research objective, and 44 full-text arti-
cles were reviewed, of which 13 ultimately met criteria 
to be included into this study. In total, 127 studies were 
included into this systematic review and meta-analysis 
(figure 2).

study characteristics
Of the 127 studies, 51 restricted all use of antibiotics 
(complete restriction),35–85 three restricted use of a single 
antibiotic class86–88 and seven restricted use of a single 
specific antibiotic.89–95 In all, 33 studies restricted use of 
antibiotics for all non-therapeutic purposes,48 96–127 and 
19 restricted antibiotic growth promoters only.128–146 
A total of 21 studies were classified into the ‘other/
undetermined’ category.52 53 83 100 137 147–162 Of note, 
seven studies consisted of two different interventions 
and were therefore included into two separate catego-
ries.48 52 53 83 100 122 137
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Figure 2 PreferredReporting Items for Systematic Reviews and Meta-Analyses flow diagram of the study selection process.

A summary of study characteristics is found in table 3. 
In total, 114 of the 127 studies were journal articles. 
There were eight dissertations and six meeting abstracts/
conference proceedings. The majority had a cross-sec-
tional design. Poultry (n=69) was the most commonly 
studied animal population, followed by swine (n=42) 
and dairy cattle (n=19). Antibiotic resistance was most 
commonly assessed in the bacterial group Enterobac-
teriaceae. In all, 65 studies were from North America 
and 53 were from Europe. Few study populations were 
from Asia (n=6), Africa (n=1), Australasia (n=2) and 
South America (n=1). Detailed study characteristics for 
individual studies can be found in a prior publication,14 
as well as in online supplementary appendix 1 table S1.

Meta-analysis by intervention category
All intervention types were associated with a signif-
icantly lower pooled risk of antibiotic resistance in 
the intervention group compared with the compar-
ator group except for single antibiotic-class and single 

antibiotic restrictions (RD −0.02, 95% CI −0.10, 0.05 
and RD −0.11, 95% CI −0.21, 0.01 respectively, see 
table 4). The pooled risk reduction of antibiotic resist-
ance was greatest for growth promoter restrictions (RD 
−0.30, 95% CI −0.42 to -0.17). That is, for interventions 
that restricted the use of antibiotic growth promoters, 
there was a 30% reduction in the proportion of isolates 
that were antibiotic resistant in the intervention group 
compared with the comparator group. Similarly, there 
was a 10% and 15% reduction in the proportion of anti-
biotic-resistant isolates for interventions that restricted 
all non-therapeutic uses of antibiotics and interventions 
that completely restricted all (non-therapeutic and ther-
apeutic) uses of antibiotics, respectively. The I2 for each 
intervention stratum ranged between 89.0% and 98.5%, 
suggesting the presence of considerable heterogeneity. 
The meta-regression joint p value was 0.046, suggesting 
that the type of intervention significantly affected the 
magnitude of reduction in antibiotic resistance.

https://dx.doi.org/10.1136/bmjgh-2019-001710
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Table 3 Summary of study characteristics

Study characteristic (n)

Complete 
restriction 
(n=51)
n (%)

Antibiotic-
class 
restriction 
(n=3)
n (%)

Individual 
antibiotic 
restriction 
(n=7) n(%)

All non-
therapeutic 
use restriction 
(n=33)
n (%)

Growth 
promoter 
restriction 
(n=19)
n (%)

Other/
undetermined 
(n=21) n(%)

Total number 
of studies
n=127

Type of article

  Journal article 43 (84.3) 3 (100.0) 7 (87.5) 31 (93.9) 19 (100.0) 16 (76.2) 114

  Abstract only 4 (7.8) – – 1 (3.0) – 3 (14.3) 6

  Dissertation 4 (7.8) – 1 (12.5) 1 (3.0) – 2 (9.5) 8

Study design

  Non-randomised controlled trial – – 1 (14.3) – – – 1

  Cross-sectional 45 (88.2) 1 (33.3) 2 (28.6) 28 (84.8) 8 (42.1) 16 (76.2) 95

  Longitudinal 6 (11.8) 2 (66.7) 4 (57.1) 5 (15.2) 11 (57.9) 5 (23.8) 31

Geographical region where 
intervention was implemented*

  North America 46 (90.2) 1 (33.3) 6 (85.7) 3 (9.1) – 13 (61.9) 65

  Europe 4 (7.8) 2 (66.7) – 28 (84.8) 16 (84.2) 7 (33.3) 53

  Asia – – 1 (14.3) 3 (9.1) 2 (10.5) – 6

  Australasia 1 (2.0) – – – – 1 (4.8) 2

  Africa – – – – 1 (5.3) – 1

  South America 1 (2.0) – – – – – 1

Population studied†

  Beef cattle 4 (7.8) – – 3 (9.1) 1 (5.3) 6 (28.6) 14

  Dairy cattle 10 (19.6) – 1 (14.3) 9 (27.3) – – 19

  Poultry 24 (47.1) 2 (66.7) 5 (71.4) 13 (39.4) 16 (84.2) 13 (61.9) 69

  Swine 17 (33.3) 2 (66.7) 1 (14.3) 9 (27.3) 10 (52.6) 5 (23.8) 42

  Goats 2 (3.9) – – 1 – – 3

Sample studied†

  Faeces/cloaca/caeca 33 (64.7) 2 (66.7) 6 (85.7) 12 (36.4) 18 (94.7) 11 (52.4) 77

  Meat or carcass 16 (31.4) 1 (33.3) 2 (28.6) 10 (30.3) 4 (21.1) 11 (52.4) 42

  Milk 7 (13.7) – – 10 (30.3) – – 16

  Eggs 2 (3.9) – – 3 (9.1) – – 5

  Nasal swabs 2 (3.9) – – 1 (3.0) – 3 (14.3) 6

Bacteria studied†

  Campylobacter spp. 12 (23.5) 2 (66.7) 1 (14.3) 4 (12.1) 2 (10.5) 3 (14.3) 23

  Enterococcus spp. 7 (13.7) – – 4 (12.1) 14 (73.7) 5 (23.8) 29

  Staphylococcus spp. 8 (15.7) – 14 (42.4) – 8 (38.1) 29

  Enterobacteriaceae 25 (49.0) 1 (33.3) 7 (100.0) 20 (60.6) 3 (15.8) 10 (47.6) 63

  Other 4 (7.8) – – 6 (18.2) – 2 (9.5) 11

*One study included intervention group samples from Denmark and the USA and was therefore counted twice.
†Categories are not mutually exclusive and studies can be included in more than one category.

Pooled proportions of antibiotic resistance in comparator 
groups
The pooled proportion of bacterial isolates with anti-
biotic resistance in comparator groups was lowest for 
studies that single antibiotic-class restrictions (pooled 
proportion 0.163, 95% CI 0.075 to 0.252, see table 4), 
and highest for studies examining interventions that 
restricted growth promoter use only (pooled propor-
tion 0.492, 95% CI 0.261 to 0.723). The pooled propor-
tions for complete restriction, all non-therapeutic use 

restriction and other/undetermined restriction were 
similar, between 0.32 and 0.34.

dIsCussIon
Though our broader systematic review and meta-anal-
ysis was important in bringing to light the effectiveness 
of antibiotic use restrictions on decreasing antibiotic 
resistance in food-producing animals, what has remained 
unknown until now is how to best implement this broad 
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Table 4 Meta-analysis stratified by intervention category

Intervention category*
Number of 
studies

Baseline prevalence of AMR 
(95% CI)†

Pooled absolute risk 
difference (95% CI)

Complete restriction 51 0.320 (0.165 to 0.468) −0.15 (−0.18 to −0.12)

Single antibiotic-class restriction 3 0.163 (0.075 to 0.252) −0.02 (−0.10 to 0.05)

Single antibiotic restriction 7 0.405 (0.027 to 0.784) −0.11 (−0.21 to 0.01)

All non-therapeutic use restriction 33 0.322 (0.076 to 0.568) −0.10 (−0.13 to −0.08)

Growth promoter restriction 19 0.492 (0.261 to 0.723) −0.30 (−0.42 to −0.17)

Other/undetermined 21 0.338 (0.082 to 0.593) −0.09 (−0.13 to −0.06)

*Meta-regression joint p-value=0.046.
†Pooled proportion of resistance in the comparator group.
AMR, antimicrobial resistance.

principle into practice and policy. This subanalysis plays 
a critical role in providing answers that can guide antibi-
otic use strategies in food-producing animals.

We demonstrate that highly targeted interventions 
limiting the use of single antibiotics or a single class of 
antibiotics are unlikely to be effective in reducing overall 
AMR. One reason for this finding may be that the use of the 
restricted antibiotic(s) is simply replaced by other antibi-
otics, such that there is no overall reduction in antibiotic 
use. This phenomenon was seen in Denmark. After the 
ban on the antibiotic growth promoter avoparcin, there 
was increased use of other growth promoters, including 
tylosin and virginiamycin, in its place.131 Furthermore, 
there may be continued resistance to certain antibiotic 
classes even after selected classes have been banned or 
restricted because of co-selection. Because genes that 
encode resistance to different antibiotics may be linked 
(ie, carried on the same mobile genetic element), the 
continued use of just one of these antibiotics is sufficient 
to select for all of the linked resistance mechanisms to the 
different antibiotics.163 This phenomenon was described 
in pigs where macrolide and glycopeptide resistance 
genes were linked. In this case, the ban of avoparcin did 
not result in reduced glycopeptide resistance, due to 
continued macrolide use.164 165

Conversely, a complete ban on the use of all antibiotics 
in food-producing animals does not appear to be neces-
sary. Though antibiotic-free practices were associated 
with a 15% reduction in antibiotic resistance, less prohib-
itive practices are associated with similar reductions. 
Given that complete restrictions do not appear superior 
in this regard, and with the added economic, production 
and ethical challenges of such practices, complete bans 
are not recommended. Beyond this, it is more difficult 
to ascertain whether certain less-restrictive types of inter-
ventions are superior to others.

At first glance, interventions that restrict antibiotic 
growth promoters appear to be most effective at reducing 
AMR in food-producing animals (RD −0.30, 95% CI 
−0.42 to 0.17). However, growth promoter bans are often 
the first types of restrictions implemented; other inter-
ventions such as those limiting other non-therapeutic 
uses of antibiotics or all uses of antibiotics tend to be 

later interventions that are implemented after growth 
promoter bans or after other efforts to reduce antibiotic 
use are already in place. The large effect of antibiotic 
growth promoter bans relative to those of other inter-
ventions may therefore be due to the different compar-
ator groups across the different interventions. Lending 
support to this hypothesis is that growth promoter ban 
studies tended to be published earlier (median year of 
publication 2001, IQR 2000–2004) compared with studies 
examining all other types of interventions (median 2010, 
IQR 2006–2015). Further support is provided through 
stratified meta-analysis of baseline proportions of isolates 
demonstrating antibiotic resistance. As predicted, the 
pooled baseline proportion of antibiotic resistance for 
growth promoter ban studies was higher compared with 
non-therapeutic antibiotic restriction and complete 
restriction studies (49% vs 32%). The smaller effect size 
for non-therapeutic restriction studies may therefore 
be explained, at least in part, by the lower baseline risk 
of antibiotic resistance (resulting in smaller RDs even 
if relative effects of the intervention are as large as the 
ones seen with growth promoter ban studies) and/or the 
smaller incremental benefit to antibiotic restriction once 
strategies to ban growth promotion claims on medically 
important antibiotics are already in place. We therefore 
cannot conclude that restrictions that target antibiotic 
growth promoters alone are more effective in reducing 
AMR compared with restrictions that target non-thera-
peutic indications more broadly. On the other hand, we 
have demonstrated that antibiotic growth promoter bans 
are effective in reducing AMR and therefore recommend 
that these be implemented on a global scale.

There are limitations to this systematic review. First, the 
comparison among intervention types through stratified 
analysis is inferior to comparison through head-to-head 
randomised controlled trials. However, such head-to-
head randomised comparisons of different antibiotic 
restriction strategies do not exist in the primary litera-
ture. Furthermore, our stratified analysis findings are 
powerful especially as the differences in outcome effect 
across intervention types are consistent with prior expe-
rience and are biologically plausible (particularly the 
finding that very narrow restrictions are ineffective in 
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reducing AMR while broader restrictions are). Second, 
there is known clinical heterogeneity across studies, with 
different countries, livestock production sectors, animal 
groups and resistance to different bacterial species 
included. Despite this, our original systematic review and 
meta-analysis demonstrated consistency in findings across 
many different layers of stratification, suggesting the 
presence of an overall effect. Third, we were limited in 
our classification of interventions by the lack of detailed 
description of interventions within primary studies. Simi-
larly, because the majority of studies did not provide any 
description of the implementation process, we were not 
able to assess how the quality of implementation may 
affect the effectiveness of interventions in reducing 
AMR. Our analysis suggests that well-implemented inter-
ventions that have national certification standards (eg, 
for organic production) may be more effective than 
interventions that have similar claims but no such stan-
dard (eg, ‘antibiotic-free’ products). The former was 
categorised as ‘complete restriction’ (if undertaken in 
the USA), which was associated with a 15% reduction in 
antibiotic resistance, while the latter was classified in the 
‘other/undetermined’ category, which was associated 
with a 9% reduction. A more in-depth analysis, though, 
could not be completed without more information and 
description about implementation of each intervention 
in the primary studies. Lastly, the vast majority of studies 
originated from either North America or Europe. Gener-
alisability of these findings to other jurisdictions may be 
limited, particularly in low-income countries where there 
may be limited access to veterinarians, less investment in 
biosecurity166 and different antimicrobial use patterns.

Though we previously found that interventions that 
restrict antibiotic use in food-producing animals in 
general are effective in reducing AMR,14 the practical 
applications were limited due to the broad nature of the 
research question and analyses. It has been unclear until 
now which specific interventions should or should not 
be recommended to achieve the goal of reducing AMR. 
This substudy provides insight to these policy-relevant 
questions. We show that broad interventions that restrict 
the use of a full spectrum of antibiotic classes are needed. 
We also show, however, that complete bans on all antibi-
otic use are not necessary, as judicious use of antibiotics 
(such as for the treatment of clinical disease in affected 
animals) does not appear to hinder efforts to reduce 
AMR. These findings have directly informed WHO 
Guidelines on use of medically important antimicrobials 
in food-producing animals,20 and are directly relevant to 
public health policy globally.
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