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Abstract: Chronic inflammation and oxidative stress are common and co-substantial pathological
processes accompanying and contributing to cancers. Numerous epidemiological studies have
indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both
the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs
could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review
takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways
involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely
associated with both chronic inflammation and oxidative stress in cancers. The administration of
NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus
in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and
PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and
apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration.
In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through
the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression,
NSAIDs can control CRs through the regulation of many key circadian genes. The administration of
NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts
through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.

Keywords: non-steroidal anti-inflammatory drug; cancer; WNT; inflammation; oxidative stress;
PPARγ

1. Introduction

The complex process of cancer can be defined in terms of three stages: initiation, promotion,
and progression [1–3]. Many cancers are initiated by chronic inflammation, involving numerous
physical, chemical, and biological determinants [4]. Several studies have examined the association
between chronic inflammation and cancer [5,6] and indeed have highlighted the promising role of
anti-inflammatory treatments for cancer [7]. Chronic inflammation is responsible for the different
stages observed in cancers, such as invasion, angiogenesis, proliferation, and metastasis [8–10].
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In parallel, oxidative stress causes DNA damage in cancers [11]. In the past few years, the combined
effect of oxidative stress and chronic inflammation has been the subject of several studies [12]. Reactive
oxygen species production (ROS) is increased by the activation of inflammatory factors [13–15] and
thus also participates in the processes of invasion, proliferation, angiogenesis, and then metastasis [16].
The canonical WNT/β-catenin pathway controls numerous other pathways involved in cancer
development and tissue homeostasis. This pathway is regulated from transcription-level regulations
to post-transcriptional modifications. In cancers, an aberrant WNT/β-catenin pathway is generally
observed and leads to oxidative stress and inflammation [12,17,18].

Several epidemiological studies have shown that non-steroidal anti-inflammatory drugs (NSAIDs)
could have a positive effect on both the prevention of cancer and tumor therapy. Moreover, the
regular administration of aspirin, a NSAID, has been found to be correlated with a reduction in cancer
incidence [19]. A regular therapy of more than 75 mg/day of aspirin diminishes the incidence of
several cancers and tumor metastases, leading to an improvement in survival rates [20]. Regular use of
NSAIDs is associated with a reduced incidence of several cancers, such as breast cancer, lung cancer,
and gliomas [21,22]. Recent data have shown that the use of aspirin is associated with a reduction
in the incidence of death from cancer, as well as in metastatic spread [19,20,23]. Anti-inflammatory
drugs are commonly used in clinical practice due to their analgesic, anti-inflammatory and antipyretic
effects. Furthermore, NSAIDs are often used in conjunction with other drugs in treating a number of
diseases. Numerous hypotheses have postulated that NSAIDs could decrease tumor growth by acting
on both chronic inflammation and oxidative stress [24]. Anti-inflammatory drugs could be used to
target the chronic inflammatory microenvironment of tumors. It is well known that the human body is
capable of self-healing after a short-term inflammatory response, but a long-term chronic inflammation
could lead to initiation of the cancer process. Many studies have shown that inflammatory factors,
including interleukins, TNF-α, nuclear factor-κB (NF-κB) and ROS production-induced inflammation,
infiltrate the inflammatory microenvironment, leading to DNA damage and ultimately the initiation of
the cancer process [25,26].

NSAIDS act as peroxisome proliferator-activated receptor gamma (PPARγ) agonists and could
thus downregulate the aberrant WNT/β-catenin pathway in cancers [22]. PPARγ agonists offer an
interesting therapeutic solution in cancers by acting on both oxidative stress and inflammation [27,28].
Indeed, in several tissues, canonical WNT/β-catenin pathway activation leads to inactivate PPARγ,
while PPARγ activation inhibits the canonical WNT/β-catenin pathway. In cancers, the canonical
WNT/β-catenin pathway is overactivated while PPARγ is decreased [12]. In parallel, the disruption
of circadian rhythms (CRs) has been shown in cancers [29]. This dysregulation upregulates the
canonical WNT/β-catenin pathway, which participates in the cancer process. PPARγ modulates CRs by
regulating some circadian genes, such as Bmal1 (brain and muscle aryl-hydrocarbon receptor nuclear
translocator-like 1) [30], and can directly target the WNT pathway [31]. Numerous evidence points
to the anti-cancer benefits of NSAIDs, even if these benefits remain unclear and poorly understood.
Nevertheless, data from experiments suggest a potential role for NSAIDs in the treatment of cancer
through the regulation of the WNT/β-catenin pathway [32].

This review focuses on the interest of using NSAIDs in cancer therapy through their capacity to
regulate the aberrant canonical WNT/β-catenin pathway and PPARγ, two systems that respond in an
opposite manner.

2. Benefits and Disadvantages of NSAIDs-Based Cancer Prevention

2.1. NSAIDs and Cancer Prevention

A strategy for reducing cancer risks could involve the use of NSAIDs (such as aspirin, naproxen,
or ibuprofen) [20]. Some studies have presented a correlation between the long-term use of aspirin
and a reduction in both the incidence and mortality of cancers, a reduction that can vary from 20% to
75% [20]. The most marked effects have been observed in colorectal cancers, stomach cancers, and
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esophageal adenocarcinoma, while less marked effects have been found in lung, prostate, and breast
cancers [20]. In contrast, little benefit has been observed in pancreatic and endometrial cancers [20].
Numerous molecular mechanisms could explain the link between NSAIDs and cancer prevention,
such as COX inhibition, immune response, PI3K/Akt pathway downregulation, pro-inflammatory
response, and decreased glycolytic signaling in tumor cells [22,33]. COX inhibition is associated with
the reduction in inflammatory mediators including prostaglandins [34]. The activation of COX in
the cancer process leads to the expression of prostaglandin E3 (PGE2), which induces angiogenesis,
tumor growth and metastasis [35]. Furthermore, PGE2 stimulates several signaling pathways, such as
the PI3K/Akt and NF-κB, which induce tumorigenesis [35]. Finally, recent studies have shown that
NSAIDs could also act on other signaling pathways, such as iNOS, TNF-alpha and interleukins [33].

2.2. NSAIDs Lead to Cancer Cell Apoptosis

The use of NSAID (aspirin) in ovarian cancer cells decreases Bcl-2 expression and increases Bax
gene expression [24]. The role of Bcl-2 in cancer is to inhibit apoptosis by changing mitochondria thiol,
affecting mitochondria membrane permeability, and translocating to the mitochondria membrane the
apoptotic protein precursor Apaf-1 to inhibit the role of the latter. The NSAID sulindac diminishes the
expression of both the protein Bcl-XL and the Bcl-XL antagonist of Bax to induce activation of caspase
cascade, which stimulates the apoptosis process [36]. Aspirin can change mitochondrial permeability
to downregulate Bcl-2 expression, block ATP synthesis, and release cytochrome C, which triggers
apoptosis [37]. The NSAID celecoxib activates the p53-upegulated modulator of apoptosis (PUMA) to
increase p53 expression and thus initiate apoptosis [38].

2.3. NSAIDs Inhibit COX-2

NSAIDs are known to protect cells from one step on the path to cancer through the inhibition of
COX [39]. COX presents three subtypes: COX-1, COX-2, and COX-3 (in the nervous system) [40,41].
COX-1 catalyzes the production of prostaglandins (PGs) to maintain physiological functions. COX-2, a
membrane-bound protein, is not expressed in normal cells but overexpressed in inflammation and
tumors [42]. The PG overexpression is induced by COX-2 catalysis during inflammation that leads
to neovascularization to provide nutrition for tumor proliferation [43]. In parallel, in tumors, COX-2
upregulates Bcl-2 expression to initiate the anti-apoptotic process [44], while it modulates MMP-2
expression, which induces tumor invasion and metastasis [45]. Celecoxib, a NSAID and a COX-2
enzyme inhibitor, can downregulate tumor proliferation and can induce apoptosis in a variety of tumor
cells [24]. By directly blocking COX-2 expression, NSAIDS could prevent cancer initiation [24].

2.4. NSAIDs and the Akt Pathway

Colorectal cancer presents epidermal growth factor receptor (EGFR) overexpression and the use
of aspirin can downregulate EGFR [46]. EGFR is involved in several pathophysiological responses
in cancer, such as migration, proliferation, and invasion [47,48]. The Akt pathway is stimulated
by EGFR [49]. An aberrant WNT/β-catenin pathway activates EGFR activity [18]. Furthermore,
NSAIDs dephosphorylate Akt signaling and decrease MMP-2 gene expression to stop invasion and
cell growth [50,51].

2.5. NSAIDs and Their Side Effects

The long-term use of NSAIDs could result in the appearance of side effects such as renal failure and
gastro-intestinal symptoms (bleeding, mucosal lesions, inflammation leading to intestinal strictures
and perforation, peptic ulcers) [52]. The administration of NSAIDs also increases the risk of deep vein
thrombosis and pulmonary embolism, myocardial infarction, and stroke [53–55]. Numerous COX
inhibitors have been withdrawn because of the associated increased risk of thromboembolic events.
Celecoxib remains the only selective COX inhibitor available in the US and Europe [56]. COX inhibitor



Cells 2019, 8, 726 4 of 26

herbal medicines, such as Cordia myxa fruit, would appear to be promising “NSAID-like” agents in that
they inhibit cancer and inflammation [52].

2.6. PPARγ: A Therapeutic Solution Induced by NSAIDs

NSAIDS act as PPARγ agonists by inhibiting COX-2 in gliomas [57] and colon cancer [58].
In parallel, NSAIDs present a COX independent anti-carcinogenic action through the direct control
of the PPARγ expression [59,60]. Several studies have shown that NSAID action is modulated by
PPARγ [61,62]. Studies have shown the potential impact of NSAIDs through the interplay of PPARγ
and the WNT/β-catenin pathway [22].

2.7. PPARγ in Cancers

The ligand-activated transcriptional factor peroxisome proliferator receptor γ (PPARγ) is a
component of the nuclear hormone receptor super family. It makes a heterodimer with retinoid X
receptor (RXR), forming a PPARγ-RXR complex that binds to specific peroxisome proliferator response
element (PPRE) regions in the DNA. It also activates numerous target genes involved in fatty acid
transport (FABP3), cholesterol metabolism (CYP7A1, LXRα, CYP27), glucose homeostasis (PEPCK,
GyK), and lipid catabolism (SCD-1). This dimer acts on other coactivator proteins like PGC-1α, and
leads to specific gene overexpressions [63]. Glucose homeostasis, insulin sensitivity, lipid metabolism,
immune responses, cell fate, and inflammation are regulated by PPARγ activation [64,65]. Circadian
variations in blood pressure and heart rate are controlled by PPARγ expression by its interaction on
Bmal1 [30,66]. PPARγ controls the expression of numerous genes implicated in inflammation, and it
diminishes the activity of inflammation-related transcription factors such as NF-κB [67]. Several studies
have shown decreased PPARγ expression in association with chronic inflammation in cancers [12,68].

2.8. Benefits and Disadvantages of PPAR Gamma Agonists in Cancers

Some positive effects have been observed with the administration of PPAR gamma agonists in
the cancer process. PPAR gamma stimulation could reduce cancer development by the arrest of cell
proliferation and the inhibition of the tumor growth factor [69]. The decrease in cyclin D1, a WNT
target, is associated with the downregulation of cyclin-dependent kinase (CDK) and thus attenuates the
phosphorylation of the retinoblastoma (Rb) protein leading to the arrest of the cell cycle [69]. Moreover,
PPAR gamma agonists could induce apoptosis through intrinsic and extrinsic apoptosis pathways [70].
PPAR gamma activation is associated with the diminution in anti-apoptotic proteins, including Bcl-2,
and the increase in p53 and the Bcl-2-associated death promoter (BAD) protein (B-4) [71]. TNF
pathway activity is decreased by PPAR gamma agonists, leading to apoptosis [72]. In pancreatic cancer,
invasiveness is affected by PPAR gamma activation, leading to the improvement of MMP-2 and the
expression of plasminogen activation inhibitor-1 [72]. PPAR gamma agonists inhibit VEGF, IL-8, COX
and thus suspend tumor angiogenesis [73]. In addition, PPAR gamma agonists reduce glycolytic
pathway activity by altering the nutrient pathway and WNT signaling [74].

However, the use of PPAR gamma agonists does have some side effects, even if new molecules
now have fewer disadvantages [53]. Rosiglitazone has been correlated with an augmentation of
myocardial ischemia [75], but results from other studies remain unclear, showing no significant
increase in cardiovascular events [76]. PPAR gamma agonist therapies appear to be correlated with an
augmented risk of heart failure [77]. Rosiglitazone therapy enhances the risk of fatal and non-fatal heart
failure ([76], and similar results have been observed with pioglitazone therapy [78]. Weight gain, edema
formation, and fluid retention are other side effects of PPAR gamma agonists [79]. The administration
of PPAR gamma agonists could also be associated with increased vascular permeability, leading to the
appearance of peripheral edema [80].
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3. Two Major Mechanisms Involved in Cancers: Chronic Inflammation and Oxidative Stress

3.1. Chronic Inflammation in Cancers

Some studies have presented that chronic inflammation leads to DNA damage and tissue
injury [81]. Chronic inflammation impairs cell homeostasis and metabolism initiating the development
of cancer [82]. Moreover, DNA damage from chronic inflammation provides a point of origin for the
development of malignancy sites [83,84]. The relationship between cancer and chronic inflammation
has been well documented by numerous studies [12,85]. Chronic inflammation stimulates ROS and
reactive nitrogen species (RNS) production, leading to DNA damage [86]. Thus, genomic instabilities
are caused by DNA damage and lead to the cancer process [87]. Several sites of common pathogenic
infections are related to cancer initiation [88,89].

The immune system is also regulated by several inflammatory factors, such as the tumor necrosis
factor α (TNF-α), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor growth
factor-β (TGF-β) [90,91]. TNF-α expression leads to DNA damage and cytokine stimulation (such as
IL-17 [92]), which are responsible for tumor growth, invasion, and angiogenesis [93]. Interleukins IL6
and IL-17 stimulate the signal transducer and activator transcription (STAT) signaling involved in the
cancer process [94].

Chronic inflammation is also responsible for an augmentation in cyclooxygenase 2 (COX-2, a
prostaglandin-endoperoxidase synthase) [95]. Several cytokines (TNF-α, IL-1) activate COX-2 [90].
COX-2 stimulates ROS and RNS production [95,96]. NF-κB stimulates several pro-inflammatory
factors that activate COX-2 and inducible nitric oxide synthase (iNOS) [82]. NF-κB is one of the
major factors implicated in chronic inflammation in the cancer process [82,97]. Numerous studies
have shown that NF-κB stimulates the expression of TNF-α, IL-6, IL-8, STAT3, COX-2, BCL-2 (B-cell
lymphoma 2), metalloproteinases (MMPs), VEGF [82], and thus ROS production [98]. Il-6 and VEGF
stimulate the STAT-3 pathway, which is involved in proliferation, angiogenesis and metastasis [99].
Numerous cancers show an over-activation of the STAT-3 pathway [100]. Furthermore, during chronic
inflammation, iNOS, an enzyme catalyzing nitric oxide (NO), is stimulated [101], resulting in an
increase in p53 gene mutations [90].

3.2. Oxidative Stress in Cancers

Oxidative stress is considered as an imbalance between the production and elimination of ROS and
RNS [11,102]. Cell damage from oxidation and nitration of macromolecules enhances ROS production
by activation of the NADPH oxidase (NOX) enzyme. This phenomenon leads to the reduction of
the transfer of electrons through the mitochondrial membrane to reduce the molecular oxidative
metabolism. ROS production has a key role in numerous signaling pathways that are involved in
changes in the microenvironment [103]. Thus, dysfunctions in the respiratory chain of mitochondria
are responsible for ROS production [104]. The inflammation observed in sites where there is damage
involves the uptake of oxygen leading to the release of ROS and its accumulation [8,105]. NF-κB, STAT,
hypoxia-inducible factors (HIF) and both activator protein-1 (AP-1) play a major role in stimulating
this process [82]. Moreover, in a vicious circle, COX-2, TNF-α, IL-6, and iNOS are induced by oxidative
stress [96]. NADPH-oxidase (NOX) is activated by chronic inflammation and increases oxidative stress,
resulting in changes in nuclear signaling [106].

3.3. Interaction between Oxidative Stress and Inflammation

Numerous studies have shown that the phenomenon by which oxidative stress can enhance
chronic inflammation, which in a negative feedback could lead to cancers [11] (Figure 1). The imbalance
caused by oxidative stress leads to damage in the signaling in cells [102]. ROS have a main role both
upstream and downstream of the NF-κB and TNF-α signaling pathways, which are the main mediators
of the inflammation. The hydroxyl radical is the most harmful of all the ROS. A vicious circle is observed
between ROS and these pathways. ROS are formed by the NOX system. Moreover, the proteins
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modified by ROS could result in initiation of the auto-immune response to stimulate TNF-α and thus
NOX [107]. Nuclear factor erythroid-2 related factor 2 (Nrf2) is mainly associated with oxidative stress
in inflammation [11]. Nrf2 is a transcription factor which binds with the antioxidant response element
(ARE) [108]. The protective role of Nrf2 in cancer relates to its capacity to reduce inflammation and
oxidative stress [109]. Several studies have presented that Nrf2 can have an anti-inflammatory role
by regulating MAPK (mitogen-activated protein kinases), NF-κB, and PI3K pathways [110]. Thus,
Nrf2 may play a major role in reducing oxidative damage [111]. Evidence suggests that mitochondrial
dysregulation has a significant role in the cancer process [11].

Figure 1. Relationship between ROS and chronic inflammation. The imbalance caused by oxidative
stress leads to damage in the signaling in cells. ROS have a key role both upstream and downstream
of the NF-κB and TNF-α signaling pathways, which are the main mediators of the inflammation. A
vicious circle is observed between ROS and these pathways. ROS are generated by the NOX system.
Proteins modified by ROS could result in activation of the auto-immune response to stimulate TNF-α
and thus NOX. The dysregulation of these targets leads to the activation of several pathways involved
in cancer initiation.

4. The WNT/β-Catenin Pathway

4.1. The WNT Pathway, Chronic Inflammation, and Oxidative Stress

Many studies have observed that the canonical WNT/β-catenin pathway increases the
inflammatory process [81]. Furthermore, infection pathogens activate the WNT/β-catenin pathway,
thereby enhancing inflammation [112]. ROS, stimulated by NOX, activates the canonical WNT/β-catenin
pathway through the oxidization and inhibition of the nucleoredoxin (a redox-sensitive regulator),
thus stimulating the cancer process [82]. ROS production stimulates c-Myc [113], STAT [114] and
phosphatidylinositol-3-kinase (PI3K/Akt) [115], and the inhibition of PPARγ [116]. ROS production
stimulates Akt signaling by inhibiting the phosphatase and tensin homolog deleted from chromosome
(PTEN) [117,118]. The canonical WNT/β-catenin pathway may thus have a key role in the cancer
process by stimulating both oxidative stress and inflammation [12]. The WNT pathway is the target of
several inhibitors in therapeutic strategies to counteract tumorigenesis, such as OMP-54F28 [119–121],
frizzled antibodies [122], tankyrase inhibitors [123], CBP inhibitors [124], and PORCN inhibitors [125].
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4.2. The Sanonical WNT/β-Catenin Pathway, a Major Factor in Cancer Development

The name WNT is derived from wingless drosophila melanogaster and its mouse homolog
Int. The WNT pathway is implicated in several pathways and regulating signaling pathways, like
embryogenesis, cell proliferation, migration and polarity, apoptosis, and organogenesis [126]. During
the adult stage, the WNT pathway is non-activated or silent. However, in numerous mechanisms
and pathologies, such as inflammatory, metabolic and neurological disorders, and cancers, the WNT
pathway may become dysregulated [127]. Some studies have utilized the WNT pathway for the cell
therapy-bioengineering processes [128].

WNT ligands are lipoproteins that stimulate specific co-receptors (Figure 2). These WNT ligands
stimulate the canonical WNT pathway by activation of β-catenin. WNT ligands stimulate frizzled (FZD)
receptors and low-density lipoprotein receptor-related protein 5 and 6 (LRP 5/6) [129,130]. The complex
formed by these extracellular WNT ligands and FZD/LRP5/6 activates the intracellular disheveled
(DSH). This stimulation leads to inactivate the destruction complex of β-catenin in the cytoplasm.
B-catenin accumulates in the cytoplasm and then migrates into the nucleus. Nuclear β-catenin links to
T-Cell factor/lymphoid enhancer factor (TCF/LEF) to activate target gene transcriptors, such as c-Myc
and cyclin D1 [131].

Figure 2. The canonical WNT/β-catenin pathway. WNT (−). Under physiologic circumstances, the
cytoplasmic β-catenin is linked to its destruction complex, consisting of APC, AXIN, and GSK-3β. After
CK-1 phosphorylates on Ser45 residue, β-catenin is phosphorylated on Thr41, Ser37, and Ser33 residues
by GSK-3β. Thus, phosphorylated β-catenin is destroyed into the proteasome. Then, cytoplasmic level
of β-catenin is kept low in the non-presence of WNT ligands. If β-catenin is not accumulated in the
nucleus, the TCF/LEF complex does not stimulate the target genes. DKK1 inhibits the WNT/β-catenin
pathway through the bind to WNT ligands or LRP5/6. WNT (+). When WNT ligands activate both FZD
and LRP5/6, DSH is stimulated and phosphorylated by FZD. Phosphorylated DSH in turn activates
AXIN, which comes off β-catenin destruction complex. Thus, β-catenin escapes from phosphorylation
and then accumulates in the cytoplasm. The accumulated cytosolic β-catenin moves into the nucleus,
where it interacts with TCF/LEF and stimulates the transcription of target genes.

During the “off-state” of the WNT/β-catenin pathway, WNT ligands do not interact with FZD
and LRP 5/6. The β-catenin destruction complex, composed by AXIN, APC (adenomatous polyposis
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coli) and GSK-3β (glycogen synthase kinase 3β), phosphorylates β-catenin. Then, phosphorylated
β-catenin is destroyed into the proteasome.

Many WNT inhibitors downregulate the canonical WNT/β-catenin pathway. GSK-3β is the main
inhibitor of the WNT pathway. GSK-3β is a neuron-specific intracellular serine-threonine kinase
that controls numerous signaling pathways like inflammation, neuronal polarity, and cell membrane
signaling [132–134]. GSK-3β downregulates β-catenin cytosolic stabilization and nuclear migration.
Dickkopf (DKK) and soluble frizzled-related proteins (SFRP) are also WNT inhibitors and interact
with FZD, LRP5, and LRP6 [135–137].

4.3. WNT and Inflammation in Cancer

Positive interplay between WNT/β-catenin and NF-κB has been observed [138]. The activation of
the WNT/β-catenin leads to stimulate IκB-α (nuclear factor of kappa light polypeptide gene enhancer
in B-cells inhibitor, alpha) degradation and then NF-κB stimulation [139]. Stimulation of the target
gene, CRD-BP (coding region determinant-binding protein, an RNA-binding protein), by activated
β-catenin stabilizes mRNA of βTrCP (B-transducin repeat-containing protein) [140]. In colon cancer,
the activation of both βTrCP and CRD-BP is correlated with the stimulation of the β-catenin and
NF-κB, leading to proliferation and metastasis [140,141]. In breast cancer, TLR3 activation stimulates
β-catenin, leading to overstimulation of the NF-κB pathway [142]. Moreover, the β-catenin and NF-κB
pathways stimulate each other in diffuse large B-cell lymphomas [143]. The WNT/β-catenin pathway
activates COX-2, which then enhances the inflammatory response [144]. E-cadherin and GSK-3β are
downregulated in melanoma cells by β-catenin pathway [145]. Concomitant GSK-3β and E-cadherin
inhibition with cytoplasmic accumulation of β-catenin leads to NF-κB-dependent iNOS expression
in hepatic cells [146]. The WNT/β-catenin signaling stimulates its target TNFRSF19 in colon cancer,
that leads to activation of NF-κB signaling [147]. Nevertheless, the observed synergistic interaction
between β-catenin and NF-κB depends on the β-catenin-TCF/LEF link [148].

NF-κB overexpression inactivates GSK-3β whereas it stimulates β-catenin signaling [149,150].
GSK-3β activation leads to the downregulation of TNF-α-induced NF-κB activation in carcinoma
cells [149]. IκB is stabilized by GSK-3β activation, resulting in the downregulation of the NF-κB
pathway [150]. NF-κB signaling can modulate the WNT/β-catenin pathway by IKKα (IκB Kinase-α)
use [151] and RelA [152]. IKKα stimulates β-catenin signaling while IKKβ inhibits β-catenin
pathway [153]. IKKα activates the β-catenin/TCF/LEF link [154]. The stimulation of IKKα leads to the
cytoplasmic accumulation of β-catenin resulting in GSK3-β and APC inactivation [151].

4.4. WNT and Oxidative Stress in Cancer

The over-activated PI3K/Akt pathway observed in the cancer process is stimulated by ROS
production [155,156]. PTEN is the main inhibitor of the PI3K/Akt pathway [118]. NADPH oxidase
and superoxide dismutase oxidize PTEN to inhibit it. Downregulation of PTEN leads to an increase
in Akt activity, which enhances the phosphorylation of GSK-3β. Thus, GSK-3β inhibited by Akt
does not bind β-catenin. Inactivation of PTEN stimulates Akt and β-catenin [157]. Moreover, ROS
production participates in the stabilization of HIF-1α thereby activating glycolytic enzymes [68,155].
The WNT/β-catenin pathway stimulates HIF-1α by activating the PI3K/Akt pathway [18]. Although
this mechanism remains unclear, recent studies have presented that ROS production stimulates the
WNT/β-catenin pathway [158]. In parallel, Akt [159] and c-Myc [160] enhance ROS production.
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5. Interplay between NSAIDs - PPARγ and the WNT/β-Catenin Pathway in Cancers

5.1. PPAR Gamma and the WNT/β-Catenin Pathway

The role of PPARγ agonists remains unclear in cancer cells, even if their role is well understood in
the regulation of differentiation and stemness programs [161]. In physiological cells, PPARγ inhibits
tumorigenesis and WNT signaling through the target of phosphorylated β-catenin at the proteasome
through a process that involves its catenin-binding domain within PPARγ. Nevertheless, oncogenic
β-catenin counteracts proteasomal degradation by downregulating PPARγ expression, that needs
its TCF/LEF binding domain [162]. In adipocyte cells, PPARγ leads to increased differentiation and
a reduction in proliferation by targeting the WNT/β-catenin pathway. PPARγ binds with GSK3-β
to activate the differentiation factor C/EBPα, leading to adiponectin production [74,163]. PPARγ
stimulation downregulatesβ-catenin at both the mRNA and protein levels to induce differentiation [164].
In metastatic prostate cancer LnCaP cells, PPARγ inhibits the WNT pathway by affecting phosphorylated
β-catenin in the proteasome [162,165]. In colorectal and gastric cancer cells, PPARγ inhibits β-catenin
signaling, cytoplasmic localization and target effectors, leading to the control of numerous genes,
including telomerase reverse transcriptase and Sox9, both of which are implicated in cell differentiation
and the survival phenomenon [166–168]. PPARγ agonists, by decreasing the WNT/β-catenin pathway,
may be utilized in association with other drugs, including inhibitors of tyrosine kinases [169], Akt [170],
and MAPK cascades, to maximize the anti-tumor and pro-differentiating effect.

5.2. NSAIDs and the WNT/β-Catenin Pathway

NSAIDs downregulate the activity of COX-2 and thereby inhibit the synthesis of prostaglandins
(PGE2) and then the WNT pathway [171]. Recent studies have observed that NSAIDS can have an
anti-tumor effect, having revealed a chemo preventive effect against colon cancer [172–174]. The possible
cellular pathway underlying the chemo preventive effect of NSAIDs involves the induction of cell-cycle
arrest, apoptosis, and angiogenesis inhibition [173,174].

Several studies have also shown that NSAIDs can inhibit the canonical WNT/β-catenin
pathway [22]. Both aspirin and indomethacin downregulate the transcriptional activity of
β-catenin/TCF-responsive genes [175]. NSAIDs diminishes nuclear β-catenin levels and leads to
the degradation of β-catenin [176]. The NSAIDs, including sulindac, exisulind, and celecoxib, inhibit
β-catenin levels and then decrease the transcriptional activity of the β-catenin/TCF/LEF complex [177].
Celecoxib directly decreases cancer cell growth by downregulating the expression of the WNT/β-catenin
signaling pathway [178] and by inducing the degradation of the TCF7L2 [179]. Sulindac also inhibits
the WNT/β-catenin pathway by downregulating nuclear β-catenin localization and β-catenin/TCF
target gene transcription [180]. Colon cancer therapy with celecoxib is associated with an inhibition
of the canonical WNT/β-catenin pathway [181,182]. Celecoxib inhibits the activity of the complex
TCF/LEF and thus the activity of cyclin D1, suggesting that this component inhibits the expression
of WNT/β-catenin target genes [182]. Aspirin decreases glioma cell proliferation and invasion by
inhibiting β-catenin/TCF transcription [183]. It also stops glioma cells cycle at the G0/G1 phase and
inhibits invasion and tumor growth by downregulating β-catenin/TCF activity [183,184].

6. Circadian clock: An Interesting Pathway in Cancer Development

6.1. Circadian Clock

Numerous biological phenomena in the body are regulated by the circadian “clock” (circadian
locomotors output cycles kaput). The circadian clock is in the hypothalamic suprachiasmatic nucleus
(SCN). CRs are endogenous and entrainable free-running periods that last approximately 24 h.
Numerous transcription factors can regulate CRs. These are called circadian locomotor output cycles
kaput (Clock), brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (Bmal1), Period
1 (Per1), Period 2 (Per2), Period 3 (Per3), and Cryptochrome (Cry 1 and Cry 2) [185,186] (Figure 3).
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These factors are controlled by positive and negative self-regulation mediated by CRs [187,188]. Clock
and Bmal1 heterodimerize and thus enhance the transcription of Per1, Per2, Cry1, and Cry2 [189]. The
Per/Cry heterodimer can downregulate its stimulation through negative feedback. It migrates back to
the nucleus to directly inhibit the Clock/Bmal1 complex and then repress its own transcription [189].
The Clock/Bmal1 heterodimer also stimulates the transcription of retinoic acid-related orphan nuclear
receptors, Rev-Erbs, and retinoid-related orphan receptors (RORs). By a positive feedback, RORs
stimulate Bmal1 transcription, while Rev-Erbs inhibit their transcription by a negative feedback [189].

Figure 3. Circadian clock genes. The clock consists of a stimulatory circle, with the Bmal1/Clock
heterodimer activating the transcription of Per and Cry genes, and an inhibitory feedback circle with
the Per/Cry heterodimer translocating to the nucleus and repressing the transcription of the Clock and
Bmal1 genes. An additional circle involves the RORs and RevErbs factors with a positive feedback by
ROR and a negative feedback by RevErbs.

6.2. Circadian Clock Disruption in Cancers

Epidemiological and fundamental evidence supports the idea of linking circadian disruption with
cancer [29]. DNA repair, apoptosis and cell cycle regulation follow circadian rhythms in humans [190].
Disruption of the CRs is correlated with dysregulation in cell proliferation and thus the initiation
of cancer [191]. Clock/Bmal1, Per1 and Per2 maintain the rhythmic pattern of cell proliferation and
repair of DNA damage [192,193]. Bmal1 overexpression has been observed in cell growth of NIH
3T3 cells [194]. Metastatic cancers present high levels of Clock or Bmal1 genes [195,196]. Clock
overexpression is often associated with cell proliferation in colorectal carcinoma cells [197]. Bmal1
upregulation is found in certain types of pleural mesothelioma while Bmal1 knockdown is associated
with reduced cell growth and induced apoptosis [198]. Bmal1 is considered an attractive target in
leukemia cells [199].

7. Circadian Clock Disruption Enhances Both Inflammation and Oxidative Stress

7.1. Circadian Clock and Inflammation

Melatonin has been used in the treatment of chronic bowel inflammation resulting in decreasing
inflammation through inhibition of COX-2 and iNOS [200]. Moreover, melatonin can act on iNOS and
COX-2 by inhibiting p52 acetylation and transactivation [201]. Melatonin inhibits NF-κB and COX-2 in
murine macrophage-like cells [202]. An anti-inflammatory response of melatonin has been observed
through a decrease in NF-κB activity [203]. Melatonin downregulates the nuclear translocation of
NF-κB, leading to an enhancement of anti-cancer effects in lung cancer [204].
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7.2. Circadian Clock and Oxidative Stress

Recent studies have indicated that the hypoxic response in cancer could be directly controlled
by the circadian rhythm Clock/Bmal1 [205]. In a similar way, blood oxygen levels present daily
rhythms influenced by clock genes [206]. Metabolic dysregulation in cancers may result in disruption
of Bmal1 in a hypoxic-dependent way [207]. Considerable evidence connects circadian disruption
with hormone-dependent diseases, like breast and prostate cancers. One of the main factors is
melatonin, a hormone produced by the pineal gland in a circadian manner to control sleep [208]. In the
mitochondria, melatonin is linked to the regulation of oxidative stress [209]. Melatonin increases
glutathione peroxidase and glutathione reductase activities [210]. Moreover, melatonin directly
regulates the mitochondrial respiratory chain, which modulates ATP production [209]. Furthermore,
alteration of melatonin secretion by sleep disruption could enhance ROS and RNS production [211].

8. WNT, NSAIDs, and PPAR Gamma with Circadian Clocks

8.1. The WNT/β-Catenin Pathway and the Circadian Clock

The WNT/β-catenin pathway is the downstream target of the RORs control factors and has several
putative Bmal1 clock-binding sites within its promoter [212] (Figure 4). Through such relationships,
circadian genes can control the progression of the cell cycle by the WNT signaling [213]. The WNT
pathway can be inhibited by a Bmal1 knockdown [214]. Levels of WNT-related genes in wild-type
mice are higher than those observed in Bmal1 knockdown mice [215,216]. Cell proliferation and cell
cycle progression are controlled by Bmal1 through the activation of the canonical WNT/β-catenin
pathway [217]. Bmal1 enhances β-catenin transcription, inhibits the degradation of β-catenin and
downregulates GSK-3β activity [218]. Per2 degradation induced by β-catenin increases circadian
disruption in the intestinal mucosa of ApcMin/+ mice [219].

Figure 4. Interactions between PPARγ, WNT pathway and circadian rhythms in cancer.
Dysregulation of melatonin and nocturin decreases the expression of PPARγ in cancer. Decreased
PPARγ dysregulates the Bmal1/Clock heterodimer. Decreased PPARγ expression directly activates the
formation of the heterodimer Bmal1/Clock and β-catenin cytosolic accumulation but inhibits the activity
of GSK3, the main inhibitor of the WNT/β-catenin pathway. Bmal1/Clock knockout also decreases
GSK3 activity and activates the WNT/β-catenin pathway and its downstream gene c-Myc through the
stimulation of the heterodimer Per/Cry. The activation of the WNT/β-catenin pathway by the cytosolic
accumulation of the β-catenin and the activation of c-Myc lead to cancer initiation (oxidative stress and
chronic inflammation).

In physiological circumstances, the core circadian genes work in accurate feedback circles and
keep the molecular clockworks in the SCN. They permit the regulation of peripheral clocks [187,188].
Per1 and Per2 maintain cell circadian rhythms and control cell-related gene activity, including c-Myc,
so as to sustain the physiologic cell cycle [220,221]. mRNAs and proteins levels of circadian genes
oscillate throughout the 24-hour period [187].
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8.2. NSAIDs and the Circadian Clock

Few studies have investigated the role of NSAIDs regarding the circadian clock. Nevertheless,
Kowanko et al. observed that pain reported in rheumatoid arthritis after a twice a day therapy by
flurbiprofen may be more efficient than four times daily flurbiprogen, and that regimen without an
evening dose was the least efficient of three twice-daily therapies tested. Moreover, their results
showed that morning stiffness in rheumatoid arthritis was not only the result of nocturnal inactivity
but also a response to an appropriately timed medication [222]. Moreover, patients with indomethacin
and ketoprofen have shown a reduction in neurological and gastro-intestinal side effects when these
products are ingested once-daily in the evening rather than in the morning [223].

8.3. PPARγ and the Circadian Clock

PPARγ acts directly with the core clock genes and presents diurnal variations in liver and blood
vessels [30,224] (Figure 4). In mice, dysregulation in diurnal rhythms are induced by the inhibition of
PPARγ [225]. PPARγ agonists regulate Bmal1 and thus the heterodimer Clock/Bmal1 formation [30,226],
and can interact with Rev-Erb [227]. Downregulation of the clock-controlled gene Nocturin inhibits
PPARγ oscillations in the liver of mice fed on a high-fat diet. In physiological circumstances, nocturin
interacts with PPARγ to enhance its transcriptional activity [228]. PPARγ diminution alters the
circadian function of 15-Deoxy-D 12,14-prostaglandin J2 (15-PGJ2) [225]. The associate of PPARγ, RXR,
interacts with Clock protein in a ligand-dependent manner and then blocks Clock/Bmal1 heterodimer
formation and transcriptional activity [229]. PPARγ binds to the mammalian clock to control metabolic
metabolism [229]. Circadian metabolism is controlled by PPARγ in a direct manner [225]. Retinoic
acid receptor-related orphan receptor gamma t (ROR gammat) is considered a major transcriptional
factor for Th17 cell differentiation [230,231]. Th17 cells represent another subset of CD4+ T cells and
selectively produce interleukin (IL)-17. PPARγ can influence the function of Th cell clones [232].
PPARγ agonists decrease Th17 differentiation by inhibiting ROR gammat induction [233–235]. CD4+ T
cells fail to express ROR gammat under the action of PPARγ agonists [233].

9. Relevance of “Chronotherapy” in Cancer Clinical Therapy

The numerous interactions between clock dysregulation and cancer underline the interest
of circadian therapeutic actions [29]. The temporal peak of cell activity could be targeted by
pharmacological drugs used at an optimal time of day. Few studies have shown the potential
role of WNT and PPAR gamma with circadian clocks in cancer development. Nevertheless, interest
in the association between PPAR gamma agonists and melatonin in cancer therapy is not new [236].
In cultured cells, the addition of melatonin with a PPAR gamma agonist (such as troglitazone) is
associated with a significant reduction in cell numbers [237]. Moreover, other studies have shown a
potent apoptotic effect of a combination of melatonin with PPAR gamma agonists in breast cancer
cells [238,239]. In parallel, recent studies have shown that melatonin could inhibit WNT pathway
expression [240,241].

In mouse ovaries, melatonin administration protects against ROS production and mitochondrial
damage [242]. In colorectal cancer, the combination of 5-fluorouracil and melatonin is correlated with
the downregulation of cell proliferation by suppressing of the PI3K/Akt pathway, NF-κB pathway and
nitric oxide synthase signaling [243]. Moreover, melatonin inhibits GSK3-β to stop invasion in breast
cancer cells [244]. The association between carcinogenesis and the circadian clock remains complex
and difficult to unravel. Strong evidence shows the involvement of the circadian clock in cancer
development. Numerous molecular pathways are dynamically circadian, such as the WNT/β-catenin
pathway and PPAR gamma. Thus, the time at which these pathways are targeted may be critical.
NSAIDs, by acting as PPAR gamma agonists and focusing on the WNT/β-catenin pathway, should be
utilized in concordance with the circadian clock genes, and therefore administered at the optimum
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time of day. Further studies should focus on the importance of the day/night cycle in cancer therapy
and the circadian profiles of cancer cells.

10. Conclusions

Chronic inflammation, oxidative stress and the disruption of circadian rhythms are important
factors in the cancer process and are enhanced by overstimulation of the WNT/β-catenin pathway.
In cancers, the WNT/β-catenin pathway is generally activated whereas PPARγ is decreased. These
two signaling pathways act in opposing manners and this could explain their unidirectional profile
observed in cancers. The use of NSAIDs, which act as PPARγ agonists, could be interesting in the
reduction of both chronic inflammation and oxidative stress and in the control of circadian rhythms
by inhibiting the WNT/β-catenin pathway (Figure 5). Due to the considerable impact of cancers
on mortality and morbidity rates worldwide, it would appear of the utmost importance to better
understand the action of NSAIDs in cancers (Table 1), and particularly their role in the inhibition of the
major signaling system known as the WNT/β-catenin pathway.

Figure 5. Beneficial role of NSAIDs in cancer process. (1) NSAIDs reduce oxidative stress; (2) NSAIDs
reduce chronic inflammation; (3) NSAIDs inhibit Akt pathway activity; (4) NSAIDs downregulate WNT
pathway and its target genes, inhibit Bcl-2, activate PUMA to stimulate p53 and activate GSK-3beta;
(5) NSAIDs inhibit NF-κB and COX-2.
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Table 1. Differential effects of NSAIDs in tumors.

NSAIDs Target Target Function Interaction References

Aspirin PGE2 Immune system
attenuation

Inhibition of PGE2
synthesis [245]

Aspirin Platelets Reduction cell activity Inhibition of COX [246]

Aspirin Genetic mutations Tumorigenesis inhibition Downregulation of gene
mutation accumulation [247]

Aspirin WNT pathway Inhibition of cell
proliferation and invasion

Inhibition of β-catenin
accumulation [183]

Aspirin WNT pathway Tumor suppressor Inhibition of COX [39]

Aspirin WNT pathway Arrest G0/G1 phase Inhibition of
β-catenin/TCF [183,184]

Indomethacin T-cell therapy Tumorigenesis inhibition Downregulation of cellular
drug resistance [246]

Sulindac WNT pathway Inhibition of invasion and
cell growth

Phosphorylation of Akt
signaling [50,51]

Aspirin and
indomethacin WNT pathway Tumorigenesis inhibition Inhibition of β-catenin and

TCF/LEF [175]

celecoxib WNT pathway Inhibition cancer cell
growth Inhibition of WNT [178]

celecoxib WNT pathway Inhibition cancer cell
growth Inhibition of TCF/LEF [179]

Sulindac WNT pathway Tumorigenesis inhibition Inhibition of β-catenin
accumulation [180]

celecoxib WNT pathway Tumorigenesis inhibition Inhibition of cyclin D1 [181,182]

PGE2: prostaglandin E2, COX: cyclooxygenase, TCF/LEF: T-cell factor/lymphoid enhancer-binding factor.
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Abbreviations

APC Adenomatous polyposis coli
βTrCP Beta-transducin repeat-containing protein
Bmal1 Brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1
Clock Circadian locomotor output cycles kaput
CRD-BP Coding Region Determinant-Binding Protein, an RNA-binding protein
Cry Cryptochrome
CRs circadian rhythms
CK1 casein kinase 1
COX-2 Cyclooxygenase-2
FZD Frizzled
GSK-3β Glycogen synthase kinase-3β
IκB-α nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
LRP 5/6 Low-density lipoprotein receptor-related protein 5/6
MAPK Mitogen-activated protein kinases
NF-κB nuclear factor κB
NOX NADPH oxidase
Per Period
NSAID nonsteroidal anti-inflammatory drug
PPARγ Peroxisome proliferator-activated receptor gamma
PI3K-Akt Phosphatidylinositol 3-kinase-protein kinase B
RORs retinoid-related orphan receptors
ROS reactive oxygen species
TCF/LEF T-cell factor/lymphoid enhancer factor
TNF-α tumor necrosis factor alpha
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