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Abstract: The extension of wood to a wider field has been restrained significantly due to its di-
mensional instability that arises from variation in moisture content, which in turn brings about the
risk of cracking, warping or distortion. This work proposed a novel strategy to stabilize wood by
means of the in situ construction of a thermotropic shape memory polymer (SMP) inside wood. The
cross-linked copolymer network (PMP) with good shape memory behavior was first investigated
based on the reaction of methyl methacrylate (MMA) and polyethylene glycol diacrylate (PEGDA) in
a water/ethanol solution; then, the PMP was constructed inside wood via vacuum-pressure impreg-
nation and in situ polymerization. The weight gain, volume increment and morphology observations
clearly revealed that the PMP was mainly present in wood cell lumens, cell walls and pits. The
presence of PMP significantly enhanced the dimensional stability of and reduced the cracks in wood.
The desirable shape recovery abilities of PMP under heating-cooling cycles were considered to be the
main reasons for wood dimensional stabilization, because it could counteract the internal stress or
retard the shrinkage of cell walls once water was evaporated from the wood. This study provided a
novel and reliable approach for wood modification.

Keywords: shape memory polymer; wood; in situ construction; dimension stability; anti-cracking

1. Introduction

Wood is one of the most abundant renewable materials and is widely used in con-
struction, decoration and furniture applications [1–3]. However, as a hygroscopic material,
wood is sensitive to water, fungi, insects, etc., which restrains its wider applications [4,5].
The variation in moisture content causes wood to swell and shrink in various degrees,
resulting in deformation and cracking [6,7]. Among the effects of these various defects,
cracking is the most notable, as it is related to the mechanical performance and decay
resistance of wood, raising safety concerns. To prolong the service life of wood, enhancing
its dimensional stability by means of modification holds many potential prospects [8,9].

Different methods, including thermal, physical and chemical treatment, have been
employed to improve the dimensional stability of wood. Among them, chemical treatment
has been proven to be an efficient way. Various chemical reagents have been utilized,
such as vinyl monomers, formaldehyde-based reagents, epoxy resins, furfuryl alcohol,
ε-caprolactone, polyester, polyethylene glycol (PEG), etc. [10–14]. Most of these chemicals
are designed to block the cell cavity or swell the cell wall without environmental responses.
However, due to the flexible changes in environmental factors, it would be more interesting
and meaningful to impregnate wood with intelligent responsive materials [15,16].
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Shape memory polymer (SMP), a type of smart material, can sense and respond to
environmental changes (such as temperature, light, electricity, pH, etc.) by adjusting its state
to a predetermined shape [17,18]. The thermally-induced SMP possesses the advantages of
easy processibility, good shape memory performance and tunable thermal and mechanical
properties, and is the most extensively studied type of SMP [19]. It is generally composed
of a stationary and reversible phase and can soften and harden reversibly at a specific
temperature. The function of the stationary phase is to memorize and restore the initial
form, while the reversible phase completes the deformation and fixation [20,21]. When
the environmental temperature exceeds its transition temperature (Ttrans), i.e., the glass
transition (Tg) or melting temperature (Tm), the SMP becomes soft and deforms under
external force. The shape is unchangeable after cooling, and the stress of the material is
“frozen”. When the deformed polymer is heated above the transition temperature again,
the internal stress in the material is released, driving the malformed polymer back to its
original shape [22–24].

Many kinds of SMPs based on thermoplastic, thermosetting polymers or blends, such
as poly(methyl methacrylate) (PMMA), poly(ε-caprolactone) (PCL), polyurethane, epoxy
resins, etc., have been reported in literature [25–28]. They are widely employed in various
fields involving aerospace, biomedicine, textile, household supplies, etc. Nevertheless,
to the best of our knowledge, the effect of SMP on solid wood stabilization has not been
reported yet thus far. For wood used outdoors, it is of great significance to reveal the
response mechanism of SMP on the dimensional stability and durability of solid wood
under the combined action of moisture content and temperature.

To construct SMP with the desired shape memory behavior inside wood, low molecular
weight monomers or polymers should be selected and impregnated into wood to achieve
good penetration and even distribution [29,30]. Polyethylene glycol (PEG), with a lower
molecular weight, easily enters into cell walls and swells them, thereby improving the
dimensional stability of the wood; however, it is leachable under moisture conditions [31,32].
The functional vinyl polyethylene glycol (PEGDA), as reported by Dong et al., can graft
to previously acrylated poplar wood (performed via the reaction between methacryloyl
chloride and the hydroxyl groups of the cell wall) via copolymerization to improve its
durability [33]. In addition, Yakacki et al. reported on shape-memory networks with
tailored thermomechanics that were created via the compolymerization of poly(ethylene
glycol) dimethacrylate (PEGDMA) and methyl methacrylate (MMA) [34]. Considering
the cracks caused by fast moisture loss under high temperature, this study aimed to
establish a thermo-induced SMP with a low transition temperature and high shape memory
recovery ratio based on the reaction of methyl methacrylate (MMA) and polyethylene glycol
diacrylate (PEGDA) in a water/ethanol solution. Such a reactive solution can readily enter
into the porous structures of wood via vacuum-pressure impregnation and polymerize to
form SMP in wood, enhancing its dimensional stability.

2. Materials and Methods
2.1. Materials

Methyl methacrylate (MMA) and poly(ethylene glycol) diacrylate (PEGDA,
Mn = 400 g/mol) were purchased from Aladdin Co., Ltd. (Shanghai, China). Ethylene
glycol dimethyl acrylate (EGDMA) was provided by Macklin Co., Ltd. (Shanghai, China).
Ammonium persulfate (APS) and ethanol were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Poplar (Populus tomentosa), obtained from a fast-
growing plantation located in Shanxi Province, China, was processed into standard radial,
tangential and longitudinal sections with dimensions of 20 mm × 20 mm × 20 mm for the
dimensional stability test. All the wood blocks were dried using the following procedure:
60 ◦C for 2 h, 80 ◦C for 2 h and 105 ◦C for 4 h.
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2.2. Synthesis and Performance Evaluation of MMA/PEGDA Copolymer (PMP)

The cross-linked MMA/PEGDA copolymer (simplified as PMP) was synthesized
using the following procedure. Firstly, a mixture of water and ethanol was prepared as
the solvent at a volume ratio of 1:1. Then, the monomers MMA and PEGDA at a weight
percent of 28% were dissolved in the prepared solvent. Subsequently, 2% APS and 4%
EGDMA, calculated as the total mass ratio of monomers, were added as the initiator and
crosslinker, respectively. After stirring vigorously, a homogeneous and transparent mixture
was obtained which was then heated to 80 ◦C and reacted at the same temperature for 1 h.
The obtained polymer sample was dried at 60 ◦C for 24 h in a vacuum oven to completely
remove the solvents. The residual monomers were removed via extraction with ethanol.
For comparison, the homopolymers of PMMA and P(PEGDA) were also prepared under
the same conditions. To confirm the cross-linking reaction in the final PMP, tetrahydrofuran
(THF) and 10 wt.% potassium hydroxide ethanol solution (simplified as KOH solution)
were selected to remove the homopolymers (P(PEGDA) and PMMA) successively.

The water absorption capacity (Pw) and volume swelling capacity (Pv) of PMP were
tested on three samples with dimensions of 10 mm × 10 mm × 2 mm. Three cycles of
water immersion and oven-drying were conducted. In every cycle, the samples were
soaked in distilled water at room temperature (around 25 ◦C) for 24 h, followed by oven-
drying at 60 ◦C to a constant weight [35,36]. The volume (V, cm3) and mass (M, g)
of the samples were measured in each cycle. Pw and Pv were calculated according to
Equations (1) and (2), respectively.

Pw =
M1n −M0n

M0n
× 100% (1)

Pv =
V1n −V0n

V0n
× 100% (2)

In the above equations, M0n and V0n represent the mass and volume of the samples
after oven-drying, while M1n and V1n denote the mass and volume of the samples after
24 h of water immersion in the nth cycle, n = 1, 2, 3.

The shape memory performance test of PMP was conducted on specimens with
dimensions of 50 mm × 5 mm × 2 mm. Firstly, the flat specimens were heated to 60 ◦C,
then processed into an L-shape by hand while maintaining the temperature. An L-shape
with an angle of 90 degrees was ensured by a ruler and protractor. Subsequently, the
specimen was transferred into ice water (0 ◦C) for 10 s to obtain a temporarily fixed L-shape.
After that, some of the specimens were placed at ambient temperature for 24 h to record the
final angle A1 and calculate the shape fixation rate. Other L-shape specimens were taken
to investigate the shape recovery behavior. The evolution of the L-shaped recovery angle
A2 was measured at 60 ◦C at intervals of 45 s. A total of 225 s of recovery behavior was
recorded for a cycle. The shape memory recovery test was conducted in 4 cycles for each
sample with 3 replicates for each treatment. The shape fixation rate Rf and shape recovery
rate Rr were calculated according to Equations (3) and (4), respectively.

R f =
180− A1

90
× 100% (3)

Rr =
A2 − 90

90
× 100% (4)

2.3. Construction of PMP in Wood

The reactive solution mentioned above was impregnated into wood blocks under
vacuum (0.06 MPa) for 15 min and then impregnated under pressure (0.8 MPa) for 30 min,
with six replicates for each treatment. To obtain the good penetration of the reactive
chemicals and reveal the dimensional stability of the wood under various test conditions,
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the wood blocks were sourced from the sapwood zone and processed into standard radial,
tangential and longitudinal section blocks.

After weighing, the impregnated wood blocks were heated at 80 ◦C for 1 h to complete
the polymerization of monomers. Subsequently, the blocks were dried via the programmed
procedures (60 ◦C for 2 h, 80 ◦C for 2 h and 105 ◦C for 4 h) to an absolute dry state, with the
moisture content (MC) being designated as MC0. After cooling, the weight and volume
were determined based on the volume percent gain (VPG, %) and weight percent gain
(WPG, %), which were calculated according to Equations (5) and (6), respectively. The
blocks without any treatment were also subjected to the same drying and cooling steps
as controls.

VPG =
VT −V0

V0
× 100% (5)

WPG =
WT −W0

W0
× 100% (6)

In the above equations, V0 and VT are the volume (cm3) of the wood specimens before
and after treatment, respectively, and W0 and WT are the weight (g) of the specimens before
and after treatment, respectively.

2.4. Dimensional Stability of Wood

To evaluate the dimensional stability of the wood under changing humidity or a
rainy-sunny environment, three moistening-drying (M-D) and soaking-drying (S-D) cycles
were conducted. Six treated and untreated replicate blocks were prepared for each cycle
test. In the M-D test, the volumes (V0) and weight (M0) of the samples dried following the
procedure mentioned above were firstly determined, then the samples were conditioned in
an incubator set at a relative humidity of 85 ± 5% and temperature of 25 ± 2 ◦C for 3 days,
followed by another measurement of the volume (Vt) and weight (Mt). These drying and
moistening procedures were repeated to obtain three cycles of variations in the weight
and volume [37]. The S-D cycles for the blocks were similar to the M-D cycles, except for
replacing the moistening procedure with water immersion. The percentage of swelling (S)
upon changed moisture content as well as the anti-swelling efficiency (ASE) were calculated
according to Equations (7) and (8), respectively.

S =
Vtn −V0n

V0n
× 100% (7)

ASE =
S0 − S

S0
× 100% (8)

In the above equations, V0n and Vtn are the volume of the test block after the nth
drying and moistening/soaking, respectively; S0 and S are the swelling of the untreated
wood (W) and modified wood (MW), respectively; and ASE is the anti-swelling efficiency
of the modified wood after the nth moistening/soaking.

2.5. Effect of the Shape Memory Properties of PMP on Wood Dimensional Stability

Treated and untreated blocks of six replicates, after being dried to MC0, were condi-
tioned near fiber saturation point (FSP) moisture content (MC1) and the volume at this
state was recorded as V1. The blocks were then heated to 60 ◦C and maintained for 2 h to
measure the dimensions V2 and MC2, followed by 1 h-room temperature (25 ◦C) storage
and the determination of V3 and MC3. Subsequently, the temperature was increased to
60 ◦C again to record the dimensions V4 and MC4. The blocks went through a total of five
cycles of 1 h at room temperature and heating for 2 h at 60 ◦C. The shrinkage of the blocks
was calculated according to Equation (9).

Shrinkage =
Vn −Vn+1

Vn
× 100% (9)
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In Equation (9), Vn is the volume of the blocks after 1 h at room temperature and Vn+1
is the volume after heating for 2 h at 60 ◦C, n = 1, 3, 5.

2.6. Characterizations

Fourier transform infrared (FT-IR) spectra of P(PEGDA), PMMA and PMP were
constructed using a Shimadzu IR Spectrophotometer (IRPrestige-21, Shimadzu, Japan) in
transmission mode and the KBr pellet method in a wavenumber of 400 to 4000 cm−1 with
a 4 cm−1 resolution and 32 scans.

Thermal analyses were performed with differential scanning calorimetry (DSC, TA
Instruments Q2000) under a nitrogen atmosphere from −75 ◦C to 150 ◦C with a scanning
rate of 10 ◦C/min. Before the test, the sample was heated to 150 ◦C and then cooled to
−50 ◦C at a cooling rate of 10 ◦C/min to eliminate thermal history.

The morphological structures of the fractured surfaces of a sample of PMP and the
modified wood were investigated using a scanning electron microscope (SEM; TM3030,
HITACHI, Tokyo, Japan).

3. Results and Discussion
3.1. Polymerization of MMA and PEGDA

The cross-linked copolymer PMP with PMMA as the hard segments and P(PEGDA)
as the soft segments was prepared. To obtain suitable PMP for wood modification, the
mass ratio of MMA to PEGDA was firstly investigated as 0.8:1 (MP0.8), 1.0:1 (MP1.0),
1.2:1 (MP1.2), 1.4:1 (MP1.4), 1.6:1 (MP1.6) and 1.8:1 (MP1.8). The swelling rate of PMP
dropped rapidly with the increasing ratio of MMA to PEGDA (see Figure 1a), which could
be ascribed to the hydrophobicity of the MMA segment designed to improve the water
and moisture resistance. However, when the mass ratio of MMA to PEGDA exceeded
1.6:1, the swelling rate no longer declined. Although the ratio of 1.6:1 was the best option
from the aspect of the swelling ratio, serious phase separation occurred on the final PMP
product; accordingly, 1.4:1 was applied as the ratio of monomer MMA to PEGDA in the
following studies. The obtained PMP was an even, translucent, hard and tough polymer
in comparison with the rough, white and brittle PMMA as well as the transparent, soft
and weak P(PEGDA). MMA was likely to copolymerize with PEGDA, and the copolymers
also tended to cross-link via EGDMA to provide additional restraint in volume swelling
and weight increment. The average volume swelling and weight increment declined
with the increased amount of crosslinker (Figure 1b). A schematic representation of the
MMA/PEGDA cross-linked copolymer network formation is presented in Figure 1c. Such
copolymerization and cross-linking reactions were clearly evidenced by the results of the
FTIR and dissolution measurements (see Figure 2).

The FTIR spectra for PMMA, P(PEGDA) and PMP are presented in Figure 2a. It is
worth noting that the characteristic peaks from 2953 cm−1 to 2851 cm−1, corresponding
to the stretching vibration of −CH3 and −CH2, changed significantly, which was caused
by the copolymerization and cross-linking of MMA and PEGDA. The typical absorptions
of 1479 and 751 cm−1 assigned to the −CH2 bending vibration and −CH3 deformation
vibration of PMMA appeared in PMP, suggesting the inclusion of MMA in PMP [38,39]. The
presence of peaks at 3442 cm−1 and 1627 cm−1 in PMP were attributed to the stretching and
bending vibrations of the−OH groups from the absorption moisture, which is characteristic
of the PEG segment, indicating that PEGDA was bonded in PMP [40,41]. The sharp peak
at 1732 cm−1 was assigned to carbonyl group stretching, and the peaks at 1249 cm−1 and
1143 cm−1 belonged to C−O−C, which existed in PMMA, P(PEGDA) and PMP. The band
at 989 cm−1 together with the bands at 1062 cm−1 and 845 cm−1 were the characteristic
absorption vibrations of PMMA [39]. The FTIR results confirmed the presence of PMMA
and PEGDA segments in PMP.

In addition, as shown in Figure 2b, the homopolymers PMMA and P(PEGDA) were
completely dissolved in the THF and KOH solution, respectively. However, the PMP
swelled and remained in an intact shape in either the THF or KOH solution, implying
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that the cross-linked network structure for PMP was formed. This cross-linked copolymer
network could provide the polymer with a stationary phase and a reversible phase, and
the polymer could change shape in response to thermal stimuli [17].
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3.2. Shape Memory Behavior of PMP

To better understand the effect of SMP on the dimensional stability of wood, the shape
memory behavior of PMP was investigated. To select a suitable transition temperature
(Ttrans) for studying the shape memory behavior of PMP, the glass transition temperature
(Tg) of the sample was detected by DSC measurement (Figure 3a). Both PMMA and
P(PEGDA) showed a single Tg at 108.2 ◦C and −25.5 ◦C, respectively, while PMP had a
double Tg at 80.7 ◦C and −17.8 ◦C [42,43]. This was consistent with the phase separated
structure presented by the SEM images, as shown in Figure 3b. A sea-island structure
with white spherical convex PEGDA-rich parts dispersed in a gray PMMA matrix was
observed for the PMP sample. In contrast, no structure was observed in the SEM images
of homopolymer PMMA and P(PEGDA). The lower Tg in PMP could be ascribed to the
PEGDA-enriched segments, for example, the low molecular weight of P(PEGDA) and
cross-linked PEGDA segments, comparatively; the higher Tg was probably sourced from
the copolymer P(MMA-PEGDA), which was not as high as the Tg of PMMA [34,44].

The phase separation behavior of PMP leads to a wide range of softening temperatures.
The most extreme temperature applied to wood generally reaches as high as 60 ◦C, which
causes the large and drastic shrinking of wood, leading to cracks and splits. Fortunately,
PMP contained a double Tg at 80.7 ◦C and −17.8 ◦C, and it was found that PMP could be
deformed well and recovered to a great extent around 60 ◦C; consequently, the transition
temperature (Ttrans) for conducting the shape memory behavior was fixed at 60 ◦C. When
the temperature was set at 60 ◦C, which was much higher than the lower Tg of PMP but
below the higher Tg value of 80.7 ◦C, the switching segments were activated by softening
and the original straight sample could be bent into an L-shape under the influence of
external forces. The L-shape of the sample was temporarily fixed after cooling and was
recovered to the original straight shape upon reheating. It was shown in the literature that
the secret behind the SMP lies in its molecular network structure consisting of switches and
netpoints [45]. Herein, for the sample of PMP, the switches responsible for shape fixation
and partial shape recovery were the soft segments of PEGDA, while the netpoints that
determined the permanent shape were likely to be the MMA/PEGDA copolymer. The
shape fixity of PMP was determined to be as low as 66%, which could be ascribed to the
low Tg of the PEGDA-rich segments phase.
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Multiple cycles of the shape memory behavior of PMP were conducted at 60 ◦C and
the results are shown in Figure 3c. As can be seen from the results, in four cycles, the shape
of PMP recovered rapidly in the initial 45 s, with a recovery rate of 53.5% to 57.8%, and
then slowed down during the rest of time. When the PMP specimens were softened and
bent into an L-shape, entropic energy was stored via a chain conformation change. Upon
reheating, the entropic energy was released, and as a result the shape recovered [46,47]. The
continuous release of potential energy in the early stage of recovery resulted in a decline
in the driving force for shape recovery; consequently, the shape recovery rate diminished
gradually with time [48]. As the number of fixation-recover cycles increased, the recovery
rate reduced slightly from 93.3% to 88.9%, which could be explained by the unrecoverable
residual strain sourced from the relaxation of the chain conformation and probably the
tiny slips of chain segments [47,49]. However, the overall response rate of PMP in multiple
cycles remained at a high level, which is conducive to broadening the application scenarios
of PMP.

3.3. In Situ Construction of PMP in Wood

Poplar is a widely distributed fast-growing wood that is high in permeability but
poor in dimensional stability. To enhance the performance of poplar against water and
moisture, PMP was in situ constructed within it. The color of the wood changed slightly
after treatment, as shown in Figure 4a. The percentages of weight gain (WPG) and volume
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gain (VPG) are displayed in Figure 4b. The WPG and VPG reached as high as 14.0% and
7.2%, respectively, which could be contributed to the small molecular weight of the modifier
and the efficiency of the reaction in the designed conditions.
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Figure 4. (a) Wood specimen before and after modification. (b) WPG and VPG of modified wood
(MW). (c) SEM micrographs of untreated (W) and modified wood (MW).

The morphology of W and MW in Figure 4c showed that the polymers formed and
filled in the cell cavities. In comparison with the untreated wood, the modified wood
displayed swelled cell walls, densely packed with few spaces between the cells. For the
treated samples, most of the pits in the vessel were also stuffed with white polymer, which
suggested that a large amount of modifier solution penetrated the wood via the vessels and
further went through the pits to the adjacent cells [37,50]. As the modifier solution entered
the cell wall and polymerized, the cells would bulk and swell, which was confirmed by the
VPG of the treated wood. The bulked cell wall of the wood fibers is shown in Figure 4c. The
partially blocked cell cavities and pits could restrain the exchange of water and moisture to
some extent, and accordingly enhance the dimensional stability of the wood.

3.4. Dimensional Stability of the Wood

The wood used outdoors is generally subjected to a changing climate; accordingly,
an alternating dry and wet condition was designed to perform the wood dimensional
stability test. The test was conducted under cyclic moistening-drying (M-D) and water
soaking-drying (S-D) procedures. The swelling rate of SMP-treated wood was 4.41%,
comparatively large, in the first M-D procedure. In the next two M-D cycles, the modified
wood presented a decline in swelling rate and the anti-swelling efficiency (ASE) increased
to 32.94% and 38.23% (Figure 5a). This phenomenon could be attributed to the reduced
dimensional variation of the polymer-bulked cell wall, and was confirmed by the test on
wood conditioning shown in Table 1.
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Table 1. Volumetric change of wood samples under different moisture content.

Samples MC0 (%) V0 (cm3) MC1 (%) V1 (cm3) Volumetric Change (%)

W 0.50 8.21 ± 0.26 28.63 9.35 ± 0.27 13.90
MW 0.61 8.45 ± 0.23 32.75 9.24 ± 0.24 9.37

Note: W and MW represent the untreated and modified wood, respectively; MC0 and MC1 represent the wood
that was dried or conditioned to an absolutely dry state and the fiber saturation point, respectively; V0 and V1
correspond to the volume of the test block at the two states of moisture content. Volumetric change represents the
rate of volume change from V0 to V1.

When the oven-dried untreated (W) and modified wood (MW, MC < 1%) were placed
in a conditioning vessel and the MC was increased to a constant value, a state of fiber satu-
ration point (FSP) with MC 28.63% and 32.75% was reached, respectively. It is interesting to
note that the increased volume of MW was 4.53% lower than W, although the former was
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4.12% higher in MC than the latter, which suggested that the SMP-modified wood could
maintain its volume upon absorbing a certain amount of moisture.

In the soaking procedure of the S-D cycles, the swelling rate of the modified wood was
7.80%, and the values of ASE were in the range of 26.98% to 43.77% (Figure 5b). The partially
blocked pits arising from the modifier likely contributed to the reduced swelling [10]. It
is worth noting that the modified wood exhibited almost constant swelling rates during
the three S-D procedures, which could be attributed to the performance of the polymer in
S-D procedures. The polymer had a low ratio of volume swell percentage (Pv) to weight
gain percentage (Pw) in the S-D procedures (Figure 5c), which meant that the polymer
could absorb more water with a relatively small volumetric change. The values of Pv/Pw
dropped from 0.96 to 0.77 during the three S-D cycles, which was probably caused by the
leaching of soluble and hydrophilic segments. The leaching of these segments can occur in
SMP-modified wood, and as a result, the ASE of the SMP-modified wood increased slightly
during the last two cycles [51].

Figure 6 shows the digital images of the samples of untreated (W) and modified wood
(MW) after three cycles of moistening-drying and soaking-drying. During the cyclic M-D
procedures, both MW and W behaved well, free from surface cracks (Figure 6a). However,
they behaved completely different after three S-D cycles. As clearly presented in Figure 6b,
most of the W specimens (four out of six) were cracked and a number of cracks were found
on each wood surface, while very few cracks appeared on the MW blocks. Only one MW
sample was cracked after S-D treatment. As many as five cracks appeared on one of the W
samples, shown by the magnified image in Figure 6c, while the only cracked MW sample
displayed two cracks (Figure 6d). This showed that poplar wood filled with SMP could
effectively reduce the risk of cracks from internal stresses caused by shrinkage.

3.5. Mechanism of Action of SMP on Wood Dimensional Stability

To reveal the mechanism of action of shape memory polymer (SMP) in stabilizing the
wood dimensions, a continuous drying test was conducted. Firstly, both the W and MW
were conditioned to the FSP state, and the MC for W and MW were determined as 28.63%
and 32.75%, respectively (Figure 7a). Afterward, they were subjected to five cycles of 60 ◦C
and 25 ◦C treatments; the recorded MC and volume variation are shown in Figure 7a,b.

As a whole, the loss of water under high temperature caused a significantly dimen-
sional shrinkage of the untreated wood, accompanied by cracks, particularly during the
first three cycles when the MC decreased from around 30% to 4%. After that, the change
in dimension appeared to level off because the water in wood became difficult to remove.
In comparison with the untreated wood, the modified wood displayed a stable and small
variation in dimension when the MC dropped from 28.63% to 3.72%. The decrease in
the dimensional change of MW could be attributed to the thermal-responsive SMP filled
in wood cell wall, which retarded the shrinkage of the cell wall by thermal expansion
at a high temperature. Moreover, the recovery of SMP counteracted the stress from the
shrinking of the cell wall; as a result, the modified wood exhibited few cracks, as shown in
Figure 6b [52,53]. It is worth noting that during the fourth and fifth cycles, the dimensional
variation of the MW sample became negative, which suggested that the volume of MW
expanded when heated. This phenomenon could also be explained by the characteristics of
the SMP filled in the cell wall. As the MC of MW approached zero after three cycles, the
shrinkage of the cell wall from reduced MC could be ignored, while SMP maintained its
characteristics of shape fixation and recovery, which expanded the cell wall upon heating
and, consequently, the wood showed an increased dimension. Nevertheless, the MC of
wood almost never dropped to zero in practice.

The deformation and relaxation of SMP in the wood cell wall are schematically il-
lustrated in Figure 7c, where S1–S10 represent step 1–10. After modification, the SMP is
constructed in wood, staying in the initial state (Figure 7(c-S1)). When the temperature
is increased to 60 ◦C, the water is lost, the wood will shrink and the polymer will be
compressed to state 2 (Figure 7(c-S2)). As the temperature is dropped to 25 ◦C, a temporary
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stressed state 3 (Figure 7(c-S3)) will be reached. Upon heating, wood will shrink again,
while the confined polymer tends to recover to its initial state; the reversed stress produced
by the polymer will resist the stress from the wood shrinkage (Figure 7(c-S4)). As the two
stresses contradict, the stress in wood will be partially released, which helps in restraining
both the volumetric variation and cracking developed by stress accumulation. When it
returns to a normal temperature, the polymer will go to a second temporary state with
residual stress (Figure 7(c-S5)). Subsequently, when the modified wood undergoes repeated
60 ◦C and 25 ◦C procedures, accompanied by the reduced MC and shrinkage of wood, the
stored stress in SMP will be accumulated, which will ultimately be released and expand
the cell wall to some extent (Figure 7(c-S10)).
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4. Conclusions

A cross-linked copolymer network with shape memory behavior was fabricated
by reacting methyl methacrylate (MMA) and polyethylene glycol diacrylate (PEGDA)
in a water/ethanol solution. Their cross-linking characteristics were evidenced by the
FT-IR and dissolution analysis. The phase separation of PMP was observed with the
help of SEM. A relatively wide glass transition temperature range, i.e., the double Tg of
PMP at −17.8 ◦C and 80.7 ◦C, was found by the DSC measurement, based on which the
shape memory performance pof PMP was studied. An alternating 60 ◦C and 25 ◦C cycle
was designed to simulate high temperature sunny days and cooling days. Under the
variation of temperature, a desirable shape memory performance was detected for the PMP,
which retarded the rapid shrink of in situ constructed PMP-modified wood under high
temperature. PMP was found to be distributed mainly in the cell wall, cell cavity and the
pits. The presence of PMP in these pores not only retarded the transportation and exchange
of water but also counteracted the internal stress and shrinkage of the wood accompanied
by water evaporation. The variation and function of internal force will be researched in
forthcoming studies.
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