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Purpose: To investigate IL-17 related mechanisms for developing dry eye disease in the

Pinkie mouse strain with a loss of function RXRα mutation.

Methods: Measures of dry eye disease were assessed in the cornea and conjunctiva.

Expression profiling was performed by single-cell RNA sequencing (scRNA-seq) to

compare gene expression in conjunctival immune cells. Conjunctival immune cells were

immunophenotyped by flow cytometry and confocal microscopy. The activity of RXRα

ligand 9-cis retinoic acid (RA) was evaluated in cultured monocytes and γδ T cells.

Results: Compared to wild type (WT) C57BL/6, Pinkie has increased signs of dry eye

disease, including decreased tear volume, corneal barrier disruption, corneal/conjunctival

cornification and goblet cell loss, and corneal vascularization, opacification, and

ulceration with aging. ScRNA-seq of conjunctival immune cells identified γδ T cells as the

predominant IL-17 expressing population in both strains and there is a 4-fold increased

percentage of γδ T cells in Pinkie. Compared to WT, IL-17a, and IL-17f significantly

increased in Pinkie with conventional T cells and γδ T cells as the major producers. Flow

cytometry revealed an increased number of IL-17+ γδ T cells in Pinkie. Tear concentration

of the IL-17 inducer IL-23 is significantly higher in Pinkie. 9-cis RA treatment suppresses

stimulated IL-17 production by γδ T and stimulatory activity of monocyte supernatant on

γδ T cell IL-17 production. Compared to WT bone marrow chimeras, Pinkie chimeras

have increased IL-17+ γδ T cells in the conjunctiva after desiccating stress and anti-

IL-17 treatment suppresses dry eye induced corneal MMP-9 production/activity and

conjunctival goblet cell loss.

Conclusion: These findings indicate that RXRα suppresses generation of dry eye

disease-inducing IL-17 producing lymphocytes s in the conjunctiva and identifies RXRα

as a potential therapeutic target in dry eye.
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INTRODUCTION

Dry eye is a prevalent disease affecting tens of millions of
individuals worldwide (1). Clinical trial results and animal
models provide evidence that inflammation contributes to the
pathogenesis of ocular surface disease in dry eye (2). The
ocular surface is an exposed mucosal tissue that is subjected
to desiccating and osmotic stress, as well as microbial danger
signals. The conjunctiva has a complement of immune cells
that produce factors capable of suppressing sight-threatening
inflammation during homeostasis but can respond to pathogen
and environmental danger signals. Indeed, ocular surface
desiccation has been found to be a potent inflammatory stress
that stimulates activation of and production of inflammatory
mediators (cytokines, chemokines, and proteases) by the ocular
surface epithelial and inflammatory cells (1). This can cause
clinical signs of dry eye, such as corneal barrier disruption and
conjunctival goblet cell loss (3, 4).

The Lacrimal Functional Unit regulates the production
and distribution of tears containing factors that maintain
ocular surface epithelial health and suppress ocular surface
inflammation (5). One such lacrimal gland secreted factor is
vitamin A in the form of retinol that is metabolized to retinoic
acid (RA) by the ocular surface epithelium, particularly the
conjunctival goblet cells which can deliver it to immune cells
located in the underlying stroma (6, 7). Dry eye with corneal
and conjunctival epithelial disease develops in systemic vitamin
A deficiency; however, the pathogenic mechanisms have not been
elucidated. Vitamin A signals through two families of nuclear
receptors, the retinoid acid receptor (RAR) and the retinoid X
receptor (RXR) that consist as homo- or heterodimers (partners
include, RAR, PPAR, vitamin D receptor, and others) (8). RXRα

is expressed by a variety of immune cells, including myeloid and
lymphoid lineages (9–11) and myeloid cells in the conjunctiva
(8). Mice with loss of function mutation in the RXRα nuclear
receptor have been reported to develop dry eye (12).

The purpose of this study is to investigate the mechanism
for dry eye development in the RXRα loss of function mutant
mouse. We found an increased population of IL-17 producing
cells consisting of γδ T and conventional T cells in the
conjunctival of mice with reduced RXRα signaling that promotes
the development of dry eye disease. The RXRα ligand 9-cis RA
suppresses the production of IL-17 by γδ T cells and IL-17
inducing cytokines by monocytes.

MATERIALS AND METHODS

Animals
The animal protocol for this study was designed according to
the ARVO Statement for the use of Animals in Ophthalmic
and Vision Research and was approved by the Institutional
Animal Care and Use Committee at Baylor College of Medicine
(Protocol AN-2032). Female C57BL/6J (B6) mice and Pepc/BoyJ
aged 6–8 weeks were purchased from Jackson Laboratories (Bar
Harbor, ME). The RXRα Pinkie mutant strain was purchased
from the Mutant Mouse Resource and Research Centers (MRRC,
University of California, Davis, Sacramento, CA) for establishing

breeder colonies that were expanded in Baylor College of
Medicine vivarium and refreshed and genotyped every 8
generations. At the time of the experiments, both B6 and Pinkie
strains were housed in the normal vivarium environment.

Assessment of Corneal Barrier Function
and Tear Volume
Corneal epithelial permeability to 70 kDa Oregon-Green-
conjugated dextran (OGD; Invitrogen, Eugene, OR) was assessed
as previously described (13). Briefly, 1 µL of OGD (50 mg/mL)
was instilled onto the ocular surface 1min before euthanasia; the
eye was then rinsed with 2mL phosphate-buffered saline (PBS)
from the temporal and nasal side and photographed with a high-
resolution digital camera (Coolsnap HQ2; Photometrics, Tucson,
AZ) attached to a stereoscopic zoom microscope (SMZ 1500;
Nikon, Melville, NY), under fluorescence excitation at 470 nm.
The severity of corneal OGD staining was graded in digital
images using NIS Elements (version 3.0; Nikon) within a 2-
mm diameter circle placed on the central cornea by 2 masked
observers. The mean fluorescence intensity measured by the
software inside this central zone was transferred to a database,
and the results were averaged within each group. Tear volume
was measured with a phenol red impregnated cotton thread as
previously described (14).

Measurement of Goblet Cell Density
Following euthanasia, eyes and ocular adnexa were excised from
B6 and Pinkie mice (n = 5/group) and the tissues were fixed
in 10% formalin followed by paraffin embedding, 5µm sections
were cut with a microtome (Microm HM 340E; Thermofisher
Wilmington, DE) and stained with periodic acid Schiff (PAS)
reagent. Sections from both eyes in each group were examined
and photographed with a microscope (Eclipse E400; Nikon)
equipped with a digital camera (DXM1200; Nikon) Using the
NIS Elements software; goblet cells were manually counted. To
determine the length of the conjunctival goblet cell zone, a line
was drawn on the surface of the conjunctiva image from the
first to the last PAS+ goblet cell. Results are presented as PAS+

goblet cells/mm.

RNA Isolation and Quantitative PCR
Following euthanasia, the cornea/conjunctiva was excised
and total RNA was extracted using an RNeasy R© Plus
Mimi Kit (Cat No. 74134, QIAGEN GmbH, Hilden,
Germany) according to manufacturer’s instruction. The
RNA concentration was measured, and cDNA was synthesized
using the Ready-To-Go-You-Prime-First-Strand kit (GE
Healthcare). Quantitative real-time PCR was performed with
specific probes Murine MGB probes, Cxcl16 (Mm00801778),
Sprr2a (Mm00845122_s1), Sprr2f (Mm00448855_s1),
Sprr2g (Mm01326062_m1), Vegfa (Mm00437304), Vegfb
(Mm00442102), Vegfc (Mm00437310), Tnf (Mm00443260),
Fgf7 (Mm00433291), Mmp9 (Mm00442991), and hypoxanthine
phosphoribosyltransferase (Hprt1, Mm00446968). The Hprt-1
gene was used as an endogenous reference for each reaction. The
results of real-time PCR were analyzed by the comparative CT
method. The CT values of Pinkie were compared to that of B6.
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Tear Washings and Multiplex Immunoassay
Tear-fluid washings were collected from both mouse strains
using capillary tubes as previously described (15), and cytokine
concentrations in tear samples were assayed using a commercial
ProcartaPlex Luminex Assay according to the manufacturer’s
protocol (Thermofisher). The reactions were detected with
streptavidin-phycoerythrin using a Luminex LX200 (Austin, TX,
USA) (16). One sample consisted of tear washings from both
eyes of 4 mice pooled (8 µL) into a tube containing 8 µL
of PBS + 0.1% BSA and stored at −80◦C until the assay
was performed. Results are presented as the mean ± standard
deviation (picograms per milliliter).

Flow Cytometry and Cell Sorting
Conjunctivae were excised, chopped with scissors into tiny
pieces, and incubated with 0.1% type IV Collagenase for 1 h to
yield single-cell suspensions. Samples were incubated with anti-
CD16/32 (2.4G2, Catalog no. 553141, BD PharmingenTM, San
Diego, CA), for 5min at room temperature and subsequently
stained with anti-CD45 (clone 30-F11, Catalog no. 103138,
BioLegend) and with an infra-red fluorescent viability dye
(Life Technologies, Grand Island, NY). The gating strategy
was as follows: lymphocytes were identified by forward -scatter
area (FSC-A) and side scatter area (SSC-A) gates, followed
by two singlets gates (FSC-A vs. FSC-W and SSC-A vs. SSC-
W) followed by live/dead identification using the infra-red
fluorescent viability dye. The CD45+ cells were sorted using the
Aria-II cell sorter at the Baylor College of Medicine cytometry
and cell sorting core.

Antibodies for phenotyping IL-17+ cells in the conjunctiva
included: anti-CD45 (clone 30-F11, Catalog no. 103138,
BioLegend), Alexa Fluor R© 488 anti-mouse CD45.1 (Clone A20,
catalog #110718, BioLegend Way San Diego, CA), Brilliant
Violet 510TM anti-mouse CD45.2 (Clone 104, catalog # 109838,
BioLegend Way San Diego, CA), PerCP/Cyanine5.5 anti-mouse
CD3ε (Clone 500A2, catalog # 152312, BioLegend Way San
Diego, CA), PE Anti-Mouse γδ T-Cell Receptor (Clone GL3,
catalog #553178, BD PharmingenTM, San Diego, CA), Alexa
Fluor R© 647 anti-mouse IL-17A (Clone TC11-18H10, catalog#
560184, BD PharmingenTM, San Diego, CA). A violet live/dead
fixable dye (Life Technologies) was used to exclude dead cells.
A Canto II flow cytometer (BD Biosciences) and FlowJo 7.6.5
software (TreeStar, Ashland, OR, USA) were used for analysis.

Library Preparation
Single-cell gene expression libraries were prepared using
the Chromium Single Cell Gene Expression 3v3.1 kit (10×
Genomics) at the Single Cell Genomics Core at Baylor College
of Medicine. In brief, single cells, reverse transcription (RT)
reagents, Gel Beads containing barcoded oligonucleotides, and
oil were loaded on a Chromium controller (10× Genomics) to
generate single-cell Gel Beads-In-Emulsions (GEMs) where full-
length cDNA was synthesized and barcoded for each single cell.
Subsequently the GEMs are broken and cDNA from every single
cell is pooled. Following cleanup using Dynabeads MyOne Silane
Beads (Thermofisher, Waltham, MA), cDNA is amplified by
PCR. The amplified product is fragmented to optimal size before

end-repair, A-tailing, and adaptor ligation. The final library was
generated by amplification.

Sequencing of 10X GEM 3′v3.1 Single Sell
Libraries
The BCM Genomic and RNA Profiling (GARP) Core initially
conducted sample quality checks using the NanoDrop
spectrophotometer and Agilent Bioanalyzer 2100. To quantitate
the adapter-ligated library and confirm successful P5 and P7
adapter incorporations, the Applied Biosystems ViiA7 Real-
Time PCR System and a KAPA Illumina/Universal Library
Quantification Kit (p/n KK4824) was used. The GARP core
sequenced the libraries on the NovaSeq 6000 Sequencing System
using the S2 v1.0 Flowcell as follows. Cluster Generation by
Exclusion Amplification (ExAMP): Using the concentration
from the ViiA7 TM qPCR machine above, 150 pM of the
equimolar pooled library was loaded onto one lane of the
NovaSeq S2 v1.0 flowcell (Illumina p/n 20012860) following
the XP Workflow protocol (Illumina kit p/n 20021664) and
amplified by exclusion amplification onto a nanowell-designed,
patterned flowcell using the Illumina NovaSeq 6000 sequencing
instrument. PhiX Control v3 adapter-ligated library (Illumina
p/n FC-110-3001) was spiked-in at 1% by weight to ensure
balanced diversity and to monitor clustering and sequencing
performance. The libraries were sequenced according to the
10X Genomics protocol, 28 cycles for Reads 1, 10 cycles each
for the i7 and i5 reads, and 90 cycles for Read 2. An average
of 251 million read pairs per sample was sequenced. FastQ file
generation was executed using bcl2fastq and QC reports were
generated using CellRanger v5.0.1 by the BCMMultiomics Core.

Bioinformatic Analysis of ScRNA-Seq Data
Raw sequence reads in the FASTQ format were aligned to the
mouse reference genome using Cell Ranger Count v6.0.1 pipeline
(https://cloud.10xgenomics.com) with the default settings for
alignment, barcode assignment, and UMI counting of the raw
sequencing data with genome reference Mouse (mm10) 2020-
A. The resulting gene expression matrix was subjected to
preprocessing following the guideline provided by Seurat v4.1.0.
Briefly, single cells with fewer than 200 genes were filtered
to remove empty droplets. We also removed the genes that
were expressed in <3 cells in our data. Next, we employ a
global-scaling normalization method using the Seurat function
“LogNormalize” that normalizes the feature expression.

Clustering, Visualization and Cell
Annotation
First, we used the “FindVariableFeatures” function to identify a
set of 2,000 genes that are highly variable in the two data sets,
and the “FindIntegrationAnchors” and “IntegrateData” functions
combined the two data sets for downstream analysis such as
dimensionality reduction and clustering. We then performed
Principal Components Analysis (PCA) to construct a linear
dimensionality reduction of the dataset and identified the 19 PCs
that contain most of the complexity of the dataset. The cells
were clustered in a graph-based approach within PCA space,
and then non-linear dimensionality reductions were applied
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using UMAP for further visualization purposes. We then used
a set of canonical cell type markers to assign annotation to
each cluster using the Cluster Identity Predictor (CIPR) web-
based tool (https://aekiz.shinyapps.io/CIPR/). Finally, differential
expression was performed using the “FindAllMarkers” function
in Seurat to find cluster-specific marker genes.

Monocyte Purification and in vitro

Stimulation
Bone marrow isolated cells were cultured (2 × 10 ∧ 7
cells/100mm tissue culture dish) in 10ml of complete medium
[RPMI 1640 supplemented with 10% heat inactivated fetal
calf serum, 50µg/ml gentamycin and 1.25µg/ml amphotericin
B (all from Gibco Thermofisher)] containing 20 ng/ml GM-
CSF (Peprotech, Inc. USA). Monocytes were purified after 3
days of culture using the monocyte isolation kit, according to
the manufacturer’s instruction (BM, Miltenyi Biotec, Bergisch
Gladbach, Germany). 5 × 10 ∧ 5 monocytes plated in a 48 well-
plate were preincubated with 100 nM 9-cisRA for 1 h followed by
stimulation with 0.5µg/ml LPS for 4 h for RNA or overnight for
cytokines. The total RNA was extracted using an RNeasy R© Plus
Mimi Kit (Cat No. 74134, QIAGEN GmbH, Hilden, Germany)
according to manufacturer’s instructions. The RNA and collected
supernatants were stored at−800C until further use.

γδT Cell Isolation and in vitro Experiments
Pooled γ/δ T cells from the spleens of 8–10 week old B6 and
Pinkie mice were isolated using the TCR γ/δ T cells Isolation
Kit according to the manufacturer’s instruction (Miltenyi Biotec,
Bergisch Gladbach, Germany). To determine the effect of 9CisRA
and monocytes conditional media on IL17 cytokine production,
we stimulated the purified γδ T cells with anti-CD3/CD28
Dynabeads (Catalog #11452D, Life Technologies AS, Norway)
alone or in combination with IL-23 (10 ng/ml, eBioscience), 9-
cisRA (100 nM), or monocyte conditioned media for 96 h for
cytokine measurement.

IL-17 ELISA
Mouse IL17 (both heterodimers, A and F) was measured in
purified γδT cultured cell supernatant after 96 h incubation
using a mouse IL-17 DuoSet Enzyme-linked immunosorbent
assay (ELISA) (Catalog no. DY5390-05, R&D Systems,
Minneapolis, USA).

NanoString NCounter Gene Expression
Analysis
This was performed by the Genomic and RNA Profiling Core at
Baylor College of Medicine using the NanoString Technologies
nCounter Gene Expression Mouse Myeloid Innate Immunity V2
Panel codeset (NS_MM_Myeloid_V2.0) containing 770 unique
pairs of 35–50 bp reporter probes and biotin-labeled capture
probes, including internal reference controls (NanoString,
Seattle, WA) as previously described (17). Data was analyzed
by ROSALIND R© (https://rosalind.bio/), with a HyperScale
architecture developed by ROSALIND, Inc. (San Diego, CA).

Bulk RNA Seq and Data Analysis
Conjunctival epithelium was excised from B6 and Pinkie strains
and total RNAwas extracted using aQIAGENRNeasy PlusMicro
RNA isolation kit (Qiagen) according to the manufacturer’s
instructions. The concentration and purity of RNA was assessed
using a NanoDrop 1,000 (ThermoFisher Scientific, Waltham,
MA). RNA-Seq was performed by the Beijing Genomics Institute
(BGI) using the BGISEQ500RS to generate 100-bp paired-end
reads. The sequencing reads were cleaned by removing reads
containing adapter or poly-N sequences, and reads of low quality
using SOAPnuke (version 1.5.2, parameters: -l 15 -q 0.2 -n 0.05).
and the expression levels of the resulting genes and transcripts
were determined using RSEM (version 2.2.5, default parameters).
A total of 19,511 genes were obtained as raw data. Detection
of DEGs (differentially expressed genes) was performed with
DEseq2 (Parameters: Fold Change> 2.00 and adjusted P < 0.05).
Genes were passed through the Benjamini-Hochberg procedure
to obtain the critical value for false discovery and a total of 1,375
genes passed with a P >0.0006. The selected genes in the IL-17
signaling pathway were clustered in a heat map using GraphPad
Prism 9.0 software (San Diego, CA, USA).

ATAC Seq
Cultured bone marrow-derived monocytes were harvested and
frozen in culture media containing FBS and 5% DMSO.
Cryopreserved cells were sent to Active Motif (Carlsbad, CA)
to perform the ATAC-seq assay. The cells were then thawed
in a 37◦C water bath, pelleted, washed with cold PBS, and
tagmented as previously described (18), with some modifications
(19). Briefly, cell pellets were resuspended in lysis buffer, pelleted,
and tagmented using the enzyme and buffer provided in the
Nextera Library Prep Kit (Illumina, San Diego, CA). Tagmented
DNA was then purified using the MinElute PCR purification kit
(Qiagen, Germantown, MD), amplified with 10 cycles of PCR,
and purified using Agencourt AMPure SPRI beads (Beckman
Coulter, Brea, CA). The resulting material was quantified using
the KAPA Library Quantification Kit for Illumina platforms
(KAPA Biosystems, St Louis, MO), and sequenced with PE42
sequencing on the NextSeq 500 sequencer (Illumina).

Analysis of ATAC-seq data was similar to the analysis of
ChIP-Seq data. Reads were aligned using the BWA algorithm
(mem mode; default settings). Duplicate reads were removed,
only reads mapping as matched pairs and only uniquely mapped
reads (mapping quality ≧ 1) were included for further analysis.
Alignments were extended in silico at their 3′-ends to a length
of 200 bp and assigned to 32-nt bins along the genome. The
resulting histograms (genomic “signal maps”) were stored in
bigWig files. Peaks (accessible regions) were identified using
the MACS (version 2.1.0) at a cutoff of p-value 1e-7, without
control file, and with the–nomodel option. Peaks that were on the
ENCODE blacklist of known false ChIP-Seq peaks were removed.
Signal maps and peak locations were used as input data to Active
Motifs proprietary analysis program, which creates excel tables
containing detailed information on sample comparison, peak
metrics, peak locations and gene annotations. For differential
analysis, reads were counted in all merged peak regions (using
Subread), and the replicates for each condition were compared
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FIGURE 1 | The Pinkie strain with reduced Rxrα signaling develops dry eye disease. (A) Dry eye phenotype in Pinkie strain. Representative Oregon Green dextran

(OGD) staining of corneas from 8- to 32-week-old C57BL/6 (B6) and Pinkie strains (left) and graph showing mean gray level fluorescence (n = 9–22/group). Mean ±

(Continued)
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FIGURE 1 | SD, **P < 0.01; ****P < 0.0001; (B) Representative images of PAS staining of conjunctival goblet cells in paraffin sections prepared from B6 and Pinkie

strains (left) with bar graph of mean goblet cell density (right), n = 5/group. (C) Representative SPPR2 immunostaining of whole-mount conjunctivas (age 8–10 weeks)

stained with SPRR2 polyclonal antibody that recognizes multiple isoforms and nuclei stained with Hoechst 33343 dye. Images are captured by confocal microscopy;

relative fold expression of Sprr2g, Sprr2f, and Sprr2a genes in Pinkie conjunctiva (below), n = 5/group. (D) Flow cytometry scatter plot showing increased percentage

of CD45+ cells in the Pinkie conjunctiva (left) and bar graph comparing CD45+ cells in conjunctiva obtained from B6 and Pinkie (n = 7). (E) Decreased tear volume in

Pinkie (age 8–10 week) measured by phenol red cotton thread as compared to B6.

using DESeq2. The position and frequency of motif sequences in
each peak region were identified with the search tool HOMER or
known sequences in databases (20).

Qiagen Gene Pathway Analysis
Briefly, differentially expressed genes from single-cell RNA seq
data were first uploaded into Qiagen’s Ingenuity Pathway
Analysis (IPA) system for core analysis. Analysis was
performed with experimental false discovery rate of >0.05.
Comparison analysis tool were used to identify the most relevant
canonical pathways enriched in Pinkie and presented as a
heatmap. IL17 signaling pathway was adopted from IPA with
some modification.

Creation of Bone Marrow Chimeras
CD45.2+ bone marrow chimeras using bone marrow cells
obtained from 12 to 16 week B6 and Pinkie strains were created
in 6–8 week old CD45.1+ Pepc/BoyJ strain as previously reported
(17, 21). Ten days after bone marrow reconstitution, mice were
subjected to 5 days of desiccating stress (DS5) and T cell
populations in the conjunctiva were analyzed by flow cytometry.

Desiccating Stress and IL-17 Neutralization
As previously described (17), DS was induced by inhibiting
tear secretion with scopolamine hydrobromide (Greenpark,
Houston) in drinking water (0.5 mg/mL) and housing in a cage
with a perforated plastic screen on one side to allow airflow from
a fan placed 6 inches in front of it for 16 h/day for 5 consecutive
days. Room humidity was maintained at 20–30%. Control mice
were maintained in a non-stressed (NS) environment at 50–75%
relative humidity without exposure to an air draft.

Mice were injected intraperitoneally every 2 days with 100
µg/mouse of anti-IL-17A (Clone 17F3; BioXcell) or mouse IgG1
isotype control (Clone MOPC-21; BioXcell) starting on day −2
for the duration of DS. After 5 days of DS, mice were euthanized
and immune cells were harvested from the conjunctiva for
flow cytometry (n = 11), eyes were embedded in paraffin for
sectioning (n = 5) or in optimum cutting temperature (OCT)
compound (Thermofisher) for cryosectioning (n= 3), or corneas
were prepared for whole-mount immunostaining (n= 3).

Immunofluorescence Staining and
Confocal Microscopy
The conjunctival and corneal tissue samples were dissected
from female C57BL/6J mice (age 16 weeks) and fixed in
100% methanol for 20min at −20◦C followed by washing
with Hanks’ buffered saline solution (HBSS) for 3 × 5min
with gentle shaking at room temperature (RT). Tissues were
permeabilized with 0.4% Triton X-100 in HBSS for 30min at
RT and gentle shaking. Twenty percentage goat serum (Sigma,

USA) diluted in HBSS was used for 1 h blocking at RT.
Subsequently, the conjunctival tissue samples were incubated
with primary antibodies (Supplementary Table 1) diluted in 5%
goat serum in HBSS at the mentioned concentrations overnight
at 4◦C with gentle shaking at dark. The samples were then
washed with 0.4% Triton X-100 for 3 × 6min at RT with
gentle shaking, followed by incubation with secondary antibodies
(Supplementary Table 1) diluted in 5% goat serum/HBSS for 1
hour at RT with gentle shaking and light protection. The samples
were then washed for 3 × 10min with 0.4% Triton X-100 in
HBSS and Hoechst (1:500 in HBSS) was added for nuclei staining
(30min at RT and dark with gentle shaking). The samples
were washed 3 × 5min with HBSS, mounted on slides, and
flattened with coverslips. Immunofluorescence staining in whole-
mount conjunctival tissue samples was visualized using laser
scanning Nikon confocal microscope (Nikon A1 RMP, Nikon,
Melville, NY, USA) and 0.5µmZ-step. The captured images were
processed using NIS Elements Advanced Research (AR) software
version 4.20 (Nikon).

In situ Zymography
In situ zymography was performed to localize the gelatinase
activity in corneal cryosections using a previously reported
method (22). Sections were thawed and incubated overnight with
reaction buffer, 0.05M Tris HCl, 0.15M NaCl, 5mM CaCl2,
and 0.2mM NaN3, pH 7.6, containing 40 mg/ml FITC-labeled
DQ gelatin, which was available in a gelatinase/collagenase assay
kit (EnzChek, Thermofisher). As a negative control, 50mM
1,10-phenanthroline, a metalloproteinase inhibitor, was added
to the reaction buffer before applying the FITC- labeled DQ
gelatin to frozen sections. Proteolysis of the FITC-labeled DQ
gelatin substrate yields cleaved gelatin- FITC peptides that are
fluorescent at sites of net gelatinolytic activity. After incubation,
the sections were washed three times with PBS for 5min,
counterstained with Hoechst 33,342 dye and a coverslip was
applied. Areas of gelatinolytic activity of MMPs were viewed
and imaged.

Statistical Analysis
Based on normality, parametric student T or non-parametric
Mann–Whitney U-tests were performed for statistical
comparisons with an alpha of 0.05 using GraphPad Prism
9.0 software.

RESULTS

Keratoconjunctivitis Develops in the Pinkie

Strain With Reduced Rxrα Signaling
Du et al. reported the Pinkie mouse strain, with a loss of
function RXRα mutation (I273N) (12) that alters ligand binding
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FIGURE 2 | Single-cell RNA sequencing. Single-cell RNA sequencing (scRNA-seq) revealed differences in conjunctival immune cell populations between B6 and

Pinkie. (A) UMAP of 19 distinct immune cell clusters in the conjunctiva generated from single-cell transcriptomic profiles of CD45+ cells using Seurat package V4.1.0.

(Continued)
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FIGURE 2 | (B) UMAP comparing conjunctival immune cell clusters obtained by scRNA seq of CD45+ cells obtained from 8 mice female C57BL/6J and 8 Pinkie age

16 weeks. The percentage of the cells in each cluster is shown in parentheses and the cell count and percentage for clusters are provided in Table 1. (C) Heatmap of

the top 50 differentially expressed genes in C57BL/6 and Pinkie conjunctival immune cells. Color of the heatmap based on the natural log of the normalized RNA

expression; (D) Violin plots showing expression of IL-17a with expression in each cluster in the plots to the right. (E) Violin plots of γδT cell IL-17 signature genes Ltb,

Cxcr6, Rorc, and IL1rf that have significantly higher expression in Pinkie vs. C57BL/6 (B6). ****p < 0.0001.

TABLE 1 | Cluster identity.

C57BL_6 Pinkie CIPR cluster identification

Cluster Name Count (%) Count (%) Reference

cell_type

reference_id Percent_pos_

correlation

0 MΦMHCIIlow 3,239 (29.0) 181 (1.6) Macrophage MF.II-480hi.PC 60

1 Neutrophils-LCN2low 2,252 (20.2) 750 (6.7) Granulocyte GN.Thio.PC 100

2 γδ-T 434 (3.9) 1,820 (16.3) γδ-T cell Tgd.vg2+24alo.Th 93.33

3 Monocytes 1,180 (10.6) 782 (7.0) Macrophage MF.11c-11b+.Lu 90.47

4 MΦ 889 (8.0) 402 (3.6) DC DC.103-11b+24+.Lu 100

5 ILC2 349 (3.1) 492 (4.4) ILC-2 ILC2.SI 100

6 NK cells 481 (4.3) 291 (2.6) NK cell NK.CD127-.SI 100

7 CD4+ T cells 249 (2.2) 484 (4.3) T cell T.4Mem49d+11a+.Sp.d30.LCMV 100

8 Neutrophils-LCN2high 454 (4.1) 247 (2.2) Granulocyte GN.Thio.PC 100

9 cDC2-Retnlahigh 460 (4.1) 209 (1.9) DC DC.11b+.AT.v2 100

10 CD8+ T cells 209 (1.9) 301 (2.7) NK cell NK.CD127-.SI 100

11 B cells 121 (1.1) 275 (2.5) B cell B.T2.Sp 100

12 cDC1 212 (1.9) 168 (1.5) DC DC.8-.Th 100

13 Proliferating cell 148 (1.3) 185 (1.7) Pre-T cell T.DPbl.Th 92.30

14 Mast cells 202 (1.8) 113 (1.0) Mast cell MC.Tr 98.24

15 Treg cells 113 (1.0) 186 (1.7) Treg ABD.TR.14w.B6 100

16 Naive CD4+ 83 (0.7) 123 (1.1) T cell CD4.1h.LN 100

17 Migratory DC (mDC) 62 (0.6) 63 (0.6) DC DC.IIhilang-103-11b+.SLN 100

18 Plasma-cytoid DC (pDC) 28 (0.3) 21 (0.2) DC DC.pDC.8-.Sp 100

11,165 7,093

and heterodimerization resulting in a 90% decrease in ligand-
inducible transactivation, develops signs of dry eye with aging,
but the study did not evaluate the ocular surface disease and
immunopathology (12). Corneal epithelial barrier disruption,
loss of conjunctival goblet cells and increased expression of
cornified envelope precursors by the surface epithelium are well-
characterized pathological features of dry eye disease (23, 24).

Corneal staining after topically applied 70 kDa Oregon Green
Dextran (OGD) increases with corneal barrier disruption in
dry eye. There is no statistical difference in corneal OGD
permeability between younger (8W old) Pinkie and wild type
(WT) C57BL/6 (B6) but OGD staining is significantly increased
in 32-week-old Pinkie (Figure 1A). Reduction in conjunctival
goblet cell number is another marker of dry eye. Pinkie has a
significantly reduced number of PAS-positive conjunctival goblet
cells at 8 weeks of age, compared to the WT strain (Figure 1B).
Increased immunoreactivity to the cornified envelope precursor
SPRR2 in the conjunctival epithelium (Figure 1C, left) in
Pinkie is accompanied by increased expression of several
Sprr isoform genes in the conjunctiva [Sprr2g (>20 fold),
Sprr2f (>10 fold) and Sprr2a (>4 fold) compared to B6
(Figure 1C, right and below). Pinkie at 8–10 weeks of age has

a significantly increased number of CD45+ immune cells in the
conjunctiva by flow cytometry (Figure 1D) and decreased tear
volume (Figure 1E). These findings indicate Pinkie has dry eye-
associated pathological changes in the corneal and conjunctival
epithelia and the corneal epithelial disease worsens with age.

Pinkie Has Increased IL-17 Producing
Lymphocytes in the Conjunctiva
Inflammation has been found to cause ocular surface epithelial
disease in dry eye. We performed droplet-based single-cell
RNA sequencing (scRNA-seq) as an unbiased approach to
compare immune cell types in the conjunctiva of WT and
Pinkie strains. We constructed scRNA-seq libraries from
CD45+ immune cells sorted from conjunctivas of normal
WT and Pinkie (n=8 biological replicates/strain) and obtained
transcriptomic profiles of these cells using the 10× Genomics
platform. The scRNA-seq data analysis was performed using
Seurat V4.1.0. After quality assessment, filtering standard pre-
processing, and doublet exclusion, a total of 11,165 cells from
B6 and 7,096 cells from Pinkie with 2,000 variable features
were analyzed. Graph-based clustering using Seurat divided

Frontiers in Medicine | www.frontiersin.org 8 March 2022 | Volume 9 | Article 849990

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Alam et al. RXR Dry Eye

FIGURE 3 | Increased γδ T cells in the Pinkie conjunctiva. (A) Flow cytometry of γδ T cell receptor positive cells (γδ TCR) left, IL-17A+CD3+ γδ TCR- center and

IL-17A+CD3+γδTCR+ right [C57BL/6 (B6) strain top and Pinkie strain bottom] Bar graphs show the mean +/– SD of the percentage of cells in these groups (n =

6/group). (B) Confocal microscopy of whole-mount conjunctivas obtained from B6 and Pinkie (age 8–10 weeks) costained with antibodies specific for γδ TCR and

conjunctival specific cytokeratin 13 (CK-13) (top), IL-17A (middle), and γδ T cell transcription factor RORγt (bottom) (n = 3 per group). The number of γδ T cells

positive for IL-17A and RORγt are shown in the bar graphs to the right. Antibody details are provided in Supplementary Table 2. E, epithelium; S, stroma. (C)

Confocal microscopy of whole-mount conjunctivas obtained from B6 and Pinkie (age 8–10 weeks) stained with CXCL16 antibody (left, n = 3). Minimal staining was

observed in the B6 conjunctival. Comparison of CXCL16 expression level (fold change) in the conjunctiva measured by real-time PCR (right, n = 6). (D) Tear

concentrations of IL-17 signature cytokines IL-12A/IL-23A (top) and TNF-a (middle), and angiogenic factor VEGF-A (bottom) measured by Luminex multiplex assay (n

= 5–12/group, age 8–10 weeks).
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FIGURE 4 | Suppressive effects of 9-cis retinoic acid. (A) IL-17A/F concentration in supernatants of cultured γδ T cells isolated with magnetic beads from C57BL/6 or

Pinkie spleens. Cells are stimulated with anti-CD3/CD28 beads or beads plus recombinant IL-23 without or with addition of 100µM 9-cis retinoic acid (RA). IL-17A/F

(Continued)
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FIGURE 4 | is measured by ELISA. !p < 0.05 between treatment groups, *p < 0.05 between B6 and Pinkie strains. (B) Volcano plots showing the expression level of

genes in monocytes cultured in media alone, media plus LPS or media plus LPS and 100 nM 9-cis RA. A mouse myeloid Innate Immunity NanoString array was used

to evaluate gene expression. Dotted vertical lines indicate < or >1.5 log2 fold change and horizontal lines indicate genes with an adjusted p > 0.05. Red dots are

genes that are significantly increased by LPS (top) or by LPS + 9-cis RA (bottom). γδ T inducers (TNF-a, IL-1a, IL-1b, and IL-23a) are stimulated by LPS and reduced

by 9-cis RA. (C) ATAC seq: principal component analysis of peak sequences identified by ATAC seq in 3 experimental groups of cultured murine monocytes: control,

cells stimulated with LPS and cells stimulated with LPS and 100 nM 9-cis RA (n = 2/group). (D) Sequence logos of transcription factor binding motifs that are found to

be increased (up) or decreased (down) in the second group compared to the first group (top 4–5 motifs are shown for each group, except control vs. LPS where no

decrease in motifs are found). Motifs are identified by the HOMER peak caller from databases of known motif sequences (20).

the cells into 19 clusters (Figure 2A) that were identified
based on the expression of signature marker genes listed in
Table 1 and shown in Supplementary Figure 1. The top 20
differentially expressed genes in each cluster are listed in
Supplementary Table 2 (the entire list of differentially expressed
genes in Supplementary Table 3). Themajor differences between
the two strains are a decreased percentage of macrophages
in cluster 0 and an increased percentage of γδ T cells in
cluster 2 (Figure 2B, Table 1). A heatmap of the top 50
differentially expressed genes between the strains is shown in
Figure 2C and the complete list of differentially expressed genes
is provided in the Supplementary Table 3. Il17a is the top
differentially expressed gene. Violin plots in Figure 2D show
significantly higher IL17a in Pinkie conjunctiva as compared
to B6 predominantly produced by γδ T and conventional T
cells which comprise 16.3 and 3.9 percent of the total cell
population, respectively (Figure 2A). Pinkie also has increased
IL-17f, predominantly produced by γδ T and conventional
T cells (Supplemenatry Figure 2).

Significant between strain differences are also seen for
expression of IL17 signature genes Ltb (25), Cxcr6 (26), Rorc
(25, 27, 28), and Il1r1 (29) among all cells (Figure 2E), and
these are also significantly increased in Pinkie as compared to
B6(Supplementary Figure 2).

Flow cytometry confirmed that Pinkie has significantly high
IL-17 producing γδT cell receptor (TCR) negative (non- γδ

T) and γδT cell receptor (TCR) positive CD3+T (γδ T) cells
in the conjunctiva both in number and mean fluorescent
intensity (MFI) (Figure 3A). Immunostaining of whole-mount
conjunctivas shows an increased number of total, IL-17a+ and
RORγt+ γδ TCR+ cells in the conjunctiva (Figure 3B). Minimal
immunostaining for chemokine CXCL16, the ligand for CXCR6
that is expressed by γδT cells (26) is noted in the B6 corneal
epithelium, but strong staining is seen in the Pinkie conjunctival
epithelium and is accompanied by increased mRNA expression
in the conjunctival epithelium (Figure 3C).

Increased concentrations of the IL-17 inducers IL-23 (30) and
TNF-α (31, 32) as well as VEGF, a proangiogenic cytokine that
promotes corneal neovascularization (33, 34) are found in Pinkie
tears (Figure 3D).

9-cisRA Suppresses IL-17 Production by
γδT Cells and Production of IL-23 by
Monocytes
Based on our finding of increased γδT in the Pinkie conjunctiva,
we evaluated if 9-cisRA suppresses IL-17 production by

activated γδT cells in culture. γδT cells isolated from the
spleen were stimulated with anti-CD3/CD28 beads with or
without IL-23 and/or 9-cis RA. IL-17A/F was measured
in the supernatant by ELISA. IL-17 release was higher in
Pinkie γδT cells stimulated with beads or beads + IL-23
(Figure 4A). 9-cis RA significantly reduced the supernatant
IL-17 concentration in cells from both strains, although the
suppressive effect was greater in the B6 cells (74 vs. 46%
in bead+IL-23 stimulated cells). The majority of myeloid
cells in the conjunctiva express RXRα and when stimulated
with LPS they produce factors known to stimulate IL-17
production by γδ T cells (8). We compared the stimulatory
activity of conditioned media from LPS-treated monocytes
to recombinant IL-23 on IL-17 production by γδ T cells
and found they are equivalent (Figure 4A). Furthermore,
treatment of LPS-stimulated cultured monocytes with 9-cisRA
significantly reduced stimulatory activity of their conditioned
media (Figure 4). Consistent with these findings, we found that
both genes encoding the IL-23 heterodimer (Il23a and Il12b), as
well as other γδT inducing cytokines Il1α, Il1β, and Tnf-α are
significantly upregulated in LPS-stimulated cultured monocytes
measured in a Nanostring array (Figure 4B, top), and these
are suppressed by addition of 9-cis RA to the culture media
(Figure 4B bottom).

Retinoic acid is known to cause epigenetic changes that
can affect transcription factor binding and gene transcription

(35). We performed ATAC seq on cultured monocytes to

determine if 9-cis RA treatment changes the number of open

transcription factor (TF) binding motifs in LPs-stimulated

cultured monocytes. The PCA plot in Figure 4C shows
marked differences in peak region sequences in areas of
open chromatin between control, LPS-treated and LPS+9-cis
RA treated cells. LPS treatment significantly increased the
number of TF motifs regulating transcription of inflammatory
cytokines, including NFkB and Jun-AP-1 (Figure 4D, top
left), but did not reduce the number of any known motifs
(Figure 4D, bottom left). Compared to LPS treatment alone, 9-
cis RA+LPS increased the number of 5 known motifs, including
RAR:RXR Figure 4D (top right), and decreased the number
of 4 motifs, including AP-1 Figure 4D (bottom right). AP-1
is a key transcription factor for Il23a and other inflammatory
mediators (36).

Taken together, these findings indicate that RXRα suppresses
the production of IL-17 by activated γδT cells and the production
of monocyte cytokines known to stimulate IL-17 production by
γδT cells.
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FIGURE 5 | Pathway analysis. (A) Heatmap of canonical pathways showing significant differences between strains and cell clusters was generated by Qiagen

Ingenuity Pathway Analysis. This analysis identified the pathways from the Ingenuity Pathway Analysis library of canonical pathways that were most relevant to the

(Continued)
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FIGURE 5 | data set. Molecules from the data set that had an adjusted p < 0.05 and were associated with a canonical pathway in the Ingenuity Knowledge Base

were considered for the analysis. The significance of the association between the data set and the canonical pathway was measured in two ways: (1) A ratio of the

number of molecules from the data set that map to the pathway divided by the total number of molecules that map to the canonical pathway is displayed; and (2) A

right-tailed Fisher’s Exact Test was used to calculate a p-value determining the probability that the association between the genes in the dataset and the canonical

pathway is explained by chance alone. IL-17 signaling and PPARα/RXRα activation pathways are among the pathways identified with significant differences. (B) IL-17

signaling pathway network showing the relationship between molecules generated with Qiagen Ingenuity Pathway Analysis with modification. All connections are

supported by at least one reference from the literature, from a textbook, or from canonical information stored in the Ingenuity Knowledge Base. Lines and arrows

between nodes represent direct (solid) or indirect (dashed) interactions between gene products and are displayed by cellular localization (extracellular space, plasma

membrane, cytoplasm, or nucleus). Rectangles are cytokines and cytokine receptors, triangles are phosphatases, concentric circles are groups or complexes,

diamonds are enzymes and ovals are transcriptional regulators or modulators. P, phosphorylation; U, ubiquitination. (C) Heatmap of differentially expressed genes in

conjunctival bulk RNA seq between C57BL/6 (B6) and Pinkie strains that includes IL-17 pathway associated genes in red and other innate inflammatory mediators. All

the genes passed through the Benjamini-Hochberg procedure to exclude false discovery; the selected genes had an adjusted p > 0.05. Each row represents a

specific gene, the right column represents the Pinkie strain and left column represents B6.

Differential Pathway Analysis Reveals
Increased IL-17 Signaling in Pinkie
RXRα nuclear receptor regulates the expression of an array
of inflammatory mediators. We used QIAGEN Ingenuity
Pathway Analysis (IPA) tool to identify significant differences
(p < 0.05) between B6 and Pinkie in inflammatory signaling
pathways generated from the scRNAseq data. These pathways
grouped by strain and cell type are displayed in the heatmap
shown in Figure 5A. The greatest differences are seen in
neutrophils, myeloid (macrophage and monocyte) and cDC2
cells and include IL-6, LPS-stimulated MAPK, NFkB, IL-17,
and PPARα/RXRα signaling pathways that contain mediators
relevant to dry eye pathogenesis (8, 37–42). PPARα/RXRα

signaling was significantly reduced in MHCII low macrophages
and monocytes.Two other pathways, CDC42 and CDk5, have
been implicated in NLRP3 inflammasome activation (43, 44).
The annotated IL-17 signaling pathway generated with IPA
(Figure 5B) contains downstream signaling pathways (MAPK
and NFkB) that stimulate expression of cytokines that induce IL-
17 production by γδT cells, as well as IL-17 inducible mediators
(e.g., matrix metalloproteases, SPRR2) that are involved in the
development of the cornea and conjunctival epithelial disease of
dry eye.

The conjunctiva is a mucosal tissue composed of epithelial,
stromal and immune cells that express IL-17 receptors and
are potential IL-17 targets (45). To determine if IL-17 related
genes/pathways are increased in the whole conjunctiva in Pinkie,
we compared expression profiles generated from bulk RNA
seq performed on whole conjunctival lysates harvested from
B6 and Pinkie (Figure 5C). Similar to the scSeq performed
on immune cells, we found IL-17a and IL-17f together with
IL-17 receptor (IL-17rc) to be among of the top differentially
expressed genes (adj p < 0.02) with increased expression in
Pinkie (Figure 4C). There is also increased expression of other
IL-17 signaling pathway associated genes, including cornified

envelope precursor genes Sprr2g and Sprr2h (46, 47), p38 Mapks

[Mapk12 (p38 gamma), andMapk13 (P38 delta)], and chemokine

CCL6. Various other inflammatory mediators and signaling

molecules (e.g., Tlr3, Tlr5) are also increased. Taken together, this

data indicates that RXRα suppresses the production of IL-17 by

γδ T cells and that IL-17 can exert protean influence on epithelial

and immune cells on the ocular surface.

IL-17 Neutralization Suppresses the
Development of Ocular Surface Disease in
Pinkie Bone Marrow Chimeras Exposed to
Desiccating Stress
We previously reported IL-17 causes corneal barrier disruption
in mice subjected to experimental desiccating stress (DS) by
stimulating expression ofmetalloproteinases (MMP-3 andMMP-
9) that lyse tight junction proteins in the apical corneal
epithelium (39). In that study, mice treated with anti-IL-17
had significantly less barrier disruption and reduced MMP-
9 expression, MMP-9 immunostaining and gelatinase activity.
In a previously unpublished experiment, we also found IL-17
neutralization prevented DS-induced conjunctival goblet loss
(Figure 6A).

We hypothesized that bone marrow chimeras created with
Pinkie donor cells would produce greater ocular surface disease
than those created with B6 donor cells because reduced RXRα

signaling in Pinkie will lead to an increased infiltration of
the conjunctiva by donor γδT cells. Bone chimeras created
by a previously reported method (17) and summarized in
Supplementary Figure 3 were exposed to DS for 5 days (17).
Chimeric mice were treated with either anti-IL-17 or isotype
control antibodies every 2 days starting 2 days prior to initiating
DS. After 5 days of DS, the percentages of conventional T cells,
γδT cells, and IL-17+ cells in the conjunctiva were evaluated
by flow cytometry and measures of dry eye disease, including
corneal MMP-9 immunoreactivity and gelatinase activity (in situ
zymography), and conjunctival goblet cell number. Pinkie donor
chimeras were found to have a greater percentage of γδT cells and
a greater percentage and MFI of IL-17+γδT cells (Figures 6B,C).
In both chimeras, γδT cells are the major IL-17 producers.
Among IL-17+ cells, the ratio of γδT cells/conventional T cells
is 89% in B6 chimeras and 97% in Pinkie chimeras (p < 0.0001
for both). MMP-9 immunoreactivity is significantly lower in
anti-IL-17 treated than control-treated Pinkie chimeras, and in
situ gelatinase activity was lower in the anti-IL17 treated Pinkie
and B6 chimeras (Figure 6D). Anti-IL-17 treatment also reduced
MMP-9 and SPPR2 immunostaining in the Pinkie corneal
epithelium and gelatinase activity in the corneal epithelium
of both strains (Figure 6D). Conjunctival goblet cell density
was significantly higher in the anti-IL-17 treated chimeras
(Figure 6E).
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FIGURE 6 | Comparison of γδT and dry eye signs in bone marrow chimeras. (A) Conjunctival goblet cell number in C57BL/6 mice exposed to desiccating stress (DS)

for 5 days (DS5) with or without systemic treatment with anti-IL-17 neutralizing antibody or isotype control as described in the methods. (B) Representative flow

(Continued)
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FIGURE 6 | cytometry plots of the donor (CD45.2+) and the recipient (CD45.1+) bone-marrow derived cells (left) and γδ TCR high and low CD3+ T cells in the

conjunctivas of Pepc/BoyJ recipient (host) chimeric mice (age 8–10 weeks) reconstituted with B6 or Pinkie bone marrow after 5 days of desiccating stress. The

method of chimera creation is provided in Supplementary Figure 3. (C) Top left: bar graph shows the percentage of CD45.2+CD3+γδTCR+ in the recipient

conjunctiva (n = 11/group). Bottom left: histogram of percentage of IL-17+ cells from CD45.2+CD3+γδTCR+ gate in representative sample. Right: mean +/– SD

percentage (top) and mean fluorescent intensity (bottom) of IL-17A+CD3+γδ TCR+ cells in the conjunctiva of chimeras (n = 11/group). (D) Confocal microscopy of

whole-mount conjunctivas or cryosections obtained from B6 and Pinkie bone marrow chimeras created as shown in Supplementary Figure 3 with or without

systemic treatment with anti-IL-17 neutralizing antibody or isotype control as described in the methods and exposed to DS for 5 days stained with an antibody

specific for MMP-9 (top), evaluated for in situ gelatinase (zymography) activity in cryosections (middle), or stained with polyclonal antibody to cornified envelope

precursor SPRR2 (bottom) (n = 3 per group). Bar graphs to the right show mean ± SD fluorescent intensity of the fluorochrome/fluorescent gelatin measured by

Nikon Elements software (n = 3/group). (E) Conjunctival goblet cell number in Pinkie donor bone marrow chimeric mice exposed to desiccating stress (DS) for 5 days

(DS5) with or without systemic treatment with anti-IL-17 neutralizing antibody or isotype control as described in the methods. Representative photomicrographs of

periodic acid-stained sections for each treatment group (left) and graph of mean ± SD of goblet cells/mm (n = 5). Some goblet cells in the control group appear

entrapped in the epithelium as previously reported (24).

Taken together these data show that reduced RXRα signaling
enhances migration of γδT cells to the conjunctiva in dry eye and
that IL-17 produced by these cells causes corneal and conjunctival
epithelial disease.

Pinkie Develops Corneal
Neovascularization, Opacification, and
Ulceration With Aging
We observed the Pinkie strain develops corneal opacification,
neovascularization and ulceration with aging (Figure 7A).
Corneal opacity and vascularization were noted in 14% of 144
Pinkie eyes compared to only 2% of 100 B6 eyes. We compared
gene expression profiles in NanoString myeloid innate immunity
arrays performed on whole cornea lysates prepared from 45 to
60 week old B6 or Pinkie with normal-appearing corneas (NC)
or from Pinkie with ulcerated corneas (UC). A volcano plot
shows 4 genes with significantly elevated expression in Pinke NC
compared to B6 NC (Figure 7B, top left). Significantly increased
expression of numerous genes are noted when comparing normal
and ulcerated Pinkie corneas (Figure 7B, right). Included among
the significantly differentially expressed genes in the Pinkie
ulcerated cornea are the IL-17 signaling pathway genes displayed
in the heatmap (Figure 7C). These include γδT inducers (i.e., Ltb,
Tnf, Nfkb2, Relb) and Il17ra.

Expression levels of several factors that promote corneal
vascularization (Vegfa, Fgf7) and ulceration (Mmp9) measured
by PCR are significantly increased in the Pinkie UC (Figure 7D).
Interestingly, expression of Vegfb which has trophic activity on
corneal nerves was reduced in the Pinkie UC (48). Consistent
with these findings is increased immunoreactivity of blood
and lymphatic endothelial markers CD31/LYVE-1 and MMP-
9 in the corneal epithelium of older Pinkie compared to
similarly aged B6 (Figure 7E). These findings suggest that dry
eye combined with chronic elevation of pro-angiogenic and
proteolytic factors in Pinkie promotes corneal vascularization,
opacification and ulceration.

DISCUSSION

This study investigated the mechanism for developing dry eye
disease in the Pinkie strain with a loss of function RXRα

gene mutation. Using scRNA-seq as an unbiased approach
to investigate the conjunctival immune cell population, we

discovered a four-fold greater percentage of conjunctival γδ T
cells with higher expression of IL-17 and other γδ T cell signature
genes. The sequencing findings are confirmed by flow cytometry
and confocal microscopy that shows these cells are located in the
stroma beneath the conjunctival epithelium. The Pinkie strain
developed accelerated signs of dry eye disease in the cornea and
conjunctiva. To determine the pathogenicity of Pinkie γδ T cells
we created bone marrow chimeras using Pinkie donor cells and
found a significant reduction in corneal and conjunctival disease
in the group receiving IL-17 neutralizing antibody.

Our group and others have found that IL-17 is involved
in the pathogenesis of the corneal epithelial disease of dry
eye (37, 39). IL-17 stimulates MMP expression by the corneal
epithelium, as well as neutrophil recruitment and activation
(39, 49). MMP-9 disrupts the corneal epithelial barrier via lysis
of tight junction proteins in the apical epithelium that results in
accelerated desquamation (50). Conjunctival goblet cell loss in
dry eye can develop from cytokine-mediated apoptosis or altered
differentiation with entrapment of goblet cells by abnormally
differentiated epithelium with increased expression of cornified
envelope precursors such as SPRR2 which is induced by IL-17
(46, 47).

Our previously reported studies found antibody
neutralization of IL-17 significantly reduces corneal barrier
disruption measured by OGD permeability in the desiccating
stress model of dry eye (39). While performing those studies,
we also found anti-IL-17 prevented desiccation-induced
conjunctival goblet cell loss. Studies reported by others have
also found that IL-17 produced by Th17 cells causes cornea
and conjunctival disease (37, 51). IL-17 is primarily produced
by CD4+ T cells and γδ T cells. IL-17 was detected in CD4+

T cells by flow cytometry in previous studies using the DS
dry eye model, but most did not evaluate IL-17 production
by conjunctival γδ T cells. Increased expression of IL-17 was
noted in the conjunctival epithelium of patients with Sjögren

syndrome keratoconjunctivitis sicca, but the cellular source

was not determined (52). γδ T cells were the second most

prevalent population of intraepithelial lymphocytes in the mouse

conjunctiva (53), and Coursey et al. reported that IL-17 is

produced by γδ T cells in the conjunctiva of the NOD mouse
strain that develops KCS and is used as a model of SS (54). This
study suggests that conjunctival γδ T cells are another source of
IL-17 and that IL-17 expression in these cells is regulated by the
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FIGURE 7 | (A) Appearance nonulcerated (NC) C57BL/6 (B6) and NC and ulcerated (UC) Pinkie corneas in 40–50-week-old mice. (B) Volcano plots of differentially

expressed genes in corneas of NC B6 and Pinkie (left) and NC and UC Pinkie (right) detected by a mouse myeloid Innate Immunity Nanostring array. Dotted vertical

(Continued)
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FIGURE 7 | lines indicate < or >1.5 log2 fold change and horizontal lines indicate genes with an adjusted p > 0.05. Red dots are genes that are significantly increased

in Pinkie NC vs. B6 NC (left) or in Pinkie UC vs. Pinkie NC (left). Labeled genes in the left plot are found in the IL-17 signaling pathway. (C) Heat maps generated from

the NanoString array of IL-17 pathway genes. (D) Fold change of expression level of factors involved in the pathogenesis of corneal vascularization (Vegfa, Tnf, Fgf7)

or corneal ulceration (Mmp9) measured by RT-PCR. Values are mean ± SD (n = 4/sample). (E) Immunostaining of blood (CD31) and lymphatic (LyVE-1) endothelial

cell markers in 25- and 60-week-old B6 and Pinkie corneas. Arrows indicate corneal epithelium. (n = 4/sample). *p < 0.01; **p < 0.001; ****p < 0.0001.

FIGURE 8 | Summary of RXRα mediated suppression of IL-17 production by γδ T cells and IL-17 mediated dry eye disease. RXRα suppresses the production of IL-17

inducers (IL-23, IL-1β, and TNF-α) by myeloid cells and directly suppresses IL-17 production by activated γδ T cells. IL-17 promotes corneal barrier disruption,

increased expression of the cornified envelope precursor SPRR2 that decreases epithelial lubricity and seals goblet cell openings and reduction in mucin-filled

conjunctival goblet cells.

RXRα nuclear receptor. γδ T cells are found in many mucosal
surfaces and can be activated in a non-antigen-specific manner
by a variety of PAMPs and conceivably to desiccating stress that
activates the same signaling pathways as microbial products (55).

The RXR nuclear receptor family regulates the transcription
of numerous genes involved in immune function, cell
differentiation and homeostasis. RXRα may function as a
homodimer or a heterodimer with partner receptors (PPARγ

and the vitamin D receptor) that have been found on the
ocular surface (56, 57). The ocular surface is a retinoid-rich
environment (8). Besides the retinol form of vitamin A in tears
that is converted to the natural ligand 9-cis RA by aldehyde
dehydrogenases in myeloid and epithelial cells on the ocular
surface (6), nutritional ligands such as vitamin D, the omega-3
fatty acid DHA in fish oil and oleic acid in olive oil can bind
certain RXR dimeric partners (3).
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We previously reported that the majority of CD11b+myeloid
cells are RXRα positive and respond to retinoic acid (8). The
discovery of increased IL-17 producing γδ T cells in the Pinkie
strain indicates RXRα is also an important regulator of IL-17
production by γδ T cells. The synthetic retinoid AM80 was found
to suppress IL-17 production by γδ T cells stimulated with anti-
CD28 antibody and a cytokine cocktail of IL-23 and IL-1β (30).
We found 9-cisRA suppressed IL-17 production by > 70% in
cultured γδ T cells stimulated by CD28 beads or beads plus
IL-23. In addition to direct suppression of γδ T cells, was also
found 9-cisRA suppresses the expression of γδ T cell inducers
(IL-23, IL-1, TNF-α) by cultured monocytes and we previously
reported reduced levels of IL-1β and IL-23β in supernatants of
9-cis RA treated monocytes (8). Monocyte conditioned media
has stimulatory activity equivalent to recombinant IL-23, but
this was significantly reduced in monocytes cultured with 9-cis
RA. We also found that 9-cis RA decreases the number of open
AP-1 transcription factor binding motifs detected by ATAC seq.
Both AP-1 and NFkB pathways are involved in stimulated IL-
17 expression by γδ T cells (25, 58). Figure 8 summarizes the
primary and secondary suppressive activity of 9-cis RA on the
production of IL-17 by γδ T cells.

There are several weaknesses of this study. We performed
single-cell profiling on conjunctival immune cells because it is
difficult to obtain a sufficient number of donor cells from the
cornea. It is possible the corneal pathology results from IL-17
produced by conjunctival γδ T cells, but IL-17 producing γδ T
cells have been found to infiltrate the cornea following epithelial
trauma (34, 59). We performed ATAC seq on monocytes which
demonstrated the epigenetic effects of 9-cis RA has on these cells.
Our discovery that RXRα suppresses IL-17 production by γδ T
cells is rationale for evaluating epigenetic activity of 9-cis RA on
these cells in the future.

The findings of this study suggest that RXRα retinoid
signaling suppresses activation of dry eye disease-inducing
IL-17 producing conjunctival lymphocytes under homeostatic
conditions. Additional studies will be needed to determine if
this signaling pathway is relevant in human dry eye. This
signaling may be reduced in aqueous tear deficient dry eye due to
reduced secretion of retinol into tears by dysfunctional lacrimal
glands. Additionally, we have reported decreased aldehyde
dehydrogenase expression in the conjunctiva in dry eye that
could result in decreased RA synthesis (8). Strategies that
maintain the ocular surface retinoid axis in dry eye may prevent
IL-17 induced epithelial pathology.
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irradiation with 1,300 cGy, followed by intraorbital injection of 2 × 10 ∧ 6 bone

marrow cells from wild type B6 or Pinkie donors. Two weeks after receiving donor

cells, chimeric mice were exposed to desiccating stress for 5 days to create dry

eye and the presence of donor bone marrow-derived cells was identified by flow
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cytometry performed on conjunctival samples. The representative scatter plot

shows the endogenous (CD45.1) or transplanted (CD45.2) immune cells in the

conjunctiva. The phenotype of CD45.2+ cells shown in the gate was

further characterized.

Supplementary Table 1 | Antibodies in this study.

Supplementary Table 2 | Top differentially expressed genes in cell clusters.

Supplementary Table 3 | Differentially expressed genes per cell cluster.
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