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Abstract

a major contributor to the current epidemic of MDR-TB.

Compensatory mutations have been suggested to promote multidrug-resistant tuberculosis (MDR-TB) transmission,
but their role in facilitating the recent transmission of MDR-TB is unclear. To investigate the epidemiological

significance of compensatory mutations, we analyzed a four-year population-based collection of MDR-TB strains from
Shanghai (the most populous city in China) and 1346 published global MDR-TB strains. We report that MDR-TB strains
with compensatory mutations in the rpoA, rpoB, or rpoC genes were neither more frequently clustered nor found in
larger clusters than those without compensatory mutations. Our results suggest that compensatory mutations are not

Introduction

It had been thought that drug-resistance mutations
would introduce a fitness cost into resistant Mycobacter-
ium tuberculosis (M. tb)", and the resulting reductions in
virulence and transmissibility would prevent multidrug-
resistant tuberculosis (MDR-TB) strains from dis-
seminating widely>>. Early mathematical models pre-
dicted that MDR-TB should remain a local problem?®, but
the steady growth of the MDR-TB epidemic worldwide
has contradicted these early expectations. A subsequent
study suggested that even if the average fitness of MDR-
TB strains is low, a small proportion of resistant strains
that are relatively more fit will outcompete the less fit and
drug-susceptible strains*. These more fit, resistant strains
were thought to contain compensatory mutations that
would restore fitness and thus constitute an important
factor in the spread of MDR-TB strains®®, and MDR-TB
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outbreaks in HIV-negative patients were regarded as
successful examples of compensatory evolution”.

Recent studies have investigated the role of compensa-
tory mutations in MDR-TB transmission by comparing
the presence of compensatory mutations in clustered or
nonclustered strains®® and found that putative compen-
satory mutations in 7poC and rpoA were more common in
VNTR-clustered strains. However, these studies did not
determine whether the putative compensatory mutations
accumulated before or after the MDR-TB strains were
transmitted. If these compensatory mutations accumu-
lated after transmission, they should not be considered as
factors that promote or facilitate transmission. Moreover,
the sampling methods used in these studies were not
population based, and the 1S6110/MIRU-VNTR defined
clusters could have perhaps been further separated by
whole-genome sequencing (WGS). To avoid these pitfalls,
we examined the role of compensatory mutations in
MDR-TB transmission by using WGS to determine
transmission clusters in the MDR-TB strains collected in
Shanghai over a 4-year period (2009-2012). Our findings
contradict the previous inferences and do not support a
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significant role of compensatory mutations in promoting
the ongoing MDR-TB epidemic.

Results
Collection of MDR-TB isolates

From 2009 to 2012, a total of 324 MDR-TB isolates
were collected from 31 tuberculosis (TB) hospitals in
Shanghai, China. All of these isolates were MIRU-VNTR
genotyped, and 122 clustered MDR-TB strains had
undergone WGS previously'®. Here, to determine the
presence of compensatory mutations in VNTR non-
clustered MDR-TB strains, we randomly selected 105
isolates from the remaining 202 VNTR nonclustered
MDR-TB isolates to sequence the full-length genes rpoA,
rpoB, and rpoC. The combined results of the 227
Shanghai MDR-TB strains were termed the “Shanghai
dataset”. Meanwhile, we obtained WGS records of 8331
M. tb isolates of global origin from the European
Nucleotide Archive (ENA) (Supplementary Table 1), and
1346 of these strains were identified as MDR-TB (Sup-
plementary Table 3). Of these MDR-TB strains, 602 were
collected through retrospective cohorts or a population-
based approach (Supplementary Table 1) and thus were
appropriate for the subsequent analysis. The data from
the global MDR-TB isolates were termed the “Global
dataset”.

Identification of putative compensatory mutations and
transmission clusters

Through phylogenetic reconstruction of the MDR-TB
strains obtained above, we found 60 nonsynonymous
mutations in the rpoA, rpoB, or rpoC genes that had arisen
at least twice in parallel and were identified as putative
compensatory mutations (Fig. 1, Supplementary Table 4).
Of these mutations, six were in rpoA, 16 in rpoB, and 38 in
rpoC. We set “mutation parallelism” as a criterion to
exclude lineage mutations or neutral polymorphisms that
were fixed due to genetic drift. Although this filter might
also exclude some uncommon compensatory mutations,
it increased the level of confidence that the mutations
identified were truly compensatory mutations. We inclu-
ded rpoB in the search for putative compensatory muta-
tions because additional mutations in rpoB have been
reported to both restore fitness and increase the level of
rifampicin resistance’. MDR-TB strains with less than 12
Single-nucleotide polymorphisms (SNPs) difference were
considered to constitute a transmission cluster. A total of
36 such clusters were found in the Shanghai dataset, and
117 clusters were identified in the Global dataset.

Three types of transmission clusters

To distinguish whether the compensatory mutations
had occurred before or after transmission, we divided the
MDR-TB clusters into three types (Fig. 2a): (1) C
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(compensated)-type clusters, in which all strains harbor
the same compensatory mutation—indicating transmis-
sion of a compensated MDR-TB strain (compensatory
mutations occurring before transmission); (2) N (non-
compensated)-type clusters, containing only strains with
no putative compensatory mutation—indicating trans-
mission of a noncompensated MDR-TB strain; (3) M
(mixed)-type clusters, in which MDR-TB strains harbored
different compensatory mutations or only a proportion of
the strains in the cluster contained compensatory muta-
tions, indicating that the compensatory mutations had
occurred after transmission (see more details about
M-type clusters in the discussion). The groups so defined
are theoretically similar to the three prototypical types of
clusters used to evaluate the role of drug resistance in
transmission'!. In the Shanghai dataset, 12 transmission
clusters were determined as C-type, 18 as N-type, and six
as M-type (Fig. 2a); in the Global dataset, 26 transmission
clusters were determined as C-type, 84 as N-type, and
seven as M-type.

Compensated MDR-TB strains did not cause larger
transmission clusters

If the putative compensatory mutations stimulated the
transmission of MDR-TB, then C-type clusters would be
expected to be larger than N-type clusters, but in the
Shanghai strains, the C-type clusters were not larger than
either the N-type or the M-type clusters (Wilcoxon rank-
sum test, P=0.4053 and 0.9587, respectively) (Fig. 2b).
An analysis of the size of the clusters in the global MDR-
TB strains yielded similar results (Wilcoxon rank-sum
test, P=0.3816 and 0.2277, respectively) (Fig. 2c). Nota-
bly, the largest clusters observed in both the Shanghai and
Global datasets (with seven and 23 linked cases, respec-
tively) were caused by MDR-TB strains without com-
pensatory mutations (Fig. 2b, c). Moreover, we did not
find any particular compensatory mutation that was
associated with larger transmission clusters in either
dataset. These results suggest that compensated MDR-TB
strains are not prone to generate more secondary cases
than noncompensated MDR-TB strains do.

Compensated MDR-TB strains were not more likely to be
clustered

Previous studies suggested that MDR-TB strains with
compensatory mutations were more frequently clus-
tered®”. However, these studies treated “compensatory
mutations” as a static feature and ignored the possibility
that compensatory mutations could occur in secondary
cases that were initially infected with noncompensated
MDR-TB strains. This is probably what has occurred in
the
M-type clusters (Fig. 2a), and therefore, it should
not be considered as representing the transmission of
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Fig. 1 Putative compensatory mutations in the rpoA, rpoB, and rpoC genes identified in this study. Each putative compensatory mutation
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Fig. 2 Compensated MDR-TB strains were not associated with larger transmission clusters. a A maximum likelihood phylogenetic tree
showing genomic clusters in the Shanghai dataset. The strain identifiers were “year, strain number, and compensatory mutation type”. The three
genomic cluster types are illustrated with different colors, as indicated. The isolate names in gray represent the VNTR-clustered strains that were
separated by WGS. Comparison of cluster sizes in C-type, M-type, and N-type clusters in the Shanghai MDR-TB dataset (b) and the Global MDR-TB
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Table 1 Ratios of compensated strains in clustered and nonclustered MDR-TB groups
Groups Total With CMs? Without CMs® Ve P value
Clustered MDR-TB (%)° 78 32 (41.0%) 46 (59.0%) 2.260 0.133
Nonclustered MDR-TB (%) 133 41 (30.8%) 92 (69.2%)
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Fig. 3 Recently formed MDR-TB strains would decrease the ratio of compensatory mutations in the nonclustered MDR-TB group. a A
theoretical scheme shows that recently formed MDR-TB strains would be included, while the secondary clustered strains resulting from transmission
would occur outside of the study's observation period. Thus, newly formed MDR-TB strains would be assigned to the nonclustered group. This
schematic diagram also shows that transmission that occurred within the first 2 years will be captured in our study, while the secondary cases
resulting from transmission that occurred during the last 2 years could be beyond the study’s observation period. b Comparison of the number of
drugs to which strains are resistant in clustered and nonclustered MDR-TB strains. ¢ Comparison of the number of drug-resistance mutations in
clustered and nonclustered MDR-TB strains. d Comparison of collection time distribution between clustered and nonclustered MDR-TB groups; the
collection time of each isolate was counted as “days to the end of the study duration (31 December 2012)"

compensated MDR-TB strains. Accordingly, we excluded
M-type clusters from an analysis of the ratios of com-
pensatory mutations in the clustered and nonclustered
groups, and compared only C-type and N-type clusters.
Surprisingly, no significant difference was observed in the
ratios of compensatory mutations in clustered compared
to nonclustered groups, indicating that compensated
MDR-TB strains were not more frequently clustered
(Table 1).

To allow a comparison with previous studies, we repe-
ated the analysis without excluding the M-type clusters.
When the M-type clusters were included, the ratio of
compensatory mutations in the clustered group was sig-
nificantly higher than that in the nonclustered group
(Supplementary Table 5), similar to the results of previous
studies. In our M clusters, 62.5% (10/16) of MDR-TB
strains harbored compensatory mutations, which was
much higher than that of either clustered (41.0%) or
nonclustered (30.8%) groups. M-type clusters are those in
which compensatory mutations are present in only some
of the strains in a cluster, presumably because the
mutations have occurred during the transmission of the
clustered strain. Therefore, when the M-type clusters are
included with the clustered MDR-TB strains, the

mutations that occurred after transmission result in a
higher ratio of compensatory mutations in clustered than
in nonclustered MDR-TB strains.

The dilution effect of recently formed MDR-TB strains
Even when the M-type clusters were excluded, the
clustered group had a nonsignificantly higher ratio of
compensatory mutations than that of the nonclustered
group (41.0% versus 30.8%). One explanation might be
that new MDR-TB strains are continuously emerging
during antibiotic treatment, and these new MDR-TB
strains might not have had enough time to accumulate
compensatory mutations. For the same reason, within the
4-year duration of the study, they might not have had
enough time to cause secondary TB cases (Fig. 3a). Thus,
these recently formed “young” MDR-TB strains would be
assigned to the nonclustered group and thereby decrease
the ratio of compensatory mutations in this group. In
contrast, all strains in MDR-TB clusters are relatively
“older” (had become MDR-TB prior to their transmis-
sion), and thus would have had a longer period to accu-
mulate additional drug resistance and compensatory
mutations than strains in the nonclustered group. If this is
true, then clustered MDR-TB strains should have wider
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drug-resistance spectra (number of drugs to which they
are resistant) than those of nonclustered MDR-TB strains.

To test this inference, we compared the drug-resistance
spectra of the clustered versus nonclustered MDR-TB
strains in the Global dataset. This analysis demonstrated
that the median number of antibiotics to which
nonclustered MDR-TB strains were resistant was 4.22
(4.10 ~ 4.34), while for clustered MDR-TB strains it was
5.13 (5.05 ~ 5.21) (Student’s ¢-test, P < 0.0001, Fig. 3b). In
addition, as a single M. tb strain can accumulate
multiple mutations that confer resistance to a single
antibiotic (evolution of high-level resistance)'* ', we
further compared the numbers of drug-resistance-
conferring mutations in these two groups. Consistent
with our prediction, the clustered MDR-TB strains had,
on average, more drug-resistance mutations than the
nonclustered MDR-TB strains did (Student’s t-test,
P <0.0001, Fig. 3c).

Finally, to verify whether nonclustered MDR-TB strains
tended to occur toward the end of the study period, i.e.,
were indeed younger, we compared the distributions of
the collection times of the initial cultured clinical speci-
mens (counted as days to the end of the study duration)
for the isolates in the clustered versus nonclustered
groups. We found that the isolates in the nonclustered
group had a shorter average time since collection than the
isolates in the clustered group did (mean values: 762.08
versus 903.14, P<0.0001, Wilcoxon rank-sum test,
Fig. 3d), which suggests that the strains in the non-
clustered group tended to be isolated toward the end of
the study period. These analyses support our inference
that clustered MDR-TB strains differ from nonclustered
MDR-TB strains, suggesting a dilution effect from
recently formed MDR-TB strains that could in turn pro-
vide an explanation for the relatively lower ratio of
compensatory mutations in the nonclustered MDR-TB

group.

Discussion

Our findings suggest that, in contrast to published
reports®'®>, MDR-TB strains with compensatory muta-
tions are not more frequently found in clusters, nor are
they more likely to belong to larger transmission clusters
than the MDR-TB strains without these mutations do.
Previous studies have made direct comparisons of the
number of strains with putative compensatory mutations
in clustered versus nonclustered MDR-TB strains and
reported an enrichment of compensatory mutations in the
clustered group®’. However, we observed that M-type
clusters had an impact on this comparison because
inclusion or exclusion of these clusters would dramati-
cally alter the results. Hence, we infer that the previous
observations would probably change if they excluded
M-type clusters.
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We believe in the accuracy of the results of our study
because it incorporated several methodological improve-
ments. First, we used WGS to identify transmission
clusters, which is more precise than I1S6110 or MIRU-
VNTR'®. In our data, a total of 28 VNTR-clustered strains
(23% of the VNTR-clustered strains) were further sepa-
rated by WGS. Second, we set strict criteria to identify
putative compensatory mutations and excluded phyloge-
netic/lineage mutations or neutral polymorphisms. Third,
our analysis discriminated between the accumulation of
compensatory mutations before or after the transmission
of MDR-TB strains (i.e., C- versus M-type clusters) in the
analysis of cluster size and the ratio of compensatory
mutations.

The effect of drug resistance on transmission has been
long debated®'”, and different studies have reported
heterogeneous results suggesting that MDR-TB strains
can be ten times more or ten times less transmissible than
drug-susceptible strains'"'®, However, the reasons
underlying these variations could simply reflect the dif-
ferences in study settings and methodologies
employed®'®; the drug-resistant strains reported to have
reduced transmissibility were found in settings with
effective TB control'!, while strains with increased
transmissibility were reported from regions with high TB
burdens®'®. Thus, it seems more likely that the hetero-
geneous and discordant published results serve to
demonstrate that TB transmission is a process that is
primarily influenced by environmental factors such as TB
control policy, time with the illness before diagnosis,
treatment efficacy, and general quality of the health-care
systemlg.

We consider that there are at least four factors that can
obscure the function of compensatory mutations in MDR-
TB transmission. First, the efficacy of the TB control
program. In countries or regions with high MDR-TB
prevalence and poor management of MDR-TB patients,
the transmission of MDR-TB strains is highly likely, even
in the absence of compensatory mutations. In such cir-
cumstances, outbreaks and epidemics of MDR-TB are
mainly driven by environmental factors®>*'. Second,
MDR-TB patients are, on average, infectious for longer
periods due to the long course of treatment and high
treatment failure rates®>**, Thus, there might be more
chances for MDR-TB patients to generate secondary
cases, which could conceivably compensate for a modest
decrease in fitness. Third, the most common drug-
resistance mutations carried by clinical isolates are asso-
ciated with the lowest fitness cost in vitro, and such slight
decreases in fitness may not be sufficient to affect trans-
mission™®. Moreover, positive epistatic effects between
different drug-resistance mutations could further ame-
liorate the fitness cost imposed by individual drug-
resistance mutations'”**, Fourth, it is still possible that
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the fitness cost measured in vitro might not reduce the
ability of M. tb to transmit and establish in a new host
in vivo®>?®, This idea was supported by a previous study
using tuberculin skin testing to trace infection that found
an equal prevalence of infection among contacts exposed
to patients harboring both drug-resistant and drug-
susceptible strains®’.

The objective of this study was to investigate the
effects of compensatory mutations on MDR-TB trans-
missions that occurred within three or fewer years (recent
transmission)®, and the 4-year observation window
should have captured most of the transmissions that
occurred within the first 2 years of the study. For
transmissions that occurred during the last 2 years
of the study, the secondary cases might have developed
TB disease after our observation window. (Fig. 3a).
However, we believe that the transmission pattern
in the last 2 years should not substantially differ from that
in the first 2 years, and therefore, further extending the
time frame of our study would not change its major
conclusion.

In conclusion, we did not observe a promoting influence
of compensatory mutations on the transmission of MDR-
TB, and we suggest that the putative contribution of
compensatory mutations may be overwhelmed by the
complex and more powerful effects of environmental
factors.

Methods
MDR-TB datasets

A total of 324 MDR-TB isolates were collected from 1
January 2009 to 31 December 2012, in Shanghai (the most
populous city in China) during a population-based
observational study'®. MIRU-VNTR genotyping (12 loci)
was performed for all MDR-TB strains, and the clustered
strains were further subjected to WGS'?. In the present
study, we further sequenced the entire gene sequences of
the rpoA, rpoB, and rpoC genes in 105 nonclustered
MDR-TB strains to detect putative compensatory muta-
tions. The PCR amplicons were sent for Sanger sequen-
cing, and the results were analyzed to detect putative
compensatory mutations using Geneious (http://www.
geneious.com/).

A total of 8331 published whole-genome sequences
of M. tb strains were downloaded from the ENA
(http://www.ebi.ac.uk/ena). The quality criteria for
data inclusion were set as follows: (1) the average
sequencing depth should be above 10-fold; (2) the
genome coverage rate should be above 95%. To avoid
false transmission clustering, we included only the last
isolate of longitudinal isolates collected from the same
patient. Information about the geographic isolation of
these isolates was obtained from the articles or the
authors.
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Analysis of WGS data

We used a validated pipeline for the mapping of
sequencing reads to the reference genome'®*. In brief,
the Sickle®® tool was used for trimming WGS data.
Sequencing reads with Phred base quality above 20 and
reads length longer than 30 were retained for analysis.
The whole-genome sequence of the M. tb H37Rv strain
(NC_000962.2) was used as the reference template for
mapping reads. Sequencing reads were mapped to the
reference genome using Bowtie2 (v2.2.9)*'. SAMtools
(v1.3.1)>* was used for SNP calling with mapping quality
greater than 30. Fixed mutations (frequency >75%) were
identified using VarScan (v2.3.9)>* with at least ten reads
supporting and strand bias filter option on. We excluded
all SNPs located in noise or repetitive regions of the
genome (e.g., PPE/PE-PGRS family genes, phage sequen-
ces, insertions or mobile genetic elements).

Identification of putative compensatory mutations

The maximum likelihood method was used to recon-
struct the phylogenetic trees with 500 bootstrap repeats
using MEGA (v6.06)**, and the phylogenetic tree was
further visualized by FigTree (http://tree.bio.ed.ac.uk/
software/figtree/). Putative compensatory mutations in
the rpoA, rpoB, or rpoC genes were identified through the
following criteria: (1) nonsynonymous mutations in the
rpoA, rpoB or rpoC genes that were present in only
rifampicin-resistant strains; (2) each putative compensa-
tory mutation must have arisen at least twice indepen-
dently (parallel selection). We wrote a Python script to
implement these criteria with the phylogenetic tree and a
mutation matrix, and the Python script was uploaded to
GitHub.

Genotypic drug resistance detection and identification of
transmission clusters

Drug-resistance-associated mutations in M. tb were
obtained from the database TBDReaMDB and articles
reporting rifampicin-resistance mutations (Supplemen-
tary Table 2). M. tb isolates carrying any characterized
rifampicin-resistance mutation were identified as
rifampicin-resistant strains, whereas those isolates with
additional isoniazid-resistance mutations were deter-
mined as MDR-TB strains. To determine the drug-
resistance spectra of the MDR-TB isolates in the Global
dataset, we additionally identified drug-resistance-
associated mutations for nine drugs (amikacin, capreo-
mycin, ethambutol, ethionamide, fluoroquinolones,
isoniazid, kanamycin, para-aminosalicylic acid, pyr-
azinamide, streptomycin) by inspection of their whole-
genome sequences. Any isolates with genetic distances of
less than 12 SNPs were classified into a cluster’’. To
compare the collection time distributions between the
isolates in the clustered and nonclustered groups, we
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determined the collection time of each isolate as “days to
the end of the study duration (31 December 2012)”. For
example, if an isolate was collected on 1 January 2011,
then its collection would be counted as “365 (days in
2010) + 366 (days in 2012) =731 days”.

A Python script was written for screening transmission
clusters in both the Shanghai and Global datasets, and this
Python script was uploaded to GitHub.

Statistical analysis

The Wilcoxon nonparametric rank-sum test and Stu-
dent’s t-test were used to compare discrete variables
between groups. Chi-square analysis was performed to
compare the ratios of compensatory mutations in differ-
ent groups. All statistical analyses were performed and
visualized in RStudio (https://www.rstudio.com/).

Ethical approval
The institutional review board of the Shanghai CDC
approved the analysis with the anonymous dataset.

Data availability

The analysis scripts that were written and used in this
study are available online at GitHub (https://github.com/
StopTB/Compen_Muta_Transmit).
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