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Fundamental differences
The differences between b- and g-actin are deeper than those between

the amino acid sequences of these two proteins.
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P
rotein isoforms – proteins that are similar

to each other and perform similar roles

within cells – have played an important

role in the generation of biological diversity

throughout evolution. In some cases a single

gene can encode two or more isoforms by

exploiting a process called alternative splicing.

In other cases two or more closely related genes

are responsible for the isoforms. At its simplest,

isoform generation provides a mechanism to

specialize the properties of a gene or protein at

one of three levels – DNA, messenger RNA

(mRNA) or the sequence of amino acids in the

protein itself (Figure 1). Depending on biologi-

cal context, any one of these levels may be more

or less important than the others, and there is

no a priori reason to believe that only one of

them will be important (Gunning, 2003).

Actins are proteins that are essential for a

number of fundamental cellular processes such

as cell division and muscle contraction. In mam-

mals, there are six actin isoforms, and two of

these – b-actin and g-actin – have been the focus

of much research over the past 40 years. It is not

in dispute that b-actin and g-actin perform differ-

ent functions in mammalian cells, and engage in

distinct biological processes (Dugina et al.,

2009; Patrinostro et al., 2017; Tondeleir et al.,

2013; Müller et al., 2013). Moreover, b-actin is

essential for survival, but g-actin is not

(Perrin and Ervasti, 2010). However, despite all

these differences, the two isoforms differ by only

four amino acids (Vandekerckhove and Weber,

1978).

The fact that b-actin and g-actin are both con-

served across birds and mammals is clear evi-

dence for selective pressure to maintain certain

features of these two proteins. However, it is not

clear why birds and mammals have evolved to

use two near-identical proteins to build cell

architecture (Ampe and Van Troys, 2017). The

nucleotide sequence of the b-actin gene, inde-

pendent of the encoded protein, has also been

conserved in evolution (Ng et al., 1985). For

example, the 3´ untranslated region (3´UTR) of

this gene is highly conserved among birds and

mammals and is unique to b-actin mRNA. Intron

3 is similarly conserved among birds and mam-

mals. Could it be that the nucleotide sequence

of the b-actin gene – in particular, regions of the

gene that do not code for protein products –

contributes to its essential role?

Now, in eLife, Anna Kashina and co-workers

at the University of Pennsylvania and the

National Institutes of Health – including Pavan

Vedula and Satoshi Kurosaka as joint first

authors – report that the differences between b-

actin and g-actin at the level of nucleotides may

be as important as the differences at the level of

amino acids (Vedula et al., 2017). In a elegant

series of experiments on mice Vedula et al. used

genetic tools to edit the four codons that are

found in the b-actin gene but not in the g-

actin gene. This meant that the mutant mice

produced g-actin rather than b-actin. Since b-

actin is essential for survival, whereas g-actin is

not, one might have expected the mutant mice
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to die, but they did not. Indeed, the mutant

mice were indistinguishable from wild type mice

in terms of embryology, survival, tissue histology

and various actin-dependent processes (such as

the properties of embryonic fibroblasts). The

inescapable conclusion is that there are one or

more regions of the nucleotide sequence of the

b-actin gene – besides the regions that code for

the four extra amino acids – that have roles that

are essential for survival (Figure 1).

Based on current knowledge, one might

expect one of these roles to be localizing mole-

cules of b-actin mRNA (but not g-actin mRNA) to

the periphery of cells. However, Vedula et al.

draw attention to another feature unique to the

b-actin mRNAs: they have a much higher density

of ribosomes than g-actin mRNAs. This does not

relate to the relative amounts of the two pro-

teins in cells, but to a large difference in the

capacity of cells to make these proteins at any

point in time. The fact that a cell can produce a

large amount of b-actin protein in a short burst,

whereas it would take a longer time to produce

the same amount of g-actin, could be significant.

They also report differences in ribosome density

between other actin isoforms and isoforms of

histones and tubulins.

In the mid-1970s the Nobel Prize-winning

biologist Francois Jacob eloquently argued that

much of evolution is ’tinkering’ (Jacob, 1977).

But would Jacob have predicted that tinkering

at the level of the nucleotides in the gene

sequence could, as the results of Vedula et al

suggest, be as important as tinkering at the level

of the amino acids in proteins?
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