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A B S T R A C T   

Purpose: COVID-19 disease frequently affects the lungs leading to bilateral viral pneumonia, progressing in some 
cases to severe respiratory failure requiring ICU admission and mechanical ventilation. Risk stratification at ICU 
admission is fundamental for resource allocation and decision making. We assessed performances of three ma-
chine learning approaches to predict mortality in COVID-19 patients admitted to ICU using early operative data 
from the Lombardy ICU Network. 
Methods: This is a secondary analysis of prospectively collected data from Lombardy ICU network. A logistic 
regression, balanced logistic regression and random forest were built to predict survival on two datasets: dataset 
A included patient demographics, medications before admission and comorbidities, and dataset B included 
respiratory data the first day in ICU. 
Results: Models were trained on 1484 patients on four outcomes (7/14/21/28 days) and reached the greatest 
predictive performance at 28 days (F1-score: 0.75 and AUC: 0.80). Age, number of comorbidities and male 
gender were strongly associated with mortality. On dataset B, mode of ventilatory assistance at ICU admission 
and fraction of inspired oxygen were associated with an increase in prediction performances. 
Conclusions: Machine learning techniques might be useful in emergency phases to reach good predictive per-
formances maintaining interpretability to gain knowledge on complex situations and enhance patient manage-
ment and resources.   

1. Introduction 

Towards the end of 2019, a novel strand of coronavirus, named Se-
vere Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), was 
identified as the causative agent of an outbreak of bilateral pneumonia 
in the city of Wuhan in China [1]. The clinical picture related with SARS- 
CoV-2 infection, was subsequently named COVID-19 disease, and is 
frequently characterized by severe bilateral pneumonia. The epidemic 
spread outside mainland China to an increasing number of countries, 
and on March 11th, 2020, it was declared a pandemic [2]. 

Lombardy region in Italy was the epicentre of the first outbreak of 
COVID-19 in the Western World. In Lombardy, the first cases were 
recognized at the end of February, and the number of Intensive Care Unit 
admissions rose substantially in the following weeks [3]. 

The outcomes of patients admitted to ICU for COVID-19 disease are 
severe, and comparable with those of patients with severe Acute Res-
piratory Distress Syndrome (ARDS), with mortality up to 50% in patients 
requiring mechanical ventilation [4-7]. Several factors have been asso-
ciated with a negative outcome, including age, male gender, previous 
comorbidities, and level of respiratory support at ICU admission [4,8,9]. 
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Machine learning algorithms are increasingly employed in clinical 
medicine due to their potential of analysing large amount of information 
with reduced human supervision, resulting in high predictive perfor-
mance [10,11]. This kind of models can similarly help to hasten data 
cleaning and finetuning of predictive models, a process which would 
normally require weeks of data cleaning and exploratory analysis, while 
time and human resources are scarce during an emergency. 

On the contrary, a purely data-driven approach applied through 
artificial intelligence could yield good predictive performance while 
using less resources and in a lower time [12]. Better use of scarce 
resource through artificial intelligence could be useful both for the 
healthcare system, to enhance the allocation of resources, and for pa-
tients, to rapidly target the best therapeutic strategies with realistic 
goals. We tested the feasibility and performance of a purely data-driven 
machine learning model to predict mortality using emergency operative 
data. 

2. Methods 

This is a secondary analysis of data collected during the COVID-19 
Lombardy outbreak from February 2020 to April 2020 using opera-
tional and clinical data from the Lombardy ICU network, as described in 
previous studies [3,4,13]. The aim of this study is to predict survival at 
7, 14, 21 and 28 days from ICU admission, using several different su-
pervised learning frameworks and comparing them to baseline models. 
Data on patient baseline characteristics, including medications, comor-
bidities and baseline ventilation parameters are included in the analysis. 
Data are described as mean (standard deviation) or frequency (per-
centage), as appropriate. 

We first conducted univariate analysis of the data, testing associa-
tions with Chi-square test for categorical variables and Mann-Whitney U 
test for continuous variables. We chose non-parametric tests due to the 
nature of the data that do not follow a gaussian distribution according to 
the Shapiro-Wilk test for normality. Survival analysis was conducted 
plotting Kaplan-Meier curves. We built two different models’ (model A 
and B), to predict survival at four different timepoints: 7-day, 14-day, 
21-day and 28-day mortality from ICU admission. 

Missing data were a small minority (<1.2%) in our categorical 

variables and were imputed using the Simple Imputer; due to the cate-
gorical nature of the features, we opted for a median imputation. 

Patients whose data from the ICU were missing were excluded as 
reported in the inclusion and exclusion criteria presented in Fig. 1. To 
assess the type of missingness of those data, we trained a multivariate 
model to test the hypothesis that patients with missing data belonged to 
a different cohort compared to those without missing data. The model, 
validated with 10-fold cross validation, and trained on baseline cova-
riates, such as age, gender, and comorbidities, was not able to differ-
entiate the two groups with average Area Under the Curve (AUC) of 0.5. 
Those results may indicate that missing data is not a result of clinical 
severity thus pointing to a missing at random (MAR) distribution. 

Model A included only baseline patient data (age, gender, home 
medications and comorbidities); Model B included baseline data (the 
same data used to create model A) and ventilation parameters from the 
first 24 h in ICU: the list of training variables is presented in Table 1. 

We created four subsequent models with increasing complexity. A 
baseline model was created using a uniform classifier (UNIF), a simple 
classifier commonly employed as baseline in ML models [14]. Our first 
prediction model was a logistic regression (LR). The second model was a 
composed logistic regression with under-over-sampling strategy to bal-
ance our classes known as a SMOTE-Tomek [15] (BAL-LR). 

Lastly, we trained a random forest classifier with balanced-class 
weight (RF) [14]. 

Every technique created two different models (A and B) and every 
model was trained using nested cross-validation (10-fold each). Hyper-
parameters were optimized to maximize the out-of-fold F1-Score on a 
randomized grid space. The main scores to track models’ performances 
were F1-score and area under the curve (AUC) and all the scores pre-
sented in the results section are on test sets. 

3. Results 

Table 1 [16] describes our cohort that included a total of 1484 pa-
tients. Overall mortality at 28 days was 49% (n = 741). Survivors were 
significantly younger and suffered fewer comorbidities at admission 
compared to non-survivors (p < 0.001). 44% of survivors had no pre- 
existing comorbidities, compared to 25% of non-survivors (p <

Fig. 1. Inclusion criteria diagram of our cohort population. Model A was built using data from 1484 patients, while Model B was trained on a reduced cohort 
(929 patients). 
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0.001). Male gender was associated with increased mortality (p =
0.002). All comorbidities were more common in non-survivors except 
for hepatic disease. Among home medications all drugs analyzed were 
more common in non-survivors (p < 0.005) except for immunosup-
pressors (p = 0.058). Concerning respiratory data, survivors were more 
often treated with Continuous Positive Airway Pressure (CPAP) and less 
often with invasive mechanical ventilation on the first day of their ad-
missions. (p < 0.005). 

Fig. 2 represents the Kaplan-Meier analysis stratified by age. Age was 
strongly associated with mortality, with 7-day survival ranging from 
64% in the oldest age group to 93% in the 30–40 years group, with 
differences progressively increasing at 14 and 28-days survival. In the 
supplemental material, the overall Kaplan-Meier analysis shows a 
reduction in survival to 70% at 10 days and to 55% at 20 days from ICU 
admission, continuing as a plateau thereafter (Supplemental Figure 1). 
When considering gender in Kaplan-Meier analysis, females gender 
resulted in higher survival. (Supplemental Figure 2). 

Comparison in F1-score and area under the curve for type A and B of 
the four models are reported in Fig. 3. Comparison between models A 

and B of each model versus the baseline UNIF model are reported in 
Supplemental Figure 3. Comparison between models A and B of each 
model among each other are reported in Fig. 4. 

All the three LR, BAL-LR and RF models performed better than 
baseline UNIF models according to the F1-score and AUC (p < 0.01) 
(Table 2). The only one exception was the F1-score of LR model at 7 
days, that performed poorly due to low recall. 

BAL-LR and RF had higher performance than LR when the outcome 
was set to 7 days (p < 0.01) and to 14 days for both model A (p < 0.001) 
and model B (p < 0.03). After that timeline the three models performed 
without any statistically significant difference (Fig. 4) and, as time in-
tervals increased, F1-score and Area Under the Curve progressively 
increased as well for all the three models in both A and B. 

BAL-LR model at 7-days model A and B yielded an F1-score of 0.35 
and 0.45 and AUC of 0.68 and 0.76, respectively (Table 2). The per-
formance increased at 14 days, with average F1-score 0.56 (model A) 
and 0.61 (model B) and AUC 0.72 (model A) and 0.75 (model B), and 
again at 21 days. The greatest predictive performance was reached at 
28-days, with average F1-score of 0.71 (model A) and 0.75 (model B) 

Table 1 
Description of covariates characteristics according to survival analysis. IQR: ‘InterQuartile Range’, SD: ‘Standard Deviation’, COPD: ‘Chronic Obstructive Pulmonary 
Disease’, CKD: ‘Chronic Kidney Disease’, ACE: ‘Angiotensin Converting Enzyme’, ARBs: ‘Angiotensin receptor blockers’, PEEP: ‘Positive End-Expiratory Pressure’, 
FiO2: ‘Fraction of inspired oxygen’, PaO2: ‘Partial pressure of oxygen’, P/F: ‘PaO2/FIO2, CPAP: ‘Continuous positive airway pressure’, IMV: ‘Invasive Mechanical 
Ventilation’, NIV: ‘Non Invasive Ventilation’, SB: ‘Spontaneous Breathing’.  

Variables Categories Overall Survivors Non-Survivors p-value 

Training variables present in both Model A and B 
Number of Patients  1484 743 741  
Age, median [IQR]  64 [56,70] 59 [52,65] 68 [62,73]  <0.001 
Gender, n (%) Females 273 (18.4) 160 (21.5) 113 (15.2)  0.002 

Males 1211 (81.6) 583 (78.5) 628 (84.8)  
Hypercholesterolemia, n (%) No 1182 (80.8) 645 (87.5) 537 (74.1)  <0.001 

Yes 280 (19.2) 92 (12.5) 188 (25.9)  
Diabetes Mellitus, n (%) No 1207 (82.6) 647 (87.8) 560 (77.2)  <0.001 

Yes 255 (17.4) 90 (12.2) 165 (22.8)  
Malignancy, n (%) No 1297 (88.7) 675 (91.6) 622 (85.8)  0.001 

Yes 165 (11.3) 62 (8.4) 103 (14.2)  
Cardiac Disease, n (%) No 1175 (80.4) 640 (86.8) 535 (73.8)  <0.001 

Yes 287 (19.6) 97 (13.2) 190 (26.2)  
COPD, n (%) No 1406 (96.2) 723 (98.1) 683 (94.2)  <0.001 

Yes 56 (3.8) 14 (1.9) 42 (5.8)  
CKD, n (%) No 1416 (96.9) 730 (99.1) 686 (94.6)  <0.001 

Yes 46 (3.1) 7 (0.9) 39 (5.4)  
Hepatic Disease, n (%) No 1418 (97.0) 710 (96.3) 708 (97.7)  0.186 

Yes 44 (3.0) 27 (3.7) 17 (2.3)  
N◦ of comorbidities, mean (SD)  1.4 (1.4) 1.1 (1.2) 1.8 (1.5)  <0.001 
>¼ 1 antihypertensives agents, n (%) No 698 (47.4) 420 (56.6) 278 (38.1)  <0.001 

Yes 774 (52.6) 322 (43.4) 452 (61.9)  
ACE inhibitors, n (%) No 1137 (77.2) 625 (84.2) 512 (70.1)  <0.001 

Yes 335 (22.8) 117 (15.8) 218 (29.9)  
ARBs, n (%) No 1135 (77.1) 596 (80.3) 539 (73.8)  0.004 

Yes 337 (22.9) 146 (19.7) 191 (26.2)  
Beta Blockers, n (%) No 1112 (75.5) 603 (81.3) 509 (69.7)  <0.001 

Yes 360 (24.5) 139 (18.7) 221 (30.3)  
Statins, n (%) No 1104 (75.0) 619 (83.4) 485 (66.4)  <0.001 

Yes 368 (24.9) 123 (16.4) 245 (33.6)  
Immunosuppressors, n (%) No 1318 (89.5) 676 (91.1) 642 (87.9)  0.058 

Yes 154 (10.5) 66 (8.9) 88 (12.1)  
Diuretics, n (%) No 1354 (92.0) 706 (95.1) 648 (88.8)  <0.001 

Yes 118 (8.0) 36 (4.9) 82 (11.2)  
Training variables present in Model B only 
PEEP, median [IQR]  14.0 [12.0,16.0] 14.0 [12.0,15.0] 14.0 [12.0,16.0]  <0.001 
FiO2, median [IQR]  70.0 [50.0,80.0] 60.0 [50.0,75.0] 75.0 [60.0,90.0]  <0.001 
PaO2, median [IQR]  100.0 [80.0,136.0] 100.2 [80.0,141.0] 98.6 [80.0,129.2]  0.286 
P/F, median [IQR]  160.0 [115.8,220.0] 177.5 [124.2,240.8] 146.0 [106.2,200.0]  <0.001 
CPAP, n (%) No 1414 (95.3) 694 (93.4) 720 (97.2)  0.001 

Yes 70 (4.7) 49 (6.6) 21 (2.8)  
IMV, n (%) No 434 (29.2) 243 (32.7) 191 (25.8)  0.004 

Yes 1050 (70.8) 500 (67.3) 550 (74.2)  
NIV, n (%) No 1429 (96.3) 713 (96.0) 716 (96.6)  0.590 

Yes 55 (3.7) 30 (4.0) 25 (3.4)  
SB, n (%) No 1471 (99.1) 731 (98.4) 740 (99.9)  0.005 

Yes 13 (0.9) 12 (1.6) 1 (0.1)   
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AUC 0.77 for model A and 0.80 for model B. Precision and recall were 
balanced to maximize performances in all our models with only two 
exceptions with LR at 7 and 14 days where recall was very low compared 
to precision. 

Fig. 5a reports the odds ratio of BAL-LR model: all the values higher 
than 1 were positively associated with death in ICU while those below 1 
were considered protective by our models. 

Fig. 5b reports the average features importance of RF model; in 
contrast with logistic regression models, it is not possible in RF model to 
reconstruct how the model considered each included variables, due to 
the nature of Random Forest. In RF model a numeric value was assigned 
to each variable to rank its importance in the decision process of the 
model. 

4. Discussion 

In this study we demonstrated the potential of a purely data-driven 
machine learning approach to predict relevant clinical outcomes, 
reaching good predictive performance. 

Machine learning techniques have the advantage of automatic vari-
able selection and model development with reduced human interaction. 
This can be applied not only in highly controlled settings with clean 
high-quality data -the best setting for performance of machine learning- 
but can also be considered in an emergency setting, based on operational 
data, with good results. 

We tested this new approach with different models and techniques 
(LR, BAL-LR, RF) and compared it with a baseline model (UNIF) to 
evaluate the prediction capability of the models. We defined an outcome 
and set four different timepoints: 7-, 14-, 21- and 28- days. Lastly, we 
decided to evaluate two different data frameworks with every model: 
the first framework (model A) was trained on a dataset with baseline 
characteristics of admitted in ICU patients, while the second framework 
(model B) also included respiratory data gathered during the first day of 

admission. We asked to every model 8 different questions that combines 
the 4 different timepoints (7–14-21–28 days) and the two different data 
frameworks (A and B). 

When we compare the recall of the two models in the first two 
timepoints to our baseline model (which classify patients similarly to a 
coin toss), we can conclude that LR models have lower sensitivity 
compared to coin toss. This happens because imbalanced data classes 
can affect the predictive capability of methods like logistic regression 
(LR): this kind of models tend to optimize the overall accuracy without 
considering the relative distribution of the classes [17]. Accordingly, 
after 21 days LR seems to be reliable because the classes of the popu-
lation considered happen to be balanced. On the contrary, techniques 
which allow balancing of data, such as BAL-LR (based on SMOTE-Tomek 
technique) or models that do not suffer from the class imbalance prob-
lem, like RF, can represent an advantage in prediction models, allowing 
increased performances regardless the distribution of the classes. Thus, 
we can conclude that BAL-LR and RF outperform UNIF in any single 
moment, while LR models are reliable only after 21-days (as confirmed 
by Fig. 4). 

Models that were trained on baseline characteristics and respiratory 
data (model B) had higher overall performance than their baseline 
counterpart (model A), as shown in Fig. 3. The p-values calculated over 
the nested-cross validation were almost always statistically significant 
for the F1-score. Thus, the analysis of the respiratory condition at 
admission might be clinically relevant to establish survival predictions 
and correctly classify COVID-19 patients. 

RF models were trained with very tight rules to avoid overfitting as 
the amount of data to train was limited. Since Random Forests often 
work better for the analysis of big data. we can suppose that higher 
amount of data would have probably allowed random forests to 
outperform the balanced logistic regression (BAL-LR). 

In conclusion, as we are proposing a method that can be applied in 
any emergency setting with operational data, we would suggest training 

Fig. 2. Kaplan-Maier curve stratified by age.  
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both models and modify the parameters of the forest according to the 
dimension of the dataset. 

An analysis of how decisions were taken when predicting mortality 
at 28 days was performed (Fig. 5a and 5b): BAL-LR and RF models 
confirm that age is the strongest predictor of ICU survival in COVID-19 
patients. 

In both models B and A age was the most relevant feature and the 
most associated with mortality. The strong association between age and 
mortality is a constant finding in COVID-19 literature [4,18]. 

Chronic kidney disease (CKD) is highly correlated with mortality in 
our data (as shown in Table1), and this may be related to several factors. 
CKD affects older patients [19] that, as demonstrated widely [3] and 
confirmed by our models, are particularly fragile when hospitalized for 
COVID-19. Secondly, all stages of CKD are associated with an increased 
risk of premature mortality from all causes [20] and thirdly, CKD is 
associated in up to two-thirds of the cases with diabetes and hyperten-
sion [21], a proxy for older, multi-morbid patients [4]. COVID-19 dis-
ease is also associated with new onset acute kidney injury, that may 
further worsen previous kidney disfunction, leading to organ failure 
[22,23]. 

Regarding type B ICU admission models, the level of oxygen therapy 
(FiO2) was highly correlated with the outcome, as it represents a proxy 
of severity. To a minor extent, there was positive association with end 
expiratory pressure (PEEP), while on the opposite side, an increased P/F 
ratio and an initial admission with a continuous positive airway pressure 

(CPAP), non-invasive ventilation (NIV) or spontaneous breathing were 
associated with survival. All these features are a proxy of reduced 
severity because these patients needed an ICU hospitalization but were 
less critical than the rest of population in the ward. 

Male gender is a negative predicting factor, a finding confirmed by 
previous studies [24]. An etiological justification might be linked to a 
difference between the sexes in cellular immunity as males present a 
poorer T-cell activation and an increase in proinflammatory cytokines, 
but further studies are required on the topic [25]. 

Chronic therapy with ACE inhibitors were associated with higher 
mortality. Initial reports linked the possible pharmacodynamics of this 
class of drugs to an up-regulation of ACE2 expression [26] and a 
consequent increase in the availability of target molecules for SARS- 
CoV-2 [27]. This association has been proven wrong by Mancia et al. 
[28], who performed a large population-based case-control study 
demonstrating that use of ACE inhibitors and ARBs was more frequent 
among COVID-19 patients due to their higher prevalence of cardiovas-
cular disease, without evidence linking those drugs to a higher risk of 
infection by SARS-CoV-2. 

According to BAL-LR, we found an association between chronic 
obstructive pulmonary disease (COPD) and mortality. COPD patients 
have both an increased risk of COVID-19 disease, and a poorer prog-
nosis, with higher rates of hospitalization and mortality [29]. COPD is 
an independent predictor of mortality in patients admitted to ICU for 
COVID-19 pneumonia [4]. 

Fig. 3. Comparison of F1-score and Area Under the Curve between model A and model B for every model proposed. The point represents the mean, while the vertical 
line stands for the +/- 1 standard deviation among all cross-validation. UNIF: ‘Uniform Dummy Classifier’, LR: ‘Logistic Regression’, BAL-LR: ‘Balanced Logistic 
Regression’, RF: ‘Random Forest Classifier’. 
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Diabetes Mellitus is associated with mortality in our results. Type-2 
diabetes mellitus is more frequent in older patients, male gender, and 
is part of the metabolic syndrome with hypertension and obesity, which 
was previously demonstrated to have strong association with COVID-19 
outcomes [30]. The association of diabetes and survival has been 
questioned by other studies, where the association was lost after con-
trolling for other factors [4,31]. 

A higher number of comorbidities was associated with increased risk 
of death. As most of the comorbidities were associated with an increased 
risk, it does not surprise that their sum leads to an increased overall risk. 
In concordance with another work performed on the COVID-19 Lom-
bardy population 4, most of the comorbidities we analyzed are associ-
ated with an increased risk of death with very few exceptions (e.g., 
hepatic diseases). 

5. Limitations 

The study presents several limitations. First, it is an observational 
study based on operative data collected during an emergency crisis by a 
regional coordination center, hindering the quality of data assured by a 
research targeted database. Despite being a limiting factor, our aim was 
to assess the ability of machine learning models on operational/emer-
gency data collected during the escalation phase of the spread of SARS- 
CoV2, where a hold-out validation could not be retrieved. Some vari-
ables that could be useful to increase the predictive performance of the 

model were not collected, including more specific data about comor-
bidities (i.e., CKD Stage, hypertension severity stage) and other physi-
ological parameters (weight, body mass index, more complete 
ventilatory data, patient frailty). Availability of more data could have 
improved predictive performances in this population. 

The number of patients and data included in this study is not com-
parable with big data analysis, where machine learning techniques really 
shine. However, with this study we were able to demonstrate that ma-
chine learning approach may be used even with smaller dataset in an 
emergency setting and reach high predictive performance. 

6. Conclusions 

Supervised machine learning models with a completely data-driven 
approach may be employed in emergency setting to assess the major 
risk factors of critical COVID-19 patients, despite sub-optimal numer-
osity and clean-up of the datasets. We propose a four-step machine 
learning approach which can be used in similar setting to gain knowl-
edge on complex situations and enhance patient management and re-
sources, sparing resources and time compared to classic statistical 
techniques. 

7. Summary Table 

What was already know on the topic? 

Fig. 4. Differences between Logistic Regression (LR) and the other two models (Balanced Logistic Regression (BAL-LR) and Random Forest classifier (RF)). There was 
no significance difference between BAL-LR, and RF. P-values refer to differences in results between LR and the second model (BAL-LR and RF, respectively). The point 
represents the mean, while the vertical line stands for the +/- 1 standard deviation among all cross-validation. 
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• COVID-19 patients admitted to ICU have very high mortality.  
• Age, gender, and previous comorbidities are associated to negative 

outcome.  
• Resource allocation during surges would be helpful for both patients 

and healthcare systems. 

What this study added to our knowledge?  

• Supervised machine learning predictive models perform robustly in 
predicting mortality at ICU admission for COVID-19 patients.  

• Operational/emergency datasets collected during escalation phases 
can create robust machine learning predictive models even in smaller 
datasets.  

• Easy-to-deploy machine learning pipelines should be created in 
advance, so that, during emergencies phases, faster insights on the 
patients admitted in ICU could be retrieved in a completely data- 
driven manner. 

8. Ethics approval and consent to participate 

The institutional ethics board of Fondazione IRCCS Ca’ Granda 
Ospedale Maggiore Policlinico, Milan, approved this study and waived 
the need for informed consent from individual patients owing to the 
retrospective nature of the study. This study followed the Strengthening 
the Reporting of Observational Studies in Epidemiology (STROBE) 
reporting guideline. 

9. Authors’ contributions 

On behalf of the Lombardy ICU Network: 
Concept and design: MG, GA, PFC. 
Acquisition, analysis, or interpretation of data: MG, GA, PFC, AZ. 
Drafting of the manuscript: MG, GA, PFC, NS. 
Critical revision of the manuscript for important intellectual content: 

AZ, EC, Alessandro Protti, Antonio Pesenti, GG, MC. 
Supervision: Antonio Pesenti, GG, MC. 

Table 2 
Nested cross-validated performances of the models on the test set. UNIF is the baseline models, LR is the first logistic regression, BAL-LR is the composed balanced 
logistic regression and RF is a random forest classifier. F1-score is a combined harmonization of precision and recall. SD: ‘Standard Deviation’, AUC: ‘Area Under the 
Curve’, precision is also known as Positive Predictive Value (PPV), recall also known as sensitivity.  

M. Greco et al.                                                                                                                                                                                                                                  



International Journal of Medical Informatics 164 (2022) 104807

8

CRediT authorship contribution statement 

Massimiliano Greco: . Giovanni Angelotti: . Pier Francesco 
Caruso: . Alberto Zanella: . Niccolò Stomeo: . Elena Costantini: . 
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Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
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Fig. 5a. Odds Ratio of BAL-LR models for 28 days predictions. CPAP: ‘Continuous positive airway pressure’, P/F: ‘PaO2/FIO2, NIV: ‘Non Invasive Ventilation’, IMV: 
‘Invasive Mechanical Ventilation’, ARBs: ‘Angiotensin receptor blockers’, PaO2: ‘Partial pressure of oxygen’, PEEP: ‘Positive End-Expiratory Pressure’, COPD: 
‘Chronic Obstructive Pulmonary Disease’, ACE: ‘Angiotensin Converting Enzyme’, CKD: ‘Chronic Kidney Disease’, FiO2: ‘Fraction of inspired oxygen’. 

Fig. 5b. Mean feature importance of RF models for 28 days predictions. Differently from odds ratio, there is no association between the importance and the outcome, 
but it represents how relevant the features were for the model. 
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