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Estimating the motions of the common carotid artery wall plays a very important role in early diagnosis of the carotid ath-
erosclerotic disease. However, the disturbances caused by either the instability of the probe operator or the breathing of subjects
degrade the estimation accuracy of arterial wall motion when performing speckle tracking on the B-mode ultrasound images. In
this paper, we propose a global registration method to suppress external disturbances before motion estimation. -e local vector
images, transformed from B-mode images, were used for registration. To take advantage of both the structural information from
the local phase and the geometric information from the local orientation, we proposed a confidence coefficient to combine them
two. Furthermore, we altered the speckle reducing anisotropic diffusion filter to improve the performance of disturbance
suppression. We compared this method with schemes of extracting wall displacement directly from B-mode or phase images. -e
results show that this scheme can effectively suppress the disturbances and significantly improve the estimation accuracy.

1. Introduction

Nowadays, cardiovascular disease (CVD) has become one of
the deadliest diseases in the world. In 2016, 17.9 million
deaths were caused by CVD, accounting for 35% of the 57
million in total [1]. It is generally accepted that the early state
of a carotid artery is a useful predictor of the risk of both
ischemic stroke and coronary heart disease in the asymp-
tomatic population [2, 3]. -e increase of arterial wall
stiffness is considered a common pathologic mechanism for
many factors associated with CVD [4, 5]. -erefore, many
efforts have been made to measure the stiffness of the carotid
arterial wall to assess the degree of atherosclerotic disease for
early diagnosis [6, 7]. In general, vascular stiffness may be
expressed as some indices, such as distensibility, compliance,
Peterson’s elastic modulus, or Young’s elastic modulus,
which all can be derived from pressure and diameter
measurements [8]. -erefore, the measurement of motions

of an arterial wall plays a significant role in revealing the
pathogenesis of the atherosclerotic carotid disease [9, 10].

-e ultrasonic echography has become one of the most
important noninvasive diagnostic methods for detecting and
monitoring cardiovascular diseases because of technological
advances in ultrasound imaging. Compared with other
available imaging methods, it is a quick, radiation-free, and
relatively inexpensive method of visualizing the arterial wall
in vivo [11]. In the past decade, three main ultrasonic im-
aging methods were used for measuring displacements of an
arterial wall: echo tracking [12, 13], B-mode [14, 15], and
M-mode [7, 16]. Among them, the echo-tracking imaging
method has a high resolution and thus has been widely
adopted. However, its susceptibility to test environmental
factors leads to poor reproducibility results between dif-
ferent measurements [16]. As for M-mode, its method of
obtaining the velocity using the autocorrelation extraction
envelope discards phase information which may be useful.

Hindawi
BioMed Research International
Volume 2019, Article ID 6547982, 15 pages
https://doi.org/10.1155/2019/6547982

mailto:huizq@swfu.edu.cn
https://orcid.org/0000-0002-8407-6170
https://orcid.org/0000-0002-3751-6233
https://orcid.org/0000-0002-5630-9408
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6547982


-e B-mode ultrasound image can more intuitively dem-
onstrate the motion status of an arterial wall and offer more
spatial information because of its two-dimensional display of
the tissue structure. -erefore, it has attracted more and
more investigations and clinical applications.

In research and clinical practice, researchers usually
estimate the displacement of an arterial wall by speckle
tracking generally based on a block-matching (BM) method
[17–19]. -is method is implemented by firstly selecting a
region of interest (ROI, treated as the reference) with a
specific size in the first frame of a B-mode image sequence.
-en, a block showing the highest similarity to the reference
block is identified from a search region around the ROI of
the target B-mode ultrasound image (called the floating
image), according to a prespecified measurement criterion.
-e coordinate difference between the two blocks represents
the displacement of the wall tissue during a time step [20].
Typically, the maximization of mutual information of the
intensity between the reference and a floating block is used
for similarity measuring [21, 22]. Finally, the motion tra-
jectory will be obtained after all the successive frames have
been matched with the reference image.

Researchers have made many efforts to improve the
accuracy of the wall motion estimation while using the BM
method [23]. Some of them have investigated the influence
of the shape and size of the ROI on estimation results and
evaluated different sizes and shapes of the ROI [17,24–26].
-e results show that the dimensions of the ROI are im-
portant factors when the block-matching method is used. A
team has introduced a new speckle-tracking scheme, called
multiblock matching (MBM), which uses a group of 16
blocks to estimate the global motion of the entire length of
the wall [27, 28]. -is method exhibits higher robustness
because it is not susceptible to cumulative errors and out-
liers. However, this method introduces higher time and
computation cost. Recently, Kalman filters have been widely
applied to the BMmethod. -ey are employed to update the
reference block after the block matching and improve
motion detection during the blockmatching [29]. It has been
proved that a better tracking performance can be obtained
by updating either the appearance or the position of the
reference block in a Kalman-based method [30, 31]. Fur-
thermore, some researchers improve the robustness of the
motion estimation of the carotid artery wall by adding a
control signal into the state equation [32], introducing a
state-space approach [33–35] or using an H∞ filter [36].
Recently, because of its importance, the estimation of the
longitudinal motion of the arterial wall has attracted several
researchers’ interest [37]. Based on the Kalman filter
method, they obtained the wall motion estimation in this
direction with better accuracy [37–39].

Although those methods improve the accuracy of the
block matching to some extent, external disturbances in-
troduced during a clinical measurement have not been
considered. During a clinical measurement, the obtained
ultrasonic images are inevitably affected by external dis-
turbances such as jitters of a probe operation introduced by
an operator and a body position change or a respiratory
motion of a test subject, which leads to significant variations

between successive images.-us, themotion extracted based
on themethodsmentioned above is a superimposed signal of
the wall motion and the external disturbances. Especially, for
those Kalman-based methods, the variations will result in
divergence in a motion estimation because of successive
error accumulation.

In this study, we focused on how to suppress external
disturbances introduced in clinical measurements. Based on
our previous work, we proposed an image registration
method to eliminate external disturbances before per-
forming speckle tracking [40]. -is method treats those
disturbances as common-mode disturbances and treats the
wall motion as differential-mode signals. And the motion of
tissue in regions far away from an arterial wall is hardly
influenced by the wall motion, but only by those common-
mode disturbances. -us, we extracted the disturbances
from images by performing registration on these regions.
We used a local information image for registration instead of
ultrasound images because their natural properties (speckle
noise, high attenuation, and low contrast) will degrade the
performance of the registration. To take advantage of both
the structural information from the local phase and the
geometric information from the local orientation [41], we
proposed a confidence coefficient to combine the local
orientation and local phase. Furthermore, we altered the
SRAD filter before registration to improve the longitudinal
disturbance suppression performance. Finally, we utilized
the BM method to estimate the arterial wall motion after
performing alignment on ultrasound images based on ob-
tained disturbances.

2. Methodology

-e proposed algorithm was developed using the MATLAB
software on a workstation with two Intel Xeon 8-core 64-bit
processors (1.8 GHz) and 128GB RAM. -e general
workflow of our study is shown in Figure 1. Firstly, two
subimage sequences are cut out from original successive
frames since the registration focuses on regions in an image
far away from the arterial wall. Each subimage only covers
the upper or lower part of the tissue in a frame, respectively,
which contains abundant structural and geometric in-
formation. Because of the inherent speckles, ultrasound
images will reveal large structural information better after
being smoothed [42]. Besides, registration on images at a
coarser level with a large structure will lead to better results.
Hence, secondly, an altered speckle-reducing anisotropic
diffusion (SRAD) filter is adopted to suppress the speckle
noise while preserving textural information. -irdly, the
Riesz transform is used to obtain local phase and orientation
information. In the next step, the registration is performed
on the combined phase image sequences to obtain distur-
bance values. -en, all images are aligned by spatial
transformation based on the average value of obtained upper
and lower disturbances. -us, the common-mode distur-
bances are suppressed. Finally, the motion of the arterial wall
is estimated by implementing the block-matching method
on the aligned successive frames. In the following sections,
specific descriptions of the procedure are presented.
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2.1. Speckle-Reducing Anisotropic Diffusion (SRAD) Filter.
Because the gradient of intensity is highly sensitive to noise
[43], and the texture appearance of the observed speckle
does not correspond to the underlying tissue structure [44],
the ultrasound image should be prefiltered to reduce the
speckle noise before registration. -e filter based on the
SRAD method was adopted in this work, which not only
suppresses speckle noise but also preserves the texture details
and enhances the edges of the image [45]. -is approach of
SRAD is based on a partial differential equation (PDE),
which is shown as follows:

zI(x, y; t)

zt
� div[c(q)∇I(x, y; t)],

I(x, y; 0) � I0(x, y),
zI(x, y; t)

zn
�→
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where I0(x, y) denotes the given image over image support
Ω; zΩ is the border of Ω; n

→ indicates the outer normal to
zΩ; div and ∇ are the divergence and the gradient operator,
respectively; and c(q) is the diffusion coefficient which can
be calculated according to the following equation:
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where q(x, y; t) indicates the instantaneous coefficient of
variation, treated as an edge detector in an image. It will
produce high values at an edge or on high-contrast features
while generate low values in homogeneous regions. It can be
computed using the following equation:
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q0(t) in equation (2) denotes the speckle scale function
which controls the amount of smoothing applied to the
image by the SRAD and can be calculated using the fol-
lowing equation:

q0(t) �

��������
var[z(t)]

􏽰

z(t)
, (4)

where var[z(t)] and z(t) are the variance and mean of the
intensity over a homogeneous area at t, respectively.

-is PDE can be numerically solved using an iterative
Jacobi method. -e derivative and the Laplacian item in

the PDE can be approximately calculated with four
nearest neighboring pixels, as shown in the following
equations:
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-e longitudinal registration is more difficult because of
the higher homogeneity of image intensities in this direction
[27, 32]. To preserve more longitudinal details during the
SRAD process, Aja-Fernández and Alberola-López in-
troduced a detail-preserving anisotropic diffusion (DPAD)
method [46]. In this method, a larger neighborhood was
adopted to preserve more details, although it does not match
equation (3). Inspired by this method, we made an alteration
to equation (5) to increase the longitudinal variation, al-
though it will not match equation (3) either. As shown in
equation (6), we increased the weight of the longitudinal
derivative item to 2, and the Laplacian item will be changed
too:
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In this work, the homogeneous area was almost selected
automatically, and the size of it is 20× 20 pixels. To better
preserve the details of the edge, according to our tests, the
time step was set to 0.1, and the number of iterations was
100.

2.2. Local Phase and Local Orientation. Because an ultra-
sound image has the properties of low signal-to-noise (SNR)
ratio, low image contrast, and high artifact, its registration is
challenging. However, the local phase and local orientation
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Figure 1: General workflow of the study.
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are very suitable for the registration of ultrasound images
owing to their invariance to image brightness, contrast, and
noise [43]. Furthermore, they can showmore local structural
and geometric information than the gradient and intensity
information does. -us, the registration based on them has
better stability and robustness [47, 48]. In our study, we
utilized the Riesz transform to obtain local phase and ori-
entation information of ultrasound images. To a 1D signal
f(x), its complex analytic signal, defined as equation (7), is
employed to extract the local information, such as amplitude
and phase:

fa(x) � f(x) + jHf(x) � A(x)e
jϕ(x)

, (7)

where Hf(x) is the Hilbert transform of f(x), A(x) is the
local amplitude, and φ(x) is the local phase. An analytic
signal is a useful tool for AM/FM analysis; with it, one can
obtain the time-varying amplitude and phase of a 1D signal.
-e monogenic signal is a 2D generalization of the analytic
signal, while the Riesz transform is the 2D extension of the
Hilbert transform [49, 50]. -e Riesz transform consists of
two kernels which can be expressed as
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x
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and its frequency-domain representation is shown as
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-en, the monogenic signal including three components
can be described as
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where fR(x, y) � (h∗f)(x, y) and h � (hx, hy). -e local
phase vector can be described as
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where ϕ is the local phase, θ is the local orientation, and A is
the local magnitude. Because the length of a signal must be
finite in practical applications, a pair of bandpass filters is
employed to convolve with the monogenic signal. In our

work, the difference of Gaussians (DoG) filter was adopted,
and it can be represented as
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where σ1 and σ2 are the standard deviation of two Gaussian
filters, respectively, which are related to texture details of the
phase image. -e coarser texture of the phase image will be
obtained with a larger value, while the finer texture will be
achieved with a smaller one. An appropriate standard de-
viation parameter will be helpful to extract the structural and
geometric texture for registration, which is directly related to
the quality of the results (Figures 2(c) and 2(d)).

We compared the ultrasound image with different phase
images to demonstrate that both the local phase and ori-
entation images are suitable for registration because of their
invariance to image brightness and contrast. As shown in
Figure 2, even in low-contrast areas of the image, the al-
gorithm returns a reasonable value for local phase and
orientation. For example, both the phase and orientation
images demonstrate the stenosis part with lower echo in
Figure 2(a) (marked with a red arrow). Especially, the local
phase image provides more details of this part. -e local
orientation image retains coarser structural and geometric
information ignoring the tiny details. In general, an image
with a coarser structure is advantageous for registration
because excessive details will increase the difficulty of reg-
istration and the time of optimization. However, artifacts
may appear in a local orientation image at locations of the
central line of ridges where the local phase is close to zero
[48, 50]. Furthermore, there is a lack of longitudinal geo-
metric information in local phase images, which will lead to
poor longitudinal accuracy of results. -us, a confidence
coefficient based on the local phase, which can be quantified
by sin2(ϕ), was introduced to local orientation in order to
take advantage of both the local phase and local orientation
and keep the coherence of the phase vector. It is a com-
promise between the two types of information and can
combine the advantages of both. As shown in Figures 2(e)
and 2(f), the local orientation figures with the confidence
coefficient based on the local phase demonstrate that they
not only provide the simple geometric information of local
orientation but also preserve the structural information of
the local phase, especially the longitudinal structural
information.

2.3. Wall Movement Extraction. After suppressing the dis-
turbance, we used a speckle-tracking method to extract the
wall movement with the combined local information images
taking advantage of their invariance features. A block of
pixels (ROI) was selected in the first frame as a reference, and
a window in floating images was searched to find the block
with the highest similarity to the reference block. Some
research results have demonstrated if the ROI is across the
interface of the blood and an arterial wall, a more accurate
wall motion can be extracted [17]. In our study, we selected
the ROI in the same way and measured the similarity based
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on the normalized correlation coefficient (NCC), which is
given as follows:

NCC �
􏽘
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where R(m, n) and F(m, n) represent the gray values of a
certain point (m, n) in the first frame and the subsequent
image to be matched, respectively; R and F denote the
average of reference and float images; and M and N are the
length and width of the ROI, respectively.

-e length and width of the ROI are closely related to
the accuracy of the speckle tracking. At least, the length of
the ROI should be greater than the lateral resolution, and
the width should be greater than the axial resolution [51].
To a certain degree, a larger ROI means a higher perfor-
mance of motion tracking. However, when the region
reaches a certain size, the performance will not be sig-
nificantly improved and may even decrease. Moreover,
with the increase of the ROI size, the time and compu-
tational costs will increase at a square level. Furthermore,
research results indicate that ROIs with a greater di-
mension in the radial direction will lead to better per-
formance because of a higher heterogeneity of pixel
intensity in this direction [17]. Because the size of the ROI
is not the focus of this work, we just set it to 60× 80 pixels

(approximately 3mm× 4mm) according to the amplitude
of external disturbance.

2.4. Evaluation of Our Method. -e assessment based on in
vivo measurement is difficult because the signal components
from the surrounding tissue and blood are not easily dis-
tinguishable, and the specific behaviors of a vessel wall are
unknown. However, the computerized simulation is a useful
validation method because of its high controllability and
verisimilitude. It is commonly adopted to synthesize data
sources for evaluating the performance of arterial wall
motion tracking. So, apart from clinical data, in this study,
we also utilized synthetic data to evaluate our method. We
used preadded disturbances and predefined wall motions as
a reference to evaluate the disturbance extraction based on
registration and motion estimation based on aligned images.

We obtained clinical images using a high-resolution
ultrasound system (SonixTOUCH; Ultrasonix Medical
Corporation, Burnaby, British Columbia, Canada) with an
L14-5W/60 linear array transducer. A total of ten subjects
were measured to collect real image data (center fre-
quency� 5MHz, sample frequency� 40MHz, number of
elements� 128, and active elements� 64). -e simulation
data were generated using the software named “Field II,”
which was created by Jensen [52]. -e parameters of ul-
trasound simulation were the same as those of clinical ex-
periments. Considering the importance of the simulated

(a) (b) (c)

(d) (e) (f )

Figure 2: B-mode ultrasound image (a) and its local orientation images (b) and local phase images (c, d). Local orientation image with a
confidence coefficient (e, f ), with a smaller standard deviation (σ1 � 10 and σ2 � 10

�
2

√
) (c, e), and with a larger standard deviation

(σ1 � 20 and σ2 � 20
�
2

√
) (d, f ).
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data to evaluation, we present the details about the simu-
lation procedure in the following sections.

2.4.1. Simulation Method. We used a clinical image to
synthesize B-mode images to obtain more realistic images
for the assessment of the registration results. -e flowchart
of the synthetic process is shown in Figure 3, and the specific
processing steps are described as follows.

Firstly, we removed the part near the arterial wall while
keeping the part far away from the wall of a clinical vascular
B-mode ultrasound image (Figure 4(a)). -en, we used the
SRAD filter to preprocess the image. -e phantom of the
tissue part far from the arterial wall was generated, in which
the amplitude of the reflecting wave of each scattering point
is set up based on the gray level of the filtered image.
Figure 4(b) shows a synthesized frame whose peripheral part
is very similar to the original B-mode image.

Secondly, we established the phantom of the vascular
tissue with wall pulsation. We assumed that the movement
of the arterial wall, pushed by the pulsatile blood, follows the
trajectory shown in Figure 5(a) which lasts a respiratory
cycle (four cardiac cycles). -en, we obtained a sequence of
phantoms with wall motion.-e position of each scatterer in
the phantoms changed along with the movement of the
arterial wall, while the reflection amplitude of each scatterer
was determined by its initial position. Combining the tissue
phantom with the arterial phantom, we synthesized an in-
tegral phantom without external disturbance. As shown in
Figure 4(b), a B-mode ultrasound image even including the
intima, media, and adventitia was synthesized for better
imitation of the clinical images.

-irdly, we added external disturbance, which is caused
by the breathing motion of the test subject and jitter of an
operator, to the simulated 3D phantoms. As shown in
Figures 5(b)–5(d), the black curves represent the longitu-
dinal and radial displacements of the arterial wall and the
angle of rotation caused by external disturbances, re-
spectively. -e horizontal axis in those figures is the time
axis, and the length is 3.2 seconds (simulating a respiratory
cycle). -e glitch-like part of those curves is a simulation of
the probe jitter caused by an operator. -en, by rotating and
shifting phantoms obtained in the previous step based on the
disturbances, we obtained a phantom sequence with the
arterial wall motion and disturbances.

-en, we inputted this series of phantoms in Field II to
generate echo signals. Finally, after performing envelope
extraction, dynamic range compression, interpolation, etc.
on echo signals, we synthesized a sequence of the B-mode
images with disturbance.

2.4.2. Comparison with Other Methods. To evaluate the
disturbance suppression performance of our method (ab-
breviated as SWPOM), taking advantage of simulated data,
we compared its results with the reference (preset distur-
bance). Simultaneously, we compared its results with results
obtained from the registration method based on B-mode
ultrasound images (BM), local phase images (PM), ultra-
sound and phase images after SRAD filtering (SBM and

SPM) or altered SRAD filtering (SWBM and SWPM), and
local orientation images after altered SRAD filtering
(SWOM). Moreover, we compared the preset wall motion
with the tracking results based on the aligned ultrasound
image sequences.

3. Results

3.1. Simulation Results. We obtained a sequence of ultra-
sound images (200 frames) with wall motion and external
disturbance according to the procedure aforementioned. As
shown in Figure 6, we selected several frames at the start, the
end, and the moment that the amplitude of external dis-
turbance is high (0 s, 0.9 s, 1.1 s, 2.2 s, and 3.2 s) to illustrate
that the simulation results can reflect the influence of added
disturbance. For example, by comparing the first frame with
others, we could easily perceive that these images have been
apparently moved and rotated. Furthermore, compared with
data in Figures 6(d) and 6(i), Figures 6(a) and 6(f) show that
these images had been moved downward and rotated
counterclockwise at a certain angle.

3.1.1. Extracted Disturbance. Figure 7 qualitatively dem-
onstrates the pointwise amplitude comparison among the
reference (preset disturbance) and extracted disturbances
using different image types.-e obtained disturbance curves
of radial direction and rotation angle generally show a better
similarity to the reference than longitudinal curves do. In
addition, the estimated results for both directions and ro-
tation angle based on PM and SPM methods are poor, and
there are quite a few outliers, mostly obtained at the moment
that the amplitude of the external disturbance is large (for
example, at the moment of about 1 second, the jitter of the
probe superimposes on the signal). In general, the results
based on images with SRAD filter processing are better than
those without processing, while the results with altered
SRAD processing are better than those with SRAD pro-
cessing, especially in the longitudinal direction. Moreover,
although the radial displacement and rotation angle results
based on the SWPOM method are almost the same as those
based on BM, SBM, SWBM, and SWPM methods, the
longitudinal result, however, is better than others. Table 1
shows the normalized root-mean-square error between the
disturbance curves obtained by those methods and the
reference value, which quantitatively better illustrates the
performance of the SWPOM method in the longitudinal
direction.

3.1.2. Estimation of Arterial Wall Motion. After the B-mode
ultrasound image sequence had been spatially transformed
based on the obtained disturbance values, the arterial wall
motion was extracted by the speckle-tracking method
(Figure 8). -e black curve in Figure 8(a) represents the
estimated wall motion trajectory directly extracted from the
B-mode image sequence with external disturbance. It clearly
demonstrates the influence of external interference signals,
and we cannot even tell the movement of the arterial wall
itself from this curve. However, the estimations of wall
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motion based on the image sequences with disturbance
rejection processing have similar trajectories to the curve
extracted from the image sequence without external dis-
turbance (Figure 8(b)). At the same time, the results are very
similar to the reference curve. Obviously, the registration
methods suppressed the disturbance, although it had not
been completely removed. For example, the motion am-
plitude error during the last three cardiac cycles is a little
high, while the error during the first cardiac cycle is low,
which is obviously because of the higher disturbance am-
plitude during the last three cardiac cycles. Nevertheless, the
errors are small because of the suppression process of

disturbances. It should be noted that, in order to show a
more clear comparison, the results based on PM and SPM
methods are not illustrated in Figure 8(b) because of their
larger errors. Table 2 summarizes the normalized root-
mean-square errors between the preset wall motion tra-
jectory shown in Figure 5(a) and the motion estimations
obtained from aligned image sequences based on different
registrationmethods, as well as the reference disturbance. As
shown, the root-mean-square error of the SWPOM method
(0.5359) is the closest result to the reference one (0.5007)
because of its better disturbance estimation accuracy as a
whole in both directions and rotation angle.

Tissue 
phantom

Arterial
phantom

Synthetic 
phantom

Spatial
transform

Field II
simulation

Clinical image

Arterial wall motion Longitudinal and radial disturbance

Rotation angle of disturbance

Synthetic images

Figure 3: Flowchart of the synthetic process of the B-mode ultrasound image.

(a) (b)

Figure 4: Clinical B-mode ultrasound image after removing the part of the wall (a) and the synthetic image (b).
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Figure 5: Arterial wall motion (a); external disturbances in the longitudinal direction (b) and radial direction (c); rotation angle (d).
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Furthermore, to demonstrate the disturbance suppres-
sion method has no influence on the motion tracking, the
linear regression analysis and the Bland–Altman analysis
were applied to measure the correlation and the agreement

between the reference wall motion value and estimated
results based on the disturbance suppression method. Here,
the reference value indicates the wall motion estimation
based on images without preset disturbance. Figure 9(a)

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 6: Several frames of the synthetic B-mode ultrasound sequence (a–e) and their corresponding combining phase images (f–j) with
wall motion and disturbances at several time points (0 s, 0.9 s, 1.1 s, 2.2 s, and 3.2 s).
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Figure 7: Comparison of estimated results of the disturbance over one respiratory cycle, for the longitudinal direction (a), radial direction
(b), and rotation angle (c). -e disturbance obtained by the BM (blue), PM (cyan), SBM (magenta), SPM (yellow), SWBM (green), SWOM
(gray), SWPM (orange), and SWPOM (black) methods and the reference (red) are demonstrated.
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Table 1: Normalized root-mean-square error of estimated disturbance results vs. reference disturbance.

RMSE BM PM SBM SPM SWBM SWOM SWPM SWPOM
Radial direction 0.0242 0.6662 0.0237 0.2537 0.0278 0.0268 0.0240 0.0241
Longitudinal direction 0.5460 1.1008 0.3951 0.5370 0.4924 0.9224 0.1685 0.1349
Rotation angle 0.2119 2.2425 0.3094 0.8868 0.3078 0.3682 0.2183 0.2643
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Figure 8: Estimated results of wall motion over one respiratory cycle without (a) and with (b) disturbance rejection processing. (b)
Comparison between the wall motion estimation obtained from the image sequence without disturbance (cyan) and with disturbance but
aligned. -e alignments are based on the reference disturbance (red) and the estimated disturbance obtained by the BM (blue), SBM
(magenta), SWBM (green) SWOM (gray), SWPM (orange), and SWPOM (black) methods.

Table 2: Normalized root-mean-square error of estimated wall motions based on the speckle-tracking method vs. reference wall motion.

REF BM PM SBM SPM SWBM SWOM SWPM SWPOM
RMSE 0.5007 0.7360 4.7382 0.8622 1.9040 0.7668 0.6471 0.6300 0.5359
REF denotes the result obtained from aligned images based on preset disturbance.

R = 0.9115
y = 0.90x + 0.05

–0.2

–0.1

0

0.1

0.2

0.3

0.4

SW
PO

M
 (m

m
)

0 0.2 0.4–0.2
Reference (mm)

(a)

0.16 (+1.96SD)

–0.06 (–1.96SD)

0.05 (p = 0.00)

0 0.2 0.4–0.2
Mean reference and SWPOM (mm)

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

SW
PO

M
-r

ef
er

en
ce

 (m
m

)

(b)

Figure 9: Linear regression line and correlation coefficient R between the reference value of the motion amplitude and the estimation
performed by the SWPOM method (a); Bland–Altman plot comparing the motion amplitude estimated by our SWPOM method with the
reference (REF) (b).

Table 3: Correlation coefficient of estimated wall motions based on the speckle-tracking method vs. reference wall motion.

REF BM PM SBM SPM SWBM SWOM SWPM SWPOM
CR 0.9121 0.8397 0.1060 0.8252 0.4718 0.7570 0.8870 0.9112 0.9115
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shows the correlation between the reference and SWPOM
methods, and the correlation coefficient R is 0.9115, in-
dicating a close relevance. Table 3 lists the results of linear
regression analysis over all the methods. It shows that all
methods have good relevance to the reference method except
for PM and SPM methods because of more outliers. As
shown in Figure 9(b), a Bland–Altman plot demonstrates the
agreement between the reference and SWPOM methods,
where the continuous line is the mean value of difference
and the upper and lower dashed lines indicate the 95%
confidence interval (CI) of the mean difference (mean± 1.96
SD). -e mean difference between the reference and
SWPOMmethods is 0.05mm, and the CI is 0.11mm, which
indicates that the SWPOM method has a good agreement
with the reference method.

3.2. Results of Clinical Images. To further validate the al-
gorithm proposed in this paper, we employed those methods
to clinical B-mode ultrasound images of subjects. -e du-
ration is 10 seconds, with a total of 300 frames. Figure 10
shows six frames of the B-mode image sequence at different
time steps (0, 2, 4, 6, 8, and 10 seconds) from a patient with
moderate carotid atherosclerosis, as well as their corre-
sponding phase images. By comparing these clinical sub-
images, we can roughly appreciate the advantages of the
combining phase image on the invariance of the brightness,
contrast, and noise. For example, the stenosis part in
Figures 10(b) and 10(d) is more blurry and darker, and its
brightness and contrast obviously differ from those of other
subimages although they have a similar shape. However,
their combining phase images are almost the same because
of the invariance advantage of the phase vector. Moreover,
the tissues in regions far away from the arterial wall of
different frames maintain a good consistency with each
other. -us, it is suitable to suppress the common mode
interference by using the registration algorithm on com-
bining phase images proposed in this paper.

3.2.1. Extracted Disturbance. Figure 11 shows the extracted
disturbances for the longitudinal direction, radial direction,
and rotation angle with different methods, based on the
clinical ultrasound images mentioned above. All these
curves reflect the trend of respiratory movement trajectories
of about three cycles, which will be suppressed as common
mode interferences. In addition, the amplitudes of extracted
disturbances based on phase images are higher than those on
B-mode ultrasound images.

3.2.2. Estimated Wall Motion. Figure 12 demonstrates the
estimation of the wall motions by the speckle-tracking
method in longitudinal (Figure 12(a)) and radial
(Figure 12(b)) directions after disturbance rejection pro-
cessing. -e red box in Figure 10(a) is the selected ROI for
block matching. According to the result curve in longitu-
dinal and radial directions, the vessel wall pulsated about 14
times. Radial results reflect better regularity of wall pulsation
than longitudinal results. In addition, the results based on

phase methods (PM, SPM, and SWPM) show a smoother
curve trend than those based on B-mode ultrasound
methods (BM, SBM, and SWBM). Specifically, the curves
based on B-mode ultrasound images present a higher jitter at
the time of about 1.7 s in both directions and present a little
obliquely upward drift during the latter part of the time. On
comparison, the result of the SWPOM method in the radial
direction is almost the same as that of other methods based
on the phase image. However, its result in the longitudinal
direction is slightly smoother than that of others. And the
estimated curves of the SWPOM method better reflect the
periodicity of the arterial wall pulsation.

It is difficult to assess the performance of the suppression
method used on clinical images by comparing the extracted
values with the reference because we did not have an ac-
curate reference. -e arterial wall movement of subjects and
the external disturbance are unknown during clinical
measurement, which is different from the simulation cases.
-us, we just selected a smooth cycle from the image se-
quences and took it as a reference. -en, we compared it
with other cycles of image sequences. -is method is not for
accurate assessment; however, to some extent, the results
will qualitatively reflect the performance of external dis-
turbance suppression because, in theory, the suppression
method will make the results look like a smooth periodic
signal.

To minimize the external disturbances during the ac-
quisition of the reference, we asked the subjects to hold their
breath and the tester to place the probe steady and gently on
the neck of subjects. We collected data from ten volunteers
and calculated RMSEs according to this rule. Table 4 lists
comparisons between BM and SWPOM methods for these
ten subjects. -e results show the RMSEs of the SWPOM
method are smaller than those of the BM method in both
directions, especially in the radial direction, although a
different selection of the reference may lead to a different
value of RMSE. -erefore, it demonstrates that the method
proposed in this paper can effectively suppress the external
disturbances of the clinical data.

4. Discussions

4.1. On Synthetic Ultrasound Image. In this study, the syn-
thetic B-mode ultrasound image sequence was not obtained
by simply shifting or rotating the first frame of a two-di-
mensional image sequence but by spatially transforming
every scatterer in the phantoms generated for each time step
and then calculating with the Field II software based on the
phantoms. -e time cost and computational overhead of the
latter simulation method are much higher than those of the
former one. However, because the speckle is a reflection of
the differences between the image pattern and the scatterer
pattern, the speckle pattern that exists in a given image of the
sequence may not appear in the next frame [17]. If the
ultrasound images are transformed only on a two-di-
mensional plane, the pattern of speckles in successive frames
is almost the same except for the locations, which is im-
possible in a clinical situation. -us, it may result in an
unreliable assessment of the motion-tracking algorithm.
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Compared with the former method, the spatial trans-
formation of each scattering point in our method was done
in a three-dimensional cylindrical coordinate. -e scatterers
in different phantoms would keep the random distribution
property because every phantom at each time step was
generated independently.-us, in spite of a higher time cost,
this method will make the speckle-changing pattern in those
simulated B-mode ultrasound images agree with the actual
situation and be better suitable to assess the CCA wall
motion-tracking algorithm.

4.2.On theSRADFilter. In our work, in order to reduce the
impact of the speckle’s pattern changes between frames
on the registration result, the SRAD was adopted. Because
of its anisotropic filter property, it smoothes the speckle
noise while reserving the texture and edge information,
which will be helpful for registration based on gray and
gradient information. We verified through experiments
that the filtering performance is not sensitive to the size of
the homogeneous area, time step value, and the number
of iterations. However, the selection of the homogeneous
area has a large impact on the image pattern. -erefore, to
get a sequence of images with better consistency, we need
to choose almost the same area in a sequence image.
Although manual setting is a reliable method, however, it
is impractical because of the large number of frames that
need to be processed. So, an automatic method was
implemented in this article. For the simulated data,
firstly, we selected a homogeneous area in the first frame
and obtained the coordinates of this region. -en, the

homogeneous areas of other frames could be obtained by
taking their preset disturbances as the relative offset and
adding them to the coordinate of the selected region in
the first frame. For clinical images, because of the un-
known external disturbances, we calculated the principal
axis and centroid of each frame and then roughly esti-
mated the relative offset. -is process would make sure
most images maintain better consistency after SRAD
filtering. A few abnormal frames were updated by rese-
lecting the homogeneous areas manually. Because of its
importance, how to automatically select an appropriate
homogeneous area will be the direction of future
research.

4.3. On <is Method. In this work, we focused on the
suppression of external disturbances introduced by the in-
stability of the probe operator and the breathing of subjects,
considering them as a common mode interference. -ere-
fore, we did not compare these motion-tracking results with
those of other methods mentioned in the literature but
compared the extracted disturbance with the preset value.
-e more consistent they are, the better the performance of
the method for filtering out external disturbance. -ose new
wall motion-tracking methods can be performed after our
disturbance suppression method. To verify the suppression
will not affect the motion of the arterial wall, we compared
the estimation of wall motions extracted from aligned im-
ages with the reference trajectory of wall motion. -en, we
used linear regression analysis and the Bland–Altman
analysis to demonstrate this. -e higher correlation and

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 10: Clinical B-mode ultrasound images (a–f) and their corresponding combining phase images (g–l) at several time steps (0, 2, 4, 6, 8,
and 10 seconds).
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agreement mean that our suppression approach has little
effect on wall motion. Our method is based on the as-
sumption that the tissues far away from the vessel wall in
different frames have a similar structural and geometric

pattern. We found it is reasonable by reviewing many of the
clinical ultrasound image sequences.

As shown in Figure 8 and Table 1, there are so many
outliers in the disturbance extracted results based on the
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Figure 12: Wall motions estimated from a ten-second clinical B-mode ultrasound image sequence in longitudinal (a) and radial (b) directions after
disturbance rejection processing.-e disturbance rejections are based on the estimated disturbances demonstrated in Figure 12which are obtained by
the BM (blue), PM (cyan), SBM (magenta), SPM (yellow), SWBM (green), SWOM (gray), SWPM (orange), and SWPOM (black) methods.
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Figure 11: Extracted disturbances from the clinical image sequence, for the longitudinal direction (a), radial direction (b), and rotation
angle (c). -e disturbance obtained by the BM (blue), PM (cyan), SBM (magenta), SPM (yellow), SWBM (green) SWOM (gray), SWPM
(orange), and SWPOM (black) methods is demonstrated.
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phase images (PM and SPM), which does not coincide with the
advantages of the phase information. However, as shown in
Figure 11, the results based on clinical images are much better.
-is is probably because the difference in speckle pattern detail
of the successive simulated B-mode ultrasound image results in
a larger difference between its phase images than that of clinical
images, although they may look very similar to each other.
Although the clinical phase image works well, the solution to
this problem will improve the reliability and robustness of our
method. -is will be the direction of our future research.
Moreover, although we used the altered SRAD filter, the results
in the longitudinal direction are still poorer than the radial
results, which is probably because of the texture characteristics
of the tissues. How to improve the disturbance suppression
performance in the longitudinal direction is challenging and
will be the direction of our future research.

5. Conclusions

In this work, we proposed an approach to suppress the
disturbance introduced by the instability of the probe
operator and the breathing of subjects. -is method is
realized by registering the tissues far away from the arterial
wall in ultrasound images. Firstly, the SRAD filter was
utilized to remove the speckle noise while preserving the
edge information. Moreover, we increased the longitudinal
weight of the gradient item in the diffusion equation to
promote the performance of longitudinal suppression.
-en, taking advantage of the invariance to image
brightness and contrast of the local phase vector, we
employed a combined approach of the local phase and local
orientation for registration. Clinical and simulation results
show that this method can effectively suppress external
disturbances without impact on the motion of the arterial
wall. Combined with new motion-tracking methods, this
method will further improve the estimation accuracy of
motion estimation.
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