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Abstract
Natural products have been widely used in the treatment of type 2 diabetes (T2D).
However, their mechanisms are often obscured due to multi‐components and multi‐
targets. The authors constructed a pathway‐based protein–protein association (PPA)
network for target proteins of 13 α‐glucosidase inhibitors (AGIs) identified from Scu-
tellaria baicalensis Georgi (SBG), designed to explore the underlying mechanisms. This
network contained 118 nodes and 1167 connections. An uneven degree distribution and
small‐world property were observed, characterised by high clustering coefficient and short
average path length. The PPA network had an inherent hierarchy as C(k)∼k−0.71. It also
exhibited potential weak disassortative mixing pattern, coupled with a decreased function
Knn (k) and negative value of assortativity coefficient. These properties indicated that a
few nodes were crucial to the network. PGH2, GNAS, MAPK1, MAPK3, PRKCA, and
MAOA were then identified as key targets with the highest degree values and centrality
indices. Additionally, a core subnetwork showed that chrysin, 5,8,20‐trihydroxy‐7‐
methoxyflavone, and wogonin were the main active constituents of these AGIs, and that
the serotonergic synapse pathway was the critical pathway for SBG against T2D. The
application of a pathway‐based protein–protein association network provides a novel
strategy to explore the mechanisms of natural products on complex diseases.

1 | INTRODUCTION

The global incidence of type 2 diabetes (T2D) in adults is
increasing worldwide [1]. It is a complex disease affected by
many factors and complications. In 2020, a detrimental effect
of T2D on COVID‐19 was also found [2]. The treatment and
management of T2D is becoming increasingly complex [3], and
natural products have been considered as the main sources of
new drugs [4]. Recently, increasing numbers of natural prod-
ucts have been found to have anti‐T2D properties [5]. Some
have been widely used to control diabetes, such as curcumin,
flavanone, resveratrol, carotenoid, and polyphenols [6]. The

α‐glucosidase inhibitors (AGIs) are described as the most
effective anti‐diabetic drugs in the management of T2D [7].
They can suppress the postprandial blood glucose and insulin
levels. Many α‐glucosidase inhibitors originate from natural
products, especially phytoconstituents [8].

Flavonoids are a group of polyphenols, and are widely
distributed in plants [9]. Flavonoids could modulate the activity
of enzymes and affect the behaviour of cell systems [10]. A
series of flavonoids show antidiabetic properties and activities
in the treatment of diabetic complications, including apigenin,
hesperidin, catechin, etc. [11]. Some are considered as prom-
ising AGIs, such as luteolin, isovitexin, and quercetin [7].
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Scutellaria baicalensis Georgi (SBG) is a widely used medical
plant in Asia [12]. Flavonoids and their glycosides are consid-
ered to be characteristic components of SBG [13]. Extract of
this plant has been reported to show an α‐glucosidase inhibi-
tion activity [5]. In the authors’ previous works [14], a total of
32 flavonoids from the root of SBG were extracted and iden-
tified. Moreover, 13 of them were exhibited as α‐glucosidase
inhibitors, including wogonin, chrysin, and oroxylin A, etc.
Their contributions to the bioactivities of SBG were also
investigated. However, more works should be done to elucidate
the molecular mechanisms of these flavonoids against T2D.

Interactions between individual agents determine the
structures and functions of many biological systems [15]. It is
noteworthy that the associations between target proteins
contribute much to modulate cellular physiology and expand
the opportunity for drug discovery [16]. The protein–protein
interaction profiles are extremely important to the pharma-
cological effects of natural products [17]. Nevertheless, sys-
tematic analyses of these interrelationships are still challenging
tasks. One of the primary reasons for this is that natural
products have chemical diversity and the ability to interact
with multi‐targets [18]. To fully understand their pharmaco-
logical effects, it is vital to explore the associations between
all the target proteins for bioactive constituents in natural
products [19]. Additionally, a global methodology is needed to
extract the related active constituents and biological pathways.

In recent years, complex network theory has been applied to
the drug development strategies [20]. It is also known as
‘network pharmacology’ or ‘system pharmacology’ in the
research into natural products [21]. This approach aims to pick
up information from big data, and summarise rules of individual
parts. It is suitable for extracting biological information from
large amounts of chemical or biological data [22]. Many studies
have applied complex network methodology to investigate the
therapeutic potential of natural products [23]. For instance, a
network pharmacology‐based analysis found that Rhizoma
coptidis played an anti‐diabetic rolemainly via hormone receptor
activity, glutathione binding, steroid binding, etc. [24]. Another
study constructed a component/target/pathway network for
Rhizoma coptidis against T2D, and 12 active components, 57
targets, as well as 38 signalling pathways were screened [25]. It
suggested significant potential of this tool in predicting phar-
macological actions of active ingredients from medicinal plants
against T2D. Guo et al. applied the network methodology to
explore the effects ofGynura procumbens (Lour.) on T2D, and
revealed that the PI3K/Akt signalling pathway played a
momentous role [26]. Patil et al. investigated the molecular
mechanisms of action of 11 common herbs used for the man-
agement of T2D, using molecular docking, gene set enrichment
analysis, and network pharmacology [27]. The network analysis
results showed that the PI3K‐AKT signalling pathway was a key
pathway of T2D and its complications that wasmodulated by the
phytoconstituents. In summary, the emerging tool of a complex
network would greatly contribute to drug discovery.

Herein, the authors used a complex network model to
investigate the underlying mechanisms of AGIs from SBG
against T2D. Target proteins of these AGIs were organised

into a pathway‐based protein–protein association (PPA)
network. The network architectures were studied in a system-
atic manner. Statistical and topological analyses were per-
formed to investigate the interrelationships between nodes.
Furthermore, a series of parameters were calculated to identify
key nodes in the network, which indicated the main active
constituents, key targets and critical biological pathways for the
AGIs from SBG against T2D.

2 | MATERIALS AND METHODS

In the authors’ previous studies [14], 13 α‐glucosidase in-
hibitors (AGIs) were identified from SBG by ultrafiltration LC‐
MS method, including tenaxin I, skullcapflavone II, viscidulin
III, etc. Detailed information about these compounds is listed
in Table S1. They were organised as a chemical ingredients
database for the next network analysis.

Target proteins of the AGIs were collected from SuperPred
(http://prediction.charite.de/) and DrugBank (https://www.
drugbank.ca/). Target prediction for the input compounds was
also performed by SuperPred, based on the similarity distribu-
tion among ligands [28]. Information of these proteins was
made uniform by the universal protein resource (Uniprot,
http://www.uniprot.org/). Pathway analysis was applied to
these target proteins using the Database for Annotation and
Integrated Discovery (DAVID 6.8, https://david.ncifcrf.gov/).
Raw p‐values were adjusted with the Benjamini & Hochberg
procedure (p < 0.05) [29]. Moreover, the pathways containing
only one or two proteins were excluded from the results. An
association was established between two proteins if they were
both involved in one or more pathways.

Complex network methodology was employed to study the
interrelationships between the target proteins of AGIs from
SBG. A pathway‐based protein–protein association network
was then constructed. The PPA network contained many
nodes and edges, in which nodes referred to the target pro-
teins, and edges represented associations between nodes. This
network was visualised by Pajek (Version 5.1, Batagelj and
Mrvar). A set of parameters were investigated for further
interpretation of the PPA network, using MATLAB 2016a
(The MathWorks Inc.).

3 | RESULTS

3.1 | Construction of the pathway‐based
protein–protein association (PPA) network

A total of 13 potential AGIs were identified from SBG by
ultrafiltration UPLC‐Q‐TOF in the authors’ previous experi-
ments. These compounds were organised as a chemical in-
gredients database (Table S1), containing viscidulin III,
chrysin‐7‐O‐β‐D‐glucopyranoside, skullcapflavone II, 20,60,7‐
trihydroxy‐5‐methoxyflavanone, etc. Herein, a series of 118
targets were collected using web tools (Table S2). Parts of these
proteins were therapeutic targets of T2D [30], such as
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glucocorticoid receptor, peroxisome proliferator‐activated re-
ceptor delta, poly(ADP‐ribose) polymerase 1, etc. Numerous
targets suggested that AGIs from SBG were involved in
various signal pathways.

A pathway contains a set of cascade reactions among
numerous biomolecules. It regulates various biological func-
tions in the organism. The target proteins of AGIs from SBG
were involved in 86 pathways (Table S2), including the oes-
trogen signalling pathway, ascorbate and aldarate metabolism,
thyroid hormone signalling pathway, pentose and glucuronate
interconversions, etc. Abnormal pathways mean perturbations
in the intracellular or intercellular network between tissues and
organs.

Interactions between target proteins are one of the core
processes for the effects of natural products on cells. A
pathway‐based protein–protein association network was then
constructed to investigate interrelationships for targets of
AGIs. This network has 118 nodes (N = 118) and 1167

connections (E = 1167). As shown in Figure 1, a few nodes
were highly connected with others, whereas many others were
less connected or even isolated. This indicated that the nodes
had different significances in PPA network. The authors made
further investigation of the topological parameters of the PPA
network to explore the behaviours of these target proteins.

3.2 | Properties of the PPA network for
α‐glucosidase inhibitors from Scutellaria
baicalensis Georgi

The global properties of systems are always determined by
the overall framework rather than individual parts. A complex
network provides an approach to get information by calcu-
lating the network parameters, which contain lots of biolog-
ical information, and could help to interpret the network
locally [31].
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F I GURE 1 Pathway‐based protein–protein association (PPA) network of α-glucosidase inhibitors (AGIs) from Scutellaria baicalensis Georgi (SBG),
containing 118 nodes and 1167 edges. Nodes indicate the target proteins of AGIs from SBG. Edges represent associations between a pair of proteins. The blue
nodes represent key targets exhibiting the highest values of degree and centrality indices in the PPA network
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3.2.1 | Diameter and average path length

Diameter (D) indicates the maximum distance between each
group of nodes. Average path length (L) represents the mean
distance over all pairs of nodes.

D¼max
�
dij
�

ð1Þ

L¼
1

NðN − 1Þ
X

i≠j
dij ð2Þ

N is the total number of nodes in the PPA network, and dij
is the shortest path length from a node i to j. The connected
components of the PPA network showed a very short average
path length (L = 1.92), smaller than a random network with the
same amount of nodes. Additionally, the diameter of this
network was 4. This meant that there were at most four links
between any pair of nodes. Therefore, target proteins of AGIs
from SBG appeared to be tightly linked with each other. This
further confirmed that the α‐glucosidase inhibitors from SBG
worked through multi‐targets.

3.2.2 | Clustering coefficient

The clustering coefficient reflects the cohesiveness of neigh-
bours for a node, which measures the trend of nodes to form
connected triangles. C of a node i (Ci) is displayed below:

Ci ¼
2ei

kiðki − 1Þ
ðki ≥ 2Þ ð3Þ

This parameter goes from zero to one. When Ci inclines to
zero, the node is among the unintegrated clusters or part of a
loosely connected group. Conversely, the node is centred in a
highly interconnected cluster. The clustering coefficient of the
whole network (C) is the average Ci of all nodes. It shows
the trend of nodes to be involved in clusters. C(k) reflects the
distribution of clustering coefficient for all the nodes.

The clustering coefficient of the PPA network was 0.83. It
showed a strong tendency of these proteins to form clusters. The
distribution of Ci was analysed in Figure 2. Apparently, most of
the non‐isolated nodes had a high Ci value that was larger than
0.5. It was probable for these nodes to be involved in a more
connected cluster, indicating that a critical pathway existed for
the bioactivities of α‐glucosidase inhibitors from SBG.

Many networks in the real world are either completely
regular or completely random. However, the PPA network
demonstrated a small‐world property, characterised by a high
clustering coefficient and short average path length [32]. This
suggested that the network was composed of many small,
closely linked, hierarchical clusters, and presented as large, less
cohesive cells. Disturbances on a few key nodes would diffuse
rapidly into the whole network. In other words, a small number
of key targets were crucial to the bioactivities of α‐glucosidase

inhibitors from SBG. This feature also existed in many other
biological networks [33].

C(k) was evaluated and fitted in Figure 3. It showed a
power‐law decay with an exponent of 0.71, C(k)∼k−0.71. The
PPA network appeared as a hierarchical system for the non‐
uniform, power‐law of C(k). It indicated that many nodes
tended to be involved in heavily connected regions, which
produced a higher clustering coefficient of the network. In
other words, many targets of AGIs were strongly connected,
and simultaneously belonged to a few pathways. These in-
terconnections might play an important part in the pharma-
cological effects of AGIs from SBG.

3.2.3 | Degree correlation and assortativity

Degree (k) is one of the most important characteristics for a
node. The number of direct links for node i is defined as ki.
The mean value of all ki is the average degree 〈k〉 of the
network. The nodes with the most links are defined as hubs of
the network. Degree distribution, represented as P(k), describes
the proportion of nodes with a particular number of links.

ki ¼
XN

j¼1
eij ð4Þ

<k >¼
1
N

XN

i¼1
ki ð5Þ

where eij is the number of links from node i to j.
Degree correlation measures the influence of connectivity

for a node on its neighbours [34]. Degree correlations of the
network are represented as the average nearest neighbours
degree Knn,i for node i. Knn(k) indicates Knn of nodes with a
degree k.
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F I GURE 2 Distribution of clustering coefficient to show the
proportion of nodes with a specific Ci value
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Knn;i ¼
1
ki

X

j∈Ni

aijkij ð6Þ

The network is either assortative or disassortative, deter-
mined by Knn(k) is increasing or decreasing as a function of k.
If no correlation exists among all nodes, Knn(k) is 0.

The assortativity coefficient (r) measures degree correla-
tions between neighbours in a network [35]. If r is a positive
value, the network is assortative, otherwise it is disassortative
with a negative value of r.

r ¼
E−1P

i
xiyi −

�

E−1P

i

1
2

�
xi þ yi

�
�2

E−1P

i

1
2

�
x2i þ y2i

�
−
�

E−1P

i

1
2

�
xi þ yi

�
�2 ð7Þ

The average nearest neighbours degree, Knn (k) of the PPA
network is shown in Figure 4. It is exhibited as a decreasing
function of k, as well as a potential weak disassortative mixing
(k > 10). The assortativity coefficient (r) of the PPA network
was −0.1, showing the same trend as Knn. This illustrated that
interactions might exist between nodes with large degrees and
small degrees. Many biological networks are also inclined to be
disassortative [36]. This might be the result for the highly
complex constitution of organisms.

3.3 | Hubs, central nodes of the PPA
network, and key targets for AGIs from SBG

3.3.1 | Hubs of the PPA network

Numerous nodes in the network have different responsibilities.
Degree distribution P(k) reflects the diversity of a network. The
numbers and frequencies of different degree values are listed in
Table 1.

The PPA network showed an uneven degree distribution.
A part of nodes was isolated or had small degrees less than 10,
whereas that of a few nodes were larger than 50. Average
degree 〈k〉 of the PPA network was 19.76, implying that an
average of nearly 20 targets appeared in common pathways.

The most highly connected nodes are defined as hubs. All
nodes were sorted according to degree values (Figure 5). Among
the 118 targets of AGIs from SBG, prostaglandin G/H synthase
2 precursor (PGH2) had the highest degree of 63, thenmitogen‐
activated protein kinase 1 (MAPK1, k = 53), mitogen‐activated
protein kinase 3 (MAPK3, k = 53), guanine nucleotide‐binding
protein G(s)
subunit alpha (GNAS, k = 51) and protein kinase C alpha type
(PRKCA, k= 51). The five proteins showedmuch higher degree
values than the average (〈k〉 = 19.76), andwere considered as hub
nodes of the PPAnetwork. Hubs are always located to determine
the network function [32]. Larger degrees demonstrated that
these targets had larger impacts on the network. Although nat-
ural products had many target proteins, the highly connected
ones involved in various pathways might contribute most to the
pharmacological effects.

3.3.2 | Central nodes of the PPA network

Centrality demonstrates the relative influence of a node on the
network structure. Three centrality indices (CI), degree centrality
(Cd), betweenness centrality (Cb), and closeness centrality (Cc)
are evaluated to search central nodes of the PPA network. Cd
indicates the proportion of other nodes adjacent to a node.Cb is
the total quantity of the shortest paths through a node. Cc is the
quantity of other nodes divided by the sum of distances between
one node and all the others. The equations are as follows:

Cd ¼
ki

N − 1
ð8Þ
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F I GURE 4 The average nearest neighbours degree for the nodes in
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Cb ¼
XN

jð<kÞ

XN

k

gjkðiÞ

gjk
ð9Þ

Cc ¼
N − 1
PN

j¼1dij
ð10Þ

where gjk is the number of geodesics connecting nodes j and k,
and dij is the shortest path length between nodes i and j.

The central locations of a network are more important
than marginal or isolated positions [37]. The central nodes of
the PPA network were investigated by three indexes. Figure 6

is a 3D graph illustrating the distribution of CI. The inte-
gration of CI seemed approximately uniform. However, some
abnormal values were exhibited as outliers, including PGH2
(Cd = 0.538, Cb = 0.090, Cc = 0.578), GNAS (Cd = 0.436,
Cb = 0.069, Cc = 0.538), MAPK1 (Cd = 0.453, Cb = 0.028,
Cc = 0.534), MAPK3 (Cd = 0.453, Cb = 0.028, Cc = 0.534),
PRKCA (Cd = 0.436, Cb = 0.036, Cc = 0.538), and mono-
amine oxidase type A (MAOA, Cd = 0.393, Cb = 0.036,
Cc = 0.507). MAPK1 and MAPK3 had the same CI values,
which are overlapped in Figure 6. Detailed data of CI are
listed in Table S3.

3.3.3 | Key targets for AGIs from SBG

The six central nodes were located in key positions of the PPA
network. A total of 70 neighbours were directly linked to them.
These target proteins accounted for 59.3% of all nodes, and
were involved in common pathways with the central nodes.
Moreover, five of the central nodes were also hubs of the PPA
network. High connectivity and centrality suggested that dis-
turbances to the six proteins would spread rapidly throughout
the whole network. Therefore, they were considered as key
targets for the AGIs from SBG.

Recent studies have demonstrated the association between
these key targets and T2D. PGH2 generates prostaglandins and
causes insulin insensitivity. PGH2 polymorphisms were found
to play a role in mediating susceptibility to T2D in Pima In-
dians [38]. The GNAS gene encodes the heterotrimeric Gs
protein α‐subunit. It is an important regulator of insulin
secretory capacity in pancreatic β‐cells [39]. MAPK1 and
MAPK3 belong to the MAPK/ERK cascade, which could
affect insulin signalling [40]. They are increased in human and
rodent adipose tissue in diabetic states [41]. PRKCA encodes a
cytoplasmic serine/threonine kinase. Variants in PRKCA are
significantly associated with diabetes [42]. MAOA is a critical
regulator of neurotransmitter signalling at monoaminergic
synapses. Polymorphisms in MAOA were found to be associ-
ated with obesity, a key factor contributing to the incidence of

TABLE 1 Degree distribution of the pathway‐based protein
association network

k Count1 P(k)2 k Count P(k) k Count P(k)

63 1 0.85 31 15 12.71 15 2 1.69

53 2 1.69 30 3 2.54 13 4 3.39

51 2 1.69 29 8 6.78 12 1 0.85

46 1 0.85 28 1 0.85 11 2 1.69

45 1 0.85 27 1 0.85 10 1 0.85

44 1 0.85 26 2 1.69 9 1 0.85

43 1 0.85 25 1 0.85 8 2 1.69

40 2 1.69 24 1 0.85 7 5 4.24

39 2 1.69 22 4 3.39 6 3 2.54

38 1 0.85 21 1 0.85 4 1 0.85

37 2 1.69 20 2 1.69 3 3 2.54

36 3 2.54 19 1 0.85 0 27 22.88

34 1 0.85 17 1 0.85

32 3 2.54 16 2 1.69

1Number of the occurrence of a degree value.
2Percentage of nodes with a certain degree value in all nodes (%).
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T2D [43]. These reports further confirmed the importance of
the key targets in the treatment of T2D.

3.4 | Core subnetwork, main active
constituents, and critical pathways for type 2
diabetes

T2D is a complex disease regulated by a group of pathways
[44]. Accordingly, the mechanism of AGIs from SBG in T2D is
confused. Although the number of key targets was small, these
proteins played a significant part in the pharmacological effect
of AGIs. To enhance the interpretation, the key targets
together with related AGIs, pathways were extracted. These
data were then integrated into a core subnetwork, containing
10 nodes and 15 connections (Figure 7).

These nodes had significant impacts on the global
function of the PPA network. The node information is
listed in Table 2.

Three AGIs showed direct associations with the key targets,
including chrysin, 5,8,20‐trihydroxy‐7‐methoxyflavone, and

wogonin. They were considered as the main active constituents.
Chrysin is a natural component extracted mainly from plants. It
has been demonstrated to have a potent antidiabetogenic effect.
Chrysin could improve diabetes in streptozotocin‐induced
diabetic rats [45]. This compound was also found to amelio-
rate diabetes‐associated cognitive deficits in Wistar rats [46].
Wogonin has been shown to be effective in controlling diabetes
and its complications. It could increase GLUT4 (Glucose
transporter 4) trafficking to plasma membrane, which allows
increased entry of glucose and thus alleviates hyperglycaemia
[47]. The three AGIs from SBG are all flavonoids. Bioactivities
of flavonoids are dependent on the hydroxylated phenolic
structure [48]. Although the reports about pharmacological
action of 5,8,20‐trihydroxy‐7‐methoxyflavone are few, it has a
potential antidiabetogenic effect, which should be tested in the
future. These main active constituents might contribute most to
the pharmacological effects of AGIs from SBG.

All six key targets were involved in the serotonergic
synapse pathway (hsa04726). It was exhibited as a critical
pathway for SBG and T2D (Figure 8). The regulating effects
of natural products against T2D are based on various targets
and signal pathways [5]. The serotonergic synapse pathway is
mainly related to the nervous system, and T2D is a systemic
disorder affected by both the central and peripheral nervous
systems [49, 50]. Serotonin, also known as 5‐
hydroxytryptamine (5‐HT), is a monoamine neurotrans-
mitter. It plays a significant role in many major risk factors
for T2D, such as obesity, glucose control, and insulin
resistance [51]. Serotonin was reported to control the
glucose homeostasis of the nervous system [52]. The sero-
tonin transporter was found to play a potential role in
antidepressant‐induced type 2 diabetes [53]. Moreover, se-
rotonin 2C receptor agonists could increase glucose toler-
ance and improve T2D [54]. Recent research has also
identified genetic markers involved in the serotonergic syn-
apse pathway and T2D using a systems biology approach
[55]. These reports supported the hypothesis that the α‐
glucosidase inhibitors from SBG contributed to control T2D
through the serotonergic synapse pathway, which needs to
be confirmed in future studies.

PTGS2 GNAS MAPK1
MAPK3

PRKCAMAOA

Wogonin
Chrysin

5,8,2’-Trihydroxy-7-methoxyflavone

hsa04726

F I GURE 7 Core subnetwork of α-glucosidase inhibitors (AGIs) from
Scutellaria baicalensis Georgi (SBG). Red nodes indicate the main active
constituents, yellow nodes are the key targets, and the green node
represents the critical pathway

TABLE 2 Information on the nodes in the core subnetwork

Main active
constituents CAS1 Key targets Recommended name2 Critical pathways Entry3

Chrysin 480‐40‐0 PGH2 Prostaglandin G/H synthase 2 Serotonergic synapse pathway hsa04726

Wogonin 632‐85‐9 GNAS Guanine nucleotide‐binding protein G(s)
subunit alpha isoforms short

5,8,20‐Trihydroxy‐
7‐methoxyflavone

77056‐20‐3 MAPK1 Mitogen‐activated protein kinase 1

MAPK3 Mitogen‐activated protein kinase 3

PRKCA Protein kinase C alpha type

MAOA Amine oxidase (flavin‐containing) A

1Registry number (Chemical Abstracts Service) of the α‐glucosidase inhibitors in the core subnetwork.
2Name of protein targets in the core subnetwork, originated from Uniprot.
3KEGG entry of pathway in the core subnetwork.
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4 | DISCUSSION

Natural products are characterised by multi‐components and
multi‐targets, which cause difficulties in the mechanism
research [56]. The complex network method enables the
extraction of information from protein–protein interactions
data, and is suitable for exploring the underlying mechanism
from a system point of view. Most studies into protein–
protein interactions of natural products used major public
databases as data sources. For instance, Hu et al. built a
human protein–protein interaction network and the T2D
disease protein interaction network [57], designed to provide
new effective combinations of herbal medicines for T2D. The
data were collected from seven databases, including Bio-
GRID, BIND, DIP, HPRD, iRefWeb, IntAct, and MINT. Ren
et al. constructed a protein–protein interaction network for
Anshen essential oil based on the STRING database, and
found that SLC4A4 was in the centre of the targets, followed
by HTR3A, HTR2A, DRD2, etc. [58]. In the authors’ pre-
vious works [14], they conducted a network analysis of the
targets of AGIs from SBG and that of commercial drugs for
T2D. The interaction data were also calculated by the
STRING database. These data mainly originated from
experimental data and literature, which focussed on the in-
terrelationships between each pair of proteins. On the other
hand, large amounts of targets of natural products are
involved in a series of pathways in vivo, and therapeutic ef-
fects of natural products are achieved through these signalling
pathways [59, 60]. Thus, more attention should be paid to
protein interactions based on common pathways. This study
aimed to explore mechanisms of AGIs from SBG against
T2D using a pathway‐based protein–protein association
network, which would provide more information from a
system point of view. Hub nodes of this network were ana-
lysed and extracted, and were considered as key targets, main

active constituents, as well as critical pathways for AGIs from
SBG. These results were also supported by previous reports.
However, some important issues to be addressed include that
more computational models and experiments are needed to
prove these results.

5 | CONCLUSIONS

In the study discussed herein, a pathway‐based protein–
protein association network was built for target proteins of
α‐glucosidase inhibitors from Scutellaria baicalensis Georgi.
This network showed a series of distinct features, such as
uneven degree distribution and small‐world property, an
inherent hierarchy as C(k)∼k−0.71, as well as potential weak
disassortative mixing pattern, coupled with decreased func-
tion Knn (k) and negative value of assortativity coefficient.
These data indicated that the network was greatly affected
by a small group of components. PGH2, GNAS, MAPK1,
MAPK3, PRKCA, and MAOA were then selected as key
targets of these AGIs. The serotonergic synapse was found
to be a critical pathway for the AGIs from SBG against
T2D. These conclusions are also strongly supported by
previous reports. Generally, the application of a complex
network would expand the authors’ views on natural prod-
ucts in the treatment of T2D.
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