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Identification and validation of 174 
COVID‑19 vaccine candidate 
epitopes reveals low performance 
of common epitope prediction 
tools
Marek Prachar1,2,3, Sune Justesen3, Daniel Bisgaard Steen‑Jensen3, Stephan Thorgrimsen3, 
Erik Jurgons4, Ole Winther1,2,5 & Frederik Otzen Bagger1,6,7*

The outbreak of SARS‑CoV‑2 (2019‑nCoV) virus has highlighted the need for fast and efficacious 
vaccine development. Stimulation of a proper immune response that leads to protection is highly 
dependent on presentation of epitopes to circulating T‑cells via the HLA complex. SARS‑CoV‑2 is 
a large RNA virus and testing of all of its overlapping peptides in vitro to deconvolute an immune 
response is not feasible. Therefore HLA‑binding prediction tools are often used to narrow down the 
number of peptides to test. We tested NetMHC suite tools’ predictions by using an in vitro peptide‑
MHC stability assay. We assessed 777 peptides that were predicted to be good binders across 11 
MHC alleles in a complex‑stability assay and tested a selection of 19 epitope‑HLA‑binding prediction 
tools against the assay. In this investigation of potential SARS‑CoV‑2 epitopes we found that current 
prediction tools vary in performance when assessing binding stability, and they are highly dependent 
on the MHC allele in question. Designing a COVID‑19 vaccine where only a few epitope targets are 
included is therefore a very challenging task. Here, we present 174 SARS‑CoV‑2 epitopes with high 
prediction binding scores, validated to bind stably to 11 HLA alleles. Our findings may contribute to 
the design of an efficacious vaccine against COVID‑19.

2019-nCoV (SARS-CoV-2) was first reported in Wuhan, China, on 31 December 2019, following a series of 
unexplained pneumonia  cases1. Currently, the disease is rated as a global pandemic by The World Health Organi-
zation with case reports from all continents, as of 4 October 2020 the disease has infected more than 34 million 
people and has claimed more 1 million lives  globally2. Vaccine development is of high priority, and a number 
of public and private initiatives are focused on this  task3. Many of the ongoing vaccine development efforts are 
focused on raising an immune response against the spike protein. However, the spike protein only makes up 1/8 
of the SARS-CoV-2 genome, so this vaccine strategy may inadvertently miss a lot of potential immune reactiv-
ity. SARS-CoV-2 has a large  proteome4. Immune deconvolution to identify T cell epitopes will require initial 
filtering to assess which SARS-CoV-2-derived peptides are likely to bind a given HLA allele and to be presented 
on the surface of infected cells from where it can activate passing T cells. The core binding groove of most MHC 
class I molecules can accommodate 9 amino acid residues, with some variation or suspected impact of flanking 
 positions5,6. MHC class II has been described to bind longer peptides (up to 13–25 residues long) interacting 
with the open binding  groove7. Providing the possibility for further inspection of the importance of the binding 
motif and its flanking regions.

Several computational tools (a selection is presented in Table 1) have been developed that can predict the 
binding of peptides to HLA. Traditionally, these tools were trained using data from affinity  assays8, but more 
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recently many of them also incorporate data from peptides identified by HLA ligandome analysis. Most tools 
rely on small neural networks (NN) or variations of position-specific weight matrices (PSSM), to calculate the 
probability of a peptide matching a consensus motif or model.

NetMHC tools (such as NetMHC, NetMHCII, NetMHCpan, NetMHCIIpan and others) have been under 
constant development and have consistently performed well throughout the last  decade9–12. Several tools are 
restricted in terms of which alleles are available for prediction, in particular for MHC class II. This restriction is 
primarily determined by the availability of training data, for which the largest public collection is currently the 
Immune Epitope Database (IEDB)13. Attempts to overcome this limitation have been made via sequence-to-
sequence predictions, most notably for  NetMHCpan14. A number of recent publications makes use of prediction 
tools to suggest vaccine candidate epitopes for SARS-CoV-215–17.

To assess whether current peptide-HLA prediction tools could be suitable for identification of epitopes rel-
evant in a vaccine against SARS-CoV-2, we tested binders predicted by the netMHC tools, using a new peptide-
MHC complex-stability assay NeoScreen on ten HLA class I alleles and one HLA class II allele. The selection 
of class I alleles broadly covers populations across different ethnic origins (Table S1). Subsequently, we chose 
all tools included in the benchmark recently reviewed by Mei et al.10, excluding the three tools with the lowest 
performance (MHCnuggets, HLA-CNN and RANKPEP), as well as SYFPEITHI which could not be brought to 
run on our system. Furthermore, we added newly developed tools such as HLAthena and DeepHLAPan and a 
standard tool SMM 1.0 to offer a comprehensive representation of the current prediction tool landscape (Table 1). 
Most of the selected tools are periodically tested in the IEDB Automated  Benchmark35,36.

We found that algorithmically predicting binding between epitopes from SARS-CoV-2 and HLA outputs 
many complexes that turned out to exhibit low stability. Such peptides are thus very unlikely to elicit an immune 
response against SARS-CoV-2 and are therefore unsuitable for vaccine development. To investigate if this find-
ing was a result of the quality of available training data, we constructed a proof-of-concept prediction model for 
HLA-A*02:01, which we trained on 2193 historic in-house stability data points, and found that it outperforms 
other tools. Training data was primarily human cancer-derived or based on random sequences. SARS-CoV-2 
peptides that we validated as binding or non-binding in this study are freely available for use to assist in vaccine 
design against COVID-19.

Results
We set out to identify peptides with epitope potential in a future COVID-19 vaccine. We commenced by trans-
lating the reference sequence of SARS-CoV-2 (ACCESSION MN908947, VERSION MN908947.3) to a protein-
coding sequence. Then we predicted potential epitopes in a sliding window of 9 for HLA class I and of 12 for 
class II using netMHC tools (netMHC/II and “-pan” versions, when allele was not available), for details see Data 
S1. We identified the top 94 predicted peptides for 11 HLA alleles (94 × 11 = 1034) and went further to validate 
the binding of these 94 peptides to each allele in an in vitro MHC-peptide complex stability assay (NeoScreen). 
We removed eight peptides that were synthetically introduced when translating the DNA sequence to protein 

Table 1.   Current best-performing or novel HLA prediction  tools10. Webservers checked on 2 March 2020, 
NN: Neural network, Cons: Consensus, PSSM: Position specific scoring matrix. *Availability as a fraction of 
alleles included in study (10 HLA class I and 1 of HLA class II).

HLA Tool Alleles available* Year Algorithm Web server References

Class I

NetMHC 4.0 9/10 2003 NN Yes 18

IEDB-AR Consensus 9/10 2006 Cons Yes 19

ConvMHC 6/10 2017 NN Yes 20

DeepHLAPan 10/10 2019 NN Yes 21

HLAthena 10/10 2020 NN Yes 22

MixMHCpred 2.0.2 10/10 2017 PSSM No 23

MHCFlurry 1.3.0 8/10 2018 NN No 24

NetMHCcons 1.1 10/10 2012 Cons Yes 25

NetMHCpan_BA 4.0 10/10 2017 NN Yes 14

NetMHCpan_EL 4.0 10/10 2017 NN Yes 14

NetMHCstab 1.0 10/10 2014 NN Yes 26

PickPocket 1.1 10/10 2009 PSSM Yes 27

PSSMHCpan 1.0 10/10 2017 PSSM No 28

SMM 1.0 8/10 2005 PSSM Yes 29

SMMPMBEC 1.0 8/10 2009 PSSM Yes 30

Class II

IEDB-AR Consensus 1/1 2008 Cons Yes 31

NetMHCIIpan 3.2 1/1 2018 NN Yes 32

NN_Align 2.3 1/1 2018 NN Yes 32

SMM-align 1.1 1/1 2007 PSSM Yes 33

Sturniolo 1.0 1/1 1999 PSSM Yes 34
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sequence. Of the remaining 1026 peptides we observed a high degree of overlap between different alleles, resulting 
in 777 unique peptides. In order to first assess potential variability across the stability measurements we made 
replicate measurements (n = 4) of 30 randomly selected peptides over 8 different HLA alleles. Each peptide was 
measured with urea in 4 different concentrations (0 M, 2 M, 4 M, 6 M), and we observed an average standard 
deviation between replicates of 0.10 with an average mean of 0.56 (Figure S1). All remaining experiments were 
performed in duplicate for all concentrations. We found that 174 of the 777 unique peptides formed a stable 
peptide-HLA complex. Of these 174 peptides, currently 98 were previously measured and deposited in IEDB 
either as a 9-mers or as a substring of a longer peptide, 3 peptides were reported in recent  studies37–39 but not 
deposited in the IEDB and 73 remaining peptides are novel. The overlap with peptides deposited in IEDB clearly 
points out to cross-reactivity between SARS-CoV and SARS-CoV-2, this cross-reactivity has been described in 
a recent study showing that individuals infected with SARS retained long-lasting memory T cells reacting to the 
N protein of SARS-CoV, as well as N protein of SARS-CoV-240. Since the completion of our measurements and 
data search there has been rapid development and many new studies have emerged. The full list of predicted 
binders (excluding synthetic peptides) can be found in the Supplementary materials (Supplementary Data S1).

To further address whether alternative prediction tools would have higher concordance with measured stabil-
ity, we performed predictions for all tools listed in Table 1. Predictions for the 19 different tools were performed 
either through their web server or a stand-alone version, (see Materials and methods section for details). Fur-
thermore, using in-house stability data, we developed PrdX 1.0, a prediction tool for a single allele HLA-A*02:01, 
where all other tools performed poorly.

We assessed the false positive rate for each tool via Receiver Operating Characteristic (ROC) curves, and 
their Area under curve (AUC) for all alleles that had more than 10 binders.

The analysis revealed that NetMHC 4.0 achieved the highest score for allele HLA-A*01:01 (AUC = 97.47; 
Fig. 1A), closely followed by NetMHCcons 1.1, NetMHCpan_BA 4.0 and IEDB-AR Consensus. PrdX 1.0 
scored highest for HLA-A*02:01 (AUC = 85.54; Fig. 1B), NetMHCcons 1.1 scored highest for HLA-A*03:01 
(AUC = 79.25; Fig. 1C), and MHCflurry 1.3.0 performed best for HLA-B*40:01 (AUC = 91.06; Fig. 1F). NetMHC-
stab 1.0 was the only tool that achieved the highest score for more than 1 allele: HLA-A*11:01 and HLA-A*24:02 
(AUC = 89.80; 86.03; Fig. 1D,E, respectively). Out of the tools tested for HLA class II, IEDB-AR Consensus 
achieved the highest score for HLA-DRB1*04:01 (AUC = 81.31; Fig. 1G). Table 2 provides all AUC values, and 
the best result obtained for each allele is marked in bold. Notably, in the case of HLA-A*02:01 we observed par-
ticularly poor performance among all tested tools despite the extensive amount of data available for this allele. 

To assess the correlation between the predicted and measured peptide-HLA complexes, Spearman correlation 
coefficient (SCC) was calculated for all alleles. This revealed significant inconsistencies in performance depend-
ing on the predicted allele. PSSMHCpan 1.0 displayed the highest consistency, taking into account its coverage 
(Table 1), but the correlation median scored lower than other tools such as IEDB-AR Consensus, MixMHCpred 
2.0.2, NetMHCpan_EL 4.0 or PrdX 1.0. The results of the Spearman correlations are summarized in Fig. 2.

Lastly to compare the performance of our benchmark we calculated the average percentile score as described 
at the IEDB  website35 for all tools and alleles where we had both AUC and SCC available. Comparison between 
overlapping tools in IEDB Automated Benchmark and our study can be found in Supplementary materials 
(Table S2).

Discussion
Here we benchmark a number of tools to identify epitopes for SARS-CoV-2 virus and validate via stability assay 
the binding of candidate epitopes to 10 alleles of HLA class I and one allele of HLA class II. We find that the 
false positive rate is high for all tested tools when testing binding stability for predicted HLA-binding peptides 
from SARS-CoV-2 virus. This creates a challenge for vaccine development efforts, especially for the design of 
epitope vaccines, where only a limited number of epitopes may be included. Furthermore, it highlights the risk 
for failed vaccine design (for any pathogen or disease) if predicted HLA-binding protein regions in reality do 
not bind stably and allow immune presentation and response.

We observed, remarkably, that all tools tested performed poorly for HLA-A*02:01, which is the allele with 
most training data  available41. Based on our observations we hypothesise that publicly available training data 
is not of high enough quality. This is supported by the fact that AUC and Spearman correlations indicate that 
performance seems to correlate with the alleles and not the tools; thus, suggesting that either the training data or 
the difficulty of modelling the allele is responsible for poor predictions. To test the hypothesis that training data 
is limiting for tool performance, we trained a vanilla NN on only 2193 historic in-house stability measurements 
and found that our model outperformed all tested prediction tools in this setting. This observation could also 
be explained by more similar data distributions between test and training data for PrdX 1.0.

We identified 174 potential SARS-CoV-2 vaccine candidate peptides, out of which 98 have been previously 
deposited in IEDB following various  studies13,42–46. The majority of the previously deposited peptides were meas-
ured in one or multiple affinity assays and reached low Kd (< 50 nM) values, indicating strong affinity. Addi-
tionally, 9 of these peptides were previously measured in another stability assay and were recognised as stable 
 binders47, independently confirming our approach and measurements. Recently, new T cell studies uncovered a 
large overlap with stable peptides from our assay: 60 peptides showed a positive T cell response in one or more 
performed  studies37–39. Such a result not only reveals the true potential of complex-stability assays but also con-
tributes to collective findings about cross-reactivity of SARS-CoV and SARS-CoV-2.

In conclusion, we make freely available 174 COVID-19 epitopes that we have predicted and validated in vitro 
to be HLA-binding. We hope that this contribution will aid the development of a vaccine against SARS-CoV-2. 
We performed a benchmark analysis of 19 tools on 777 peptides that were predicted by state-of-the-art prediction 
tools from netMHC to be binders and revealed high false positive rates for all benchmarked tools. We observed 
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improved performance after training our own prediction tool PrdX 1.0 on allele HLA-A*02:01 using in-house 
generated stability data. Our findings suggest that the performance of current state-of-the-art epitope prediction 
tools are impacted by the varying quality of publicly available data.

Materials and methods
Nineteen prediction tools tested on a relevant dataset of peptides from the SARS-CoV-2 genome (assembly 
MN908947.3). The genome sequence was downloaded from the NCBI database (https ://www.ncbi.nlm.nih.gov/
nucco re/MN908 947.3)4. Using NetMHC tools we predicted the top 94 peptides for HLA-A*01:01, HLA-A*02:01, 

Figure 1.  ROC curves for each allele that bound more than 10 peptides stably (subplots A, B, C, D, E, F, G), 
(H) tools used in the benchmark, upper box—HLA class I, lower box—HLA class II (IEDB-AR Consensus is 
available for both), (I) precision-recall curves for HLA-A*02:01. Corresponding area under curve (AUC) values 
are listed in Table 2.

https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3)4
https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3)4
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Table 2.  AUC values for ROC curves from Fig. 1 for alleles with more than 10 stable complexes.  First 6 six 
columns contain HLA class I, last column contains HLA class II. Only four tools were tested for HLA class II. 
PrdX 1.0 is only available for allele A*02:01. Highest value for each allele is marked in bold.

Tool/allele A*01:01 A*02:01 A*03:01 A*11:01 A*24:02 B*40:01 DRB1*04:01

NetMHC 4.0 97.47 70.3 77.06 83.81 82.96 89.76 –

IEDB-AR Consensus 97.06 69.44 77.36 87.05 83.89 90.03 81.31

ConvMHC 85.13 47.71 72.53 76.33 66.88 79.80 –

DeepHLAPan 91.82 62.90 52.49 80.84 69.87 80.95 –

HLAthena 89.74 65.41 66.54 87.41 76.48 83.08 –

MixMHCpred 2.0.2 92.54 70.04 75.29 80.82 78.68 76.29 –

MHCFlurry 1.3.0 94.48 66.88 75.52 88.46 76.24 91.06 –

NetMHCcons 1.1 97.42 65.93 79.25 86.21 79.52 90.25 –

NetMHCpan_BA 4.0 97.15 65.84 76.32 86.76 85.40 88.79 –

NetMHCpan_EL 4.0 93.40 75.89 75.84 80.11 78.36 84.27 –

NetMHCstab 1.0 89.15 76.75 77.98 89.80 86.03 86.13 –

PickPocket 1.1 88.65 57.32 65.53 75.03 80.93 88.44 –

PrdX 1.0 – 85.54 – – – – –

PSSMHCpan 1.0 90.33 67.97 75.75 76.62 82.12 77.94 –

SMM 1.0 95.25 60.09 75.15 87.26 80.26 88.82 –

SMMPMBEC 1.0 92.13 60.48 75.36 87.26 80.13 86.34 –

NetMHCIIpan 3.2 – – – – – – 76.63

NN_Align 2.3 – – – – – – 78.14

SMM-align 1.1 – – – – – – 74.42

Sturniolo 1.0 – – – – – – 75.19

Figure 2.  Plot of Spearman correlation coefficient between predicted values and results of NeoScreen stability 
assay for each available allele. Each colour represents an individual allele. Boxplot whiskers accord for 1.5 
distance between the median and quartile hinges.
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HLA-A*03:01, HLA-A*24:02, HLA-B*40:01, HLA-C*04:01, HLA-C*07:01, HLA-C*07:02 (netMHC 4.0), HLA-
C*01:02 (NetMHCpan 4.0) and HLA-DRB1*04:01 (NetMHCII 2.3). Subsequently, the peptides were analysed 
for binding stability to the respective HLA allele. Taking into account the cross-reactivity between the two 
alleles, peptides predicted to bind HLA-A*03:01 were also measured on HLA-A*11:01. For HLA-DRB1*04:01 
we increased the synthesized peptides from length 9 to 12 in order to account for the effect of flanking regions 
to the core binding sequence.

Peptides were synthesised using standard Fmoc solid-phase synthesis on a modified cellulose support as solid 
support according to the SPOT synthesis protocol, starting with the acid labile Ramage linker.

After synthesis, peptides were cleaved off the membranes using 95% trifluoroacetic acid (TFA), 3% tri-
isopropylsilane (TIS) & 2%  H2O. Peptides were then precipitated with diethylether and washed with 
methyl-tert-butylether.

Peptides were subsequently dissolved in a proprietary mixture and dried under vacuum using a speed vac. 
Finally, 5% of all peptides were analysed by MALDI-TOF to confirm correct molecular weight. The anticipated 
yield per spot was 50 μg.

NeoScreen assay. The NeoScreen stability assay utilises urea denaturation to assess peptide-MHC com-
plex stability. Briefly, peptides were dissolved in 200 µl DMSO with 1 mM β-mercaptoethanol and subsequently 
diluted into an assay buffer in 96 well plates at a final concentration of 2 µM. Positions A1 and H12 were reserved 
for a mixture of reference peptides with known stable binding to the MHC of interest. MHC I was diluted into an 
assay buffer with beta 2 microglobulin (b2m) and added at a 1:1 ratio to diluted peptides. For MHC II, the urea-
denatured alpha and beta chains were diluted into an assay buffer and added at a 1:1 ratio to diluted peptides. 
The concentration of MHC depended on the actual chain, but final concentrations were in the range of 2–10 nM 
(hence peptide was added in excess). Upon folding, peptide-MHC complexes were transferred to 384 well plates 
where they were challenged with 4 different urea concentrations. Following the period of urea-induced stress 
the plates were developed in a conventional ELISA as described  previously48,49. The ABS450 nm signals from the 
4 different wells were averaged and normalised to the included reference to the included reference peptides in 
wells A1 and H12.

Unlike other previously developed assays NeoScreen offers a high-throughput process without a need to 
use iodine labelled b2m or FACS based  quantification50,51. When compared with a recently developed method 
which uses thermal denaturation and differential scanning fluorimetry a same stability trend was found, where 
MART-1 wt had lowest stability, Tyrosinase and HTLV-TAX (NeoScreen reference peptide for HLA-A*02:01) 
had very high  stability51.

Benchmarking of tools. Table 1 provides a summary of tools tested in this benchmark analysis. It features 
the year of their development, the algorithm used, web server availability and a reference. Most of the tested 
tools are available at the IEDB Analysis Resource web page (https ://tools .iedb.org/main/) and were run through 
their web interface (https ://tools .iedb.org/mhci/ or https ://tools .iedb.org/mhcii /). MixMHCpred 2.0.2, MHC-
flurry 1.3.0 and PSSMHCpan 1.0 were downloaded from their respective GitHub pages (https ://githu b.com/
Gfell erLab /MixMH Cpred , https ://githu b.com/openv ax/mhcfl urry, https ://githu b.com/BGI20 16/PSSMH Cpan, 
respectively). ConvMHC, DeepHLApan and HLAthena were used from their privately hosted web servers (https 
://jumon g.kaist .ac.kr:8080/convm hc, https ://bioph arm.zju.edu.cn/deeph lapan /, https ://hlath ena.tools /, respec-
tively).

All tested peptides were subjected to in silico predictions (with each prediction tool) regarding their available 
allele. Predictions were compared against measured stability determinations obtained through the NeoScreen 
assay. Measurements were normalised to an allele-specific reference peptide (stability = 100). The list of reference 
peptides used is available in Supplementary materials (Table S3). The threshold for a stable binder was set to 60. 
Predictions were subsequently evaluated according to commonly used metrics such as the Receiver Operating 
Characteristic (ROC) and its Area Under Curve (AUC) to visualise the relationship between sensitivity and 
specificity, corresponding equations can be found in the Supplementary methods. Spearman correlation was 
also used to compare the ranked correlation of predicted and measured data.

PrdX. To assess the performance of predictors trained on stability data we used  PyTorch52 to train a fully con-
nected, feed-forward neural network with 64 and 32 hidden units on historic in-house stability data from allele 
HLA-A*02:01. This data contains a mixture of human cancer-related stability measurements and measurements 
made on synthetic random peptides. We used BLOSUM62 matrix for encoding, simple network architecture, 
train-test split and early stopping for training.

Data availability
All epitopes are available at the vendor webpage (www.immun itrac k.com) and in Supplementary materials 
(Data S2).
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