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Abstract: Tetrabenazine is a US Food and Drug Administration (FDA)-approved drug that exhibits
a dopamine depleting effect and is used for the treatment of chorea in Huntington’s disease.
Mechanistically, tetrabenazine binds and inhibits vesicular monoamine transporter type 2, which is
responsible for importing neurotransmitters from the cytosol to the vesicles in neuronal cells. This
transportation contributes to the release of neurotransmitters inside the cell to the synaptic cleft,
resulting in dopaminergic signal transmission. The highly potent inhibitory activity of tetrabenazine
has led to its advanced applications and in-depth investigation of prodrug design and metabolite
drug discovery. In addition, the synthesis of enantiomerically pure tetrabenazine has been pursued.
After a series of research studies, tetrabenazine derivatives such as valbenazine and deutetrabenazine
have been approved by the US FDA. In addition, radioisotopically labeled tetrabenazine permits
the early diagnosis of Parkinson’s disease, which is difficult to treat during the later stages of this
disease. These applications were made possible by the synthetic efforts aimed toward the efficient
and asymmetric synthesis of tetrabenazine. In this review, various syntheses of tetrabenazine and its
derivatives have been summarized.

Keywords: tetrabenazine; vesicular monoamine transporter type 2; Huntington’s disease; Parkinson’s
disease; dopamine

1. Introduction

Dopamine, a catecholamine neurotransmitter, plays a pivotal role during signal transmission in
the central nervous system (CNS). To release dopamine from the presynaptic neuron to the synaptic
cleft, active transport of dopamine into the vesicle in neuronal cells occurs [1]. Vesicular monoamine
transporter type 2 (VMAT2) is responsible for packaging dopamine in the neuronal vesicle by importing
dopamine via an ATP-dependent mechanism [2]. Due to the importance of VMAT2 in controlling the
dopamine levels found in the human body, numerous approaches to controlling VMAT2 have been
studied toward the treatment of related diseases, such as Parkinson’s disease (PD) [3], Huntington’s
disease (HD) [4], and schizophrenia [5]. Although the full understanding of and perfect cures for these
diseases have not been achieved to date, early diagnosis or treatment of their symptoms have been
possible after the development of various dopamine-based drugs [6]. Tetrabenazine (TBZ) is one of
these drugs (Figure 1) [7–10].
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Figure 1. The structures of dopamine, 5-hydroxytryptamine, reserpine, and tetrabenazine (TBZ). Figure 1. The structures of dopamine, 5-hydroxytryptamine, reserpine, and tetrabenazine (TBZ).

TBZ 1 was introduced in 1957 [11]. Originally, TBZ was developed to change the levels of
5-hydroxytryptamine (5-HT) via the same mechanism observed for reserpine [11,12]. A mechanistic
study on TBZ revealed it bound to VMAT2 in a highly selective manner (Ki = 1.3 ± 0.1 nM), as
expected [13]. Despite its original purpose as an antipsychotic drug, TBZ has been used to treat
movement disorders such as chorea, tremor, hyperkinesia, akathisia, and tics in Britain since 1971 [14].
Based on these medicinal applications over the last 50 years, TBZ was approved for use to reduce
chorea in HD by the US Food and Drug Administration (FDA) in 2008 [15]. In addition, the approval
of TBZ has led to the further investigations on this classic molecule in terms of its stereoisomerism [16]
and pharmacokinetics [17]. To overcome the stereoisomerism issue in particular, a variety of chiral
separation [16,18] and asymmetric synthetic methods have been reported [19]. In addition to this
problem, the rapid metabolism of TBZ is also a significant issue [17]. Earlier metabolomic studies
have shown that the ketone moiety in TBZ is rapidly reduced by carbonyl reductase to afford α or
β-dihydrotetrabenazine (HTBZ), as shown in Figure 2 [20]. In addition, a pharmacological study of
these metabolites has also been carried out, which showed that α-HTBZ 2 is a more effective inhibitor
of VMAT2 than its β-isomer [21]. More importantly, the binding affinities of these major metabolites
were highly stereospecific. (+)-α-HTBZ binds to VMAT2 at a highly dilute concentration (Ki 3.96 nM),
whereas (–)-α-HTBZ did not bind to VMAT2 at the same concentration (Ki 23.7 µM). It is not surprising
that the further development of (+)-α-HTBZ for the treatment of movement disorders is still on-going.
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Figure 2. The metabolism of TBZ and the structures of its major metabolites.

Valbenazine 3 is a prodrug of (+)-α-HTBZ. The (L)-valine ester group of the secondary alcohol
in (+)-α-HTBZ increases the half-life of valbenazine (~20 h) [22] when compared to TBZ (~10 h) [23],
supporting once-daily administration. Due to this improved pharmacokinetic profile, valbenazine was
approved as a treatment for tardive dyskinesia by the US FDA in 2017 [24]. Deutetrabenazine 4, the
first US-FDA-approved deuterium-labeled drug, is also used to treat tardive dyskinesia [25]. This drug
is a deuterium-labeled TBZ derivative that exhibits delayed demethylation and elimination, while the
original mechanism of action of TBZ is unchanged. The introduction of deuterium leads to a more stable
covalent bond and makes the molecule more stable against metabolism by enzymes such as cytochrome
P450 (CYP) [26]. This metabolic stability gave rise to the development of a deuterium-substituted drug
and the approval of deutetrabenazine in 2017. This drug allows less-frequent and low dosing, resulting
in fewer side effects (Figure 3) [27].
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It is also noteworthy that the high affinity of TBZ toward VMAT2 led to the discovery of a powerful
imaging agent used to identify the levels of VMAT2 in the brain [28]. Mechanistically, TBZ depletes
dopamine and results in the improved treatment of movement disorders, such as chorea and tardive
dyskinesia. However, this has also led to side effects, such as Parkinsonism and depression [29]. In PD
patients, this highly selective and reversible VMAT2 inhibitor is disfavored due to these mechanistic
and side-effect issues [30]. Attempts to utilize TBZ for the diagnosis of PD rather than as a therapeutic
agent have been successfully carried out using radioisotopically labeled TBZ derivatives. Since the
early 1990s, the introduction of 11C or 18F in TBZ has made it possible to measure the levels of VMAT2
using positron emission tomography (PET) [31,32]. The labile 11C or 18F isotope rapidly decays into
11B or 18O with the emission of a positron, which immediately collides with an electron. This collision
creates a pair of γ-rays, which are detectable in PET. So far, tremendous studies of TBZ-based PET
imaging agents, such as 11C-TBZ 5 or 18F-fluoropropyl-α-HTBZ 6, have been reported (Figure 4) [33].
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In terms of its structure, TBZ contains a benzoquinolizine skeleton with a 1,4-anti relationship
between its alkyl substituents. This simple structure (MW 317) and highly important medicinal
background has attracted significant interest from synthetic and medicinal chemists. Synthetic efforts
have also driven the further development of TBZ-based drugs via positive feedback. Herein, the
synthetic development of TBZ, including its racemic synthesis, chiral separation, and asymmetric
synthesis, has been summarized.

2. Discussion

2.1. Racemic Synthesis of TBZ

In 1958, Hoffmann-La Roche reported the synthesis of TBZ from dihydroisoquinoline 7 [34].
Treating 7 with enone 8 lead to a conjugate addition reaction, keto-enol tautomerization, and concomitant
Mannich reaction to produce TBZ 1. A chair-like transition state was used to explain the 1,4-anti
relationship observed in the final product [35]. After this first synthesis, trimethylammonium salt 9,
a precursor of enone 8, was successfully utilized under similar reaction conditions [36]. This simple
procedure allowed the widespread use of TBZ for over 50 years (Scheme 1). It was also possible
afterward to improve or modify this route for the synthesis of TBZ analogs by other pharmaceuticals,
such as Cambridge Laboratories or Biovail [37].
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The use of a Mannich reaction, in situ oxidation using visible-light photo-redox catalysis, and
a simultaneous cyclization strategy toward the synthesis of TBZ was reported in 2015, as shown in
Scheme 2 [35]. This synthetic route features the use of tetrahydroisoquinoline 10 and an environmentally
friendly photo-oxidation sequence [38]. Tetrahydroisoquinoline 10 was reacted with allyl acetate
11 to produce silyl enol ether 12 via a hydrogenation–silylation sequence. The benzylic C-N single
bond was then oxidized to its corresponding iminium intermediate under light-induced oxidation
conditions [39]. After extensive screening of the reaction conditions, the Marvin group optimized the
reaction conditions using air, a ruthenium catalyst, and 8.5 W blue LED irradiation to produce TBZ 1
in moderate yield. TBZ 1 was subsequently reduced to give α-HTBZ 2.
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Scheme 2. The oxidation–Mannich cyclization sequence used in the synthesis of TBZ. rt: Room
temperature; TFA: Trifluoroacetic acid; TIPS: Triisopropylsilyl; bpy: 2,2’-bipyridine.

Scheme 3 shows an intramolecular aza-Prins-type cyclization reaction that has been utilized in
the synthesis of TBZ. The Min group converted hydroxyl unsaturated ester 13 into primary tosylate 17
over eight steps [40]. The isopropyl group was first introduced to the conjugated alkene to furnish
hydroxyester 14 in good yield. Ketone 15 could then be obtained in 79% yield over three steps
using conventional functional group interconversion reactions, including protection, Weinreb amide
formation, and methylation. Ketone 15 was resistant to conversion into the requisite allylsilane moiety
using a Peterson-type olefination reaction [41]. However, 15 was converted into enol triflate 16 upon
treatment with Comin’s reagent [42], followed by deprotection and the allylsilane moiety introduction
via a Pd-catalyzed coupling reaction. 16 was reacted with an alkyl Grignard reagent in a Kumada
cross-coupling reaction [43] to give the desired allyl trimethylsilane 17 after tosylation of the newly
formed primary alcohol. The free amino group in 10 underwent a nucleophilic substitution reaction with
the primary tosyl group in 17 to afford tertiary amine 18. The pivotal in situ oxidation of the benzylic
C-N single bond and resulting aza-Prins-type cyclization were then carried out [44]. Gratifyingly, the
nucleophilic addition of the allyl trimethylsilyl group produced the desired benzoisoquinoline skeleton
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in moderate yield. Conventional alkene cleavage employing a dihydroxylation/diol cleavage reaction
gave TBZ 1. Reduction to give α-HTBZ 2 was also carried out using sodium borohydride.Molecules 2020, 25, 1175 5 of 16 
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sieves; NMO: N-methylmorpholine N-oxide.

2.2. Resolution of Racemic TBZ

Around 50 years of medicinal experience has proven TBZ to be safe when used as a racemic
mixture for the treatment of chorea in HD or tardive dyskinesia. However, its side-effect profile, such
as Parkinsonism and depression, still requires the preparation of enantiomerically enriched TBZ [7]. In
addition, the highly stereospecific binding affinity of α-HTBZ to VMAT2 (Ki 3.96 nM for (+)-α-HTBZ,
Ki 23.7 µM for (−)-α-HTBZ) demonstrates the importance of the asymmetric synthesis of TBZ [21].
However, the supply of enantiomerically pure material from the racemic synthesis shown above will
not solve this issue. In this regard, the separation of (±)-TBZ using chiral HPLC has been studied.
More interesting is that the chiral resolution of (±)-TBZ using an enzyme or chiral sulfonic/carboxylic
acid leads to enantiomerically enriched TBZs or its diastereomeric salts, as shown below.

The first optically active stereoisomer of TBZs was reported by the Kilbourn group in 1997
(Scheme 4) [17]. In this report, simple acetylation and the following enzymatic hydrolysis were carried
out to provide enantiomerically pure (+)-α-HTBZ and acetyl (−)-α-HTBZ in moderate yield (Scheme 4).
During this procedure, 143 mg of (+)-α-HTBZ was prepared, as it was utilized to investigated a
relationship of the stereoisomerism of TBZ and its binding affinity on VMAT2. Surprisingly, the
(+)-enantiomer showed highly potent binding affinity, while the (−)-isomer did not bind it well. This
pioneering research proved the importance of stereoselective preparation of (+)-TBZ or (+)-α-HTBZ in
related drug development.
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chosen to make diastereomeric TBZ salt that is easily separable. When racemic TBZ was treated
with (1S)-(+)1−0-camphorsulfonic acid (CSA) 21 at 80 ◦C in a sealed tube for 28 h, the desired
(+)-TBZ-(+)-CSA salt 22 could be selectively recrystallized after filtration to remove the excess (+)-CSA
and additional storage at room temperature. Single X-ray crystallography and continuous measurement
of the optical rotation proved its absolute configuration and enantiomeric purity. Using this simple
resolution protocol, the Greig group executed a simple basification step to afford (+)-TBZ in its free
amine form (Scheme 5) [16].
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The racemic mixture of α–HTBZ can be also separated using a similar protocol, as shown in
Scheme 6 [18]. p-Toluoyl-(L)-tartaric acid 23 was used instead of (+)-CSA 21 to convert racemic α–HTBZ
into its separable (+)-α–HTBZ-(L)-tartrate salt 24 after recrystallization (31% yield, 95.4% HPLC purity).
Successive recrystallization increased the purity of the salt up to 100% by HPLC. The salt was converted
into (+)-α–HTBZ 2 upon treatment with aqueous NH4OH. Impressively, this resolution was carried
out on a large scale (>20 g). (–)-α–HTBZ could also be separated from the supernatant obtained from
the recrystallization process using p-toluoyl-(D)-tartaric acid.
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2.3. Asymmetric Synthesis of (+)-TBZ

Asymmetric synthesis is another solution for the preparation of enantiomerically enriched (+)-TBZ.
For this purpose, asymmetric synthetic routes toward (+)-TBZ and (+)-α–HTBZ have been developed.
Upon the approval of racemic TBZ by the US FDA in 2008, some effective synthetic strategies have
been reported, as outlined below.

Scheme 7 shows the first asymmetric synthesis of (+)-TBZ [19]. The crucial chiral center in
TBZ was introduced at a very early stage of the synthesis. After activation of free imine 7 to its
corresponding iminium ion using t-butoxycarbamate, a Sodeoka Pd-catalyzed asymmetric malonate
alkylation reaction was carried out [45]. A survey of the Pd catalyst and various malonate esters
showed that the Pd catalyst 26 and diisopropylmalonate 25 were suitable for producing the desired
product 27 in 94% yield and 97% ee. β-Amino malonate 27 was then transformed into aldehyde 28
via a three-step protocol, including hydrolysis, decarboxylation, and semi-reduction, upon careful
treatment with hydride. Interestingly, the direct Krapcho decarboxylation reaction of 27 produced a
complex mixture of side products [46]. Another C-C bond forming reaction to introduce the remaining
carbon framework of TBZ was then carried out by converting aldehyde 28 into unsaturated ketone
30, followed by the addition of a vinyl anion and oxidation of the resulting alcohol. When vinyl
iodide 29 was treated with NiCl2 in CrCl2, the desired Nozaki–Hiyama–Kishi reaction [47] occurred
to produce an intermediate allylic alcohol, which was oxidized to ketone 30 using the Dess–Martin
periodinane [48] in an overall 82% yield. Finally, Boc deprotection under acidic conditions induced
the desired 6-endo-trig cyclization reaction [49] to occur via a conjugate addition reaction between the
newly formed amine and the unsaturated ketone. Employing this cyclization reaction, (+)-TBZ could
be obtained with a 46% yield as a separable 5:1 mixture of diastereomers. (+)-α-HTBZ could also be
produced as a separable 5:1 mixture of diastereoisomers using sodium borohydride.
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This was the first asymmetric synthesis of (+)-TBZ performed without using chiral resolution
or chiral HPLC. This strategy opened up a new chapter for the development of other asymmetric
syntheses of (+)-TBZ and (+)-α-HTBZ.
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The Suh group reported the second asymmetric synthesis of (+)-TBZ in 2010, as shown in
Scheme 8 [50]. This synthetic route features a selective enol etherification and its use in an aza-Claisen
rearrangement reaction. A Nakamura asymmetric allylation [51] was performed to create the first
chiral center in the isoquinoline skeleton. Employing bisoxazoline ligand 31 and freshly generated
allylZnBr, the desired allyl group was added to imine 7 to produce secondary amine 32 in 70% yield
with moderate enantioselectivity. After isovaleryl aldehyde 33 was obtained over two conventional
steps involving the formation of the amide using isovaleric acid and dihydroxylation/diol cleavage,
it was transformed into trans-silyl enol ether 34 in the presence of a strong amine base and TBSCl
in refluxing CH2Cl2 [52]. Gratifyingly, the trans geometry of the resulting alkene moiety could be
produced with excellent selectivity (E/Z >20:1).
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rearrangement reaction. TBS: t-butyldimethylsilyl; DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene; TPAP:
Tetrapropylammonium perruthenate.

The pivotal aza-Claisen rearrangement of enol ether 34 was then carried out [53]. The use of
LHMDS (Lithium bis(trimethylsilyl)amide) in refluxing toluene afforded the desired 10-membered
lactam 35 in 25% yield, but surprisingly, the Grignard reagent resulted in an improved deprotonation
and concomitant aza-Claisen rearrangement reaction, which gave product 35 in 78% yield. Further
studies revealed this superior result originates from the steric interaction between the alkoxide-cation
complex and bulky isobutyl side chain [54]. Based on this finding, more examples showed the Grignard
reagent could be used as an advanced base for the aza-Claisen rearrangement. With the desired
macrolactam 35 in hand, a transannulation reaction under acidic conditions was carried out to construct
the benzoquinolizidinone skeleton of TBZ [55]. The high diastereoselectivity observed in this reaction
is thought to be a result of the chair-like transition state. Due to the acidity of the reaction conditions,
the labile silyl ether group was also cleaved in the reaction. Finally, LiAlH4 reduction of amide 36
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afforded (+)-α-HTBZ 2 uneventfully. Ruthenium-catalyzed oxidation of the secondary alcohol in
(+)-α-HTBZ produced (+)-TBZ 1 in moderate yield.

Macrolactam 35 has been prepared using a different route, as shown in Scheme 9 [56]. An
asymmetric aldol reaction between chiral oxazolidinone auxiliary-attached amide 37 and acrolein
performed in the presence of TiCl4 was initially used to provide β-hydroxy amide 38 in good yield [57].
After four conventional steps, including cleavage of the chiral auxiliary, t-butyldimethylsilyl (TBS)
protection, and hydrolysis, carboxylic acid 39 was obtained for the coupling reaction used to prepare
diene 43. It is noteworthy that conventional protection of the secondary alcohol in 38 using TBSCl or
TBSOTf did not give satisfactory results. Therefore, cleavage of the auxiliary must be carried out prior
to the TBS protection step. This detour in the route required an additional hydrolysis step.
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Scheme 9. Asymmetric synthesis of (+)-α-HTBZ using ring-closing metathesis. NMP:
N-methylpyrrolidine; Fmoc: Fluorenylmethoxycarbonyl; dba: Dibenzylidineacetone; EDCI:
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; HOAt: 1-hydroxy-7-azabenzotriazole; Cy:
Cyclohexyl; H–G 2nd cat.: Hoveyda–Grubbs second generation catalyst.

Primary amine 42 could be also prepared simultaneously. Phenylethylamine 40 was oxidized
and protected to produce aromatic iodide 41 in excellent yield. A Stille coupling reaction between
41 and vinyl stannane was performed to carry out the desired C-C bond forming reaction [58]. After
spontaneous deprotection of the labile Fmoc group, the desired amine 42 was obtained. An amide
coupling reaction between carboxylic acid 39 and amine 42 was carried out using EDCI and HOAt to
provide diene 43 in 72% yield. The ring-closing metathesis of diene 43 was then attempted [59]. When
43 was treated with the Grubbs second generation catalyst 45 [60], the homodimer 46 was obtained in
41% yield instead of the desired macrolactam 35. Gratifyingly, the more reactive Hoveyda–Grubbs
(H–G) second generation catalyst 44 [61] produced macrolactam 35 in 83% yield as an inseparable
mixture with homodimer 46. Because the transformation of macrolactam 35 into (+)-α-HTBZ was
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already reported [50], Altmann group prepared (+)-α-HTBZ following the previously reported route.
The inseparable homodimer 46 was removed in the latter stages of the synthesis.

Chiral sulfinamide 48 has also been utilized in the asymmetric synthesis of (–)-α-HTBZ, as shown
in Scheme 10 [62]. Known chloroaldehyde 47 [63] was condensed with sulfinamide 48 to afford chiral
imine 49 in the presence of copper sulfate [64]. The electrophilic imine 49 was then converted into
homoallylic amine 50 via an allylation reaction. During this asymmetric allylation procedure, the
desired product was formed as a 9:1 mixture of diastereomers. The corresponding homoallylamine 50
was transformed into known aldehyde 28, employing a four-step procedure involving hydrolysis of
the sulfinic group, nucleophilic substitution of the chloride group, Boc protection, and cleavage of the
terminal alkene. Although the synthetic route from Boc-protected aldehyde 28 to α-HTBZ was already
reported [19], another route was developed. An Evans-type aldol reaction between oxazolidinone
51 and the electrophilic aldehyde performed in the presence of a Lewis acid and triethylamine was
used to carry out the desired C-C bond forming step to give β-hydroxy amide 52 [65]. With this key
intermediate in hand, hydrolysis, Boc deprotection, and amidation steps were carried out to obtain
known amide 36 in 50% yield over three steps. Amide 36 was then reduced to give (–)-α-HTBZ using a
previously reported procedure [50].Molecules 2020, 25, 1175 10 of 16 
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Scheme 10. Asymmetric synthesis of (–)-α-HTBZ using a chiral sulfonamide. Bn: Benzyl.

2.4. Preparation of Radioisotopically Labeled TBZ

Radioisotopically labeled TBZ-based agents have been used to monitor the levels of neuronal
VMAT2. The simple molecular structure of TBZ also assists with the development of these TBZ
derivatives because it is relatively easy to quickly introduce labile radioactive isotopes into the
TBZ skeleton.

The preparation of radioisotopically labeled TBZ commenced with the synthesis of 9-demethyl
TBZ 53 [31], which is suitable for rapid substitution at the phenolic OH group (Scheme 11). For
9-O-desmethyl TBZ 53, direct electrophilic demethylation of TBZ 1 was carried out by the Kilbourn
group. Because conventional demethylation conditions such as BBr3 were not successful, more reactive
BI3 was used to produce the desired product 53 in 2% yield. Although the product yield was very low,
this one-step procedure still draws the attention of medicinal chemists. With the key intermediate
9-O-desmethyl TBZ 53 in hand, the direct substitution of 11C instead of 12C in TBZ was initially
attempted [31]. 11C-labelled methyl iodide was added to 9-O-desmethyl TBZ 53 in the presence of
tetrabutylammonium hydroxide in N,N-dimethylformamide (DMF). This direct SN2 reaction produced
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a rapidly decaying TBZ derivative that simultaneously emits a positron and γ-ray irradiation. The
γ-ray irradiation can be detected using PET.
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Although a short demethylation route to 9-O-desmethyl TBZ 53 was developed, its low chemical
yield would be improved using another synthetic route. This other synthetic route is described in
Scheme 12 [66]. Benzaldehyde 54 was condensed with nitromethane to afford nitroalkene 55, which
was transformed into formamide 54 via a reduction–amidation sequence [67]. A Bischler–Napieralski
cyclization of 56 using POCl3 produced 9-benzyloxy dihydroisoquinoline 57 [68]. Classical cyclization
of ammonium ion 9 and isoquinoline 57 in refluxing ethanol afforded benzyl-protected TBZ 58. The
labile benzyl protecting group was removed via hydrogenation to give 9-O-desmethyl TBZ 53 in
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Scheme 12. Synthesis of 9-O-desmethyl TBZ.

A radioisotopically labeled α-HTBZ derivative has also been utilized as a PET imaging
agent to monitor the levels of VMAT2, as shown in Scheme 13. Selective demethylation of
α-HTBZ was accomplished to afford phenol 59 in low yield [17], which was then converted to
11C-incorporated α-HTBZ 60 directly [69]. 9-O-desmethyl α-HTBZ 59 could be utilized to introduce
other radionucleotides. The phenol 59 was substituted with propyloxy bromide 61 in 71% yield in
warm DMF. After mesylation of the primary alcohol in 62, an on-site generated 18F anion was added to
obtain the desired 18F-propyl-α-HTBZ product 6 via a simple SN2 reaction [70]. Although this PET
imaging agent displays similar properties to those of 11C-TBZ, 18F-propyl-α-HTBZ exhibits a longer
signal duration (18F T1/2 110 min) than 11C-TBZ (11C T1/2 20 min). This prolonged duration facilitates
the handling of this imaging agent.

Single-photon emission computed tomography (SPECT) is suitable for in vivo imaging of a target
organ as well. SPECT has several advantages over PET, such as its widespread use based on inexpensive
equipment and facile preparation of radioisotopes [71,72]. For this reason, 131I-incorporated TBZ
has been prepared, as shown in Scheme 14 [72]. Unlike 11C or 18F, the introduction of 131I requires a
significant change in the parent structure of TBZ. Although this change will affect its VMAT2 binding
affinity, 131I is still valuable because it can be used to prepare a relatively stable in vivo imaging agent.
Thus, vinyl stannane 64, which was prepared via hydrostannylation of propargyl alcohol, was attached
to 9-O-desmethyl TBZ 53 using an SN2 reaction. Iodination was carried out to obtain the desired
131I-9-iodovinyl-TBZ product 66 via an in situ oxidative substitution reaction. This radioactive agent
was utilized to visualize rat brains.
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Scheme 15 summarizes the synthesis of deutetrabenazine, a deuterium-incorporated TBZ
derivative, which was the first deuterium-containing drug approved by the US FDA in 2017.
Deutetrabenazine is used to treat tardive dyskinesia, an involuntary movement disorder [25]. When
compared to TBZ, this deuterium-substituted derivative is superior with less-frequent and lower
dosing required, which leads to less adverse effects and can be synthesized via modification of the
classical TBZ synthesis. Dihydroisoquinoline 67 was cyclized to form key intermediate 68 in a single
step. Finally, a Mitzunobu-type reaction between CD3OD and intermediate 68 was carried out in
the presence of PPh3 and diisopropyl azodicarboxylate (DIAD). This two-step procedure provided
deutetrabenazine 4 on a kilogram scale [73].
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2.5. Preparation of a TBZ Prodrug

A prodrug of TBZ has been developed. Valbenazine 3 is a valine ester prodrug of (+)-α-HTBZ
(Scheme 16) [74]. Standard esterification of (+)-α-HTBZ with carbamate-protected (L)-valine 69,
followed by hydrogenolysis of the benzyloxycarbonyl group, afforded valbenazine in a straightforward
manner. Using this synthetic procedure, valbenazine proceeded to clinical trials. Valbenazine showed
a prolonged duration (T1/2 ~20 h) when compared to TBZ (T1/2 ~10 h) [22–24]. Actually, the effective
dose of valbenazine was maintained for a longer period of time; it is possible to prescribe valbenazine
once daily. Valbenazine was approved for the treatment of tardive dyskinesia by the US FDA in 2017.
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3. Conclusions

Since its first clinical use in 1971, TBZ has served as the only medication used for the treatment of
chorea in HD and other related involuntary movement disorders. TBZ has improved the quality of life
of a tremendous number of patients over the last 50 years. This widespread use as a medication has
led to its approval by the US FDA, although TBZ still has some limitations. First, it was approved as a
racemic mixture. This stereochemical issue can be solved by the development of chiral resolution or
asymmetric synthesis strategies. During the establishment of an asymmetric synthesis, more efficient
synthetic routes to TBZ have been studied. Secondly, pharmacokinetically, TBZ is prone to being
quickly changed in vivo. It is rapidly metabolized to make it difficult to provide an effective dose
inside the human body. This drawback could be overcome by development of a more stable prodrug
or the incorporation of metabolism-resistant radioisotopes into the drug structure. Specifically, the
latter strategy has led to the first deuterium-containing drug to be approved by the US FDA after 50
years of research in this area.

TBZ is also a valuable lead compound for the diagnosis of PD. Because there is no effective
treatment regimen for PD except for L-DOPA/carbidopa, early diagnosis is still wanted. Although
treatment with TBZ may make PD worse via the depletion of dopamine in the synaptic cleft, a trace
amount of TBZ will not have a significant effect. Consequently, the use of TBZ as a radioactive tracer or
ligand will be suitable for powerful imaging systems such as PET or SPECT. This type of development
is still on-going, using various radionucleotides and modifications of the TBZ structure.

TBZ still has limitations in terms of its side effects and bioavailability. In addition, it does not
cure the patient, but relieves the symptoms of the disease. However, advances using TBZ are still in
progress. A variety of TBZ derivatives is expected.
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