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Abstract 

Background:  Sepsis is a significant cause of mortality in-hospital, especially in ICU patients. Early prediction of sepsis 
is essential, as prompt and appropriate treatment can improve survival outcomes. Machine learning methods are flex-
ible prediction algorithms with potential advantages over conventional regression and scoring system. The aims of 
this study were to develop a machine learning approach using XGboost to predict the 30-days mortality for MIMIC-III 
Patients with sepsis-3 and to determine whether such model performs better than traditional prediction models.

Methods:  Using the MIMIC-III v1.4, we identified patients with sepsis-3. The data was split into two groups based on 
death or survival within 30 days and variables, selected based on clinical significance and availability by stepwise anal-
ysis, were displayed and compared between groups. Three predictive models including conventional logistic regres-
sion model, SAPS-II score prediction model and XGBoost algorithm model were constructed by R software. Then, the 
performances of the three models were tested and compared by AUCs of the receiver operating characteristic curves 
and decision curve analysis. At last, nomogram and clinical impact curve were used to validate the model.

Results:  A total of 4559 sepsis-3 patients are included in the study, in which, 889 patients were death and 3670 sur-
vival within 30 days, respectively. According to the results of AUCs (0.819 [95% CI 0.800–0.838], 0.797 [95% CI 0.781–
0.813] and 0.857 [95% CI 0.839–0.876]) and decision curve analysis for the three models, the XGboost model performs 
best. The risk nomogram and clinical impact curve verify that the XGboost model possesses significant predictive 
value.

Conclusions:  Using machine learning technique by XGboost, more significant prediction model can be built. This 
XGboost model may prove clinically useful and assist clinicians in tailoring precise management and therapy for the 
patients with sepsis-3.

Keywords:  MIMIC-III, Sepsis-3, Machine learning, Xgboost, Logistic regression, SAPS-II score

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Sepsis is a common and economically significant disease 
which has become an important public health issue glob-
ally and led to over 5.3 million people dies annually with 
an approximately overall mortality of 30%, particularly 
in the intensive care unit (ICU) [1–3]. Sepsis is defined 
as a syndrome of physiologic, pathologic, and biochemi-
cal abnormalities induced by infection which results in 
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life-threatening organ dysfunction caused by dysregu-
lated host response [3]. Different from those previous 
diagnostic criteria for sepsis, sepsis-3 highlighted the 
strong association between infection and organ failure 
according to the Third International Consensus Defini-
tions for Sepsis and Septic Shock in February 2016 [2], 
hence, the early identification and diagnosis for sepsis are 
essential, which could provide meaningful information 
for clinicians to assess patients’ condition and improve 
survival outcomes through prompt and appropriate 
treatment. Due to the complex of vague sepsis syndrome 
definitions, unknown sources of infection and higher 
mortality, it is necessary to establish a reliable and effec-
tive prognostic model for sepsis. With the help of these 
prognostic models, strong evidences for clinical deci-
sion-making and rational allocation of public health care 
resources can be provided.

The establishment of prognosis model for sepsis 
patients has always been a hot topic in critical care medi-
cine. Some sensitive serum markers, such as Ang-2, PCT, 
interleukin-6, pentraxin 3, etc. [1, 4, 5], have been widely 
used to facilitate sepsis prognosis, however, their prog-
nostic values are limited, not only rarely available but 
often lack of sensitivity or specificity. On the other hand, 
traditional prediction models based on small sample data 
such as logistic regression analysis and scoring systems 
including acute physiology and chronic health evalu-
ation-II (APHACHE-II), Simplified acute physiology 
score-II (SAPS-II) and etc. [6–8], are still providing com-
prehensively clinical importance of identifying patients 
who are at risk of unfavourable prognostic outcomes, but 
these methods and scores require the statistical assump-
tion of the independent and linear relationship between 
explanatory and outcome variables or preclude the analy-
sis of a large number of valuable variables. In addition, 
insufficient prognostic strength, large fluctuation range, 
poor stability and operability, tedious process, and other 
shortcomings exist in these predictive serum markers, 
models and scores to a certain extent.

Recently, novel machine learning techniques have dem-
onstrated improved predictive performance compared to 
traditional prediction methods. Moreover, the evolution 
of statistical theory, computer technology and the estab-
lishment of specialized database for critical care medical 
such as MIMIC-III could help machine learning get more 
attention and recognition by clinicians. eXtreme Gradi-
ent Boosting (XGBoost) is a machine learning technique 
with the remarkable features of processing the missing 
data efficiently and flexibly and assembling weak pre-
diction models to build a accurate one [9]. As an open 
source package, XGBoost has been widely recognized in a 
number of machine learning and data mining challenges, 
for example, 17 solutions used XGBoost among the 29 

challenge winning solutions published at Kaggle’s blog 
in 2015 and the top-10 winning teams used XGBoost in 
KDD Cup 2015 [10].

Therefore, the goal of the study was twofold: firstly, we 
attempted to compare the performance of machine learn-
ing (XGboost) model with traditional prediction mod-
els (conventional logistic regression model and SAPS-II 
score model) in the prediction of the 30-days mortality in 
MIMIC-IIIpatients with sepsis-3. Secondly, we planned 
to plot nomogram and clinical impact curve (CIC) to val-
idate the XGboost model.

Methods
Database
We used the Medical Information Mart for Intensive 
Care III database version 1.4 (MIMIC III v1.4) for the 
study. MIMIC-III, a publicly available single-center criti-
cal care database which was approved by the Institutional 
Review Boards of Beth Israel Deaconess Medical Center 
(BIDMC, Boston, MA, USA) and the Massachusetts 
Institute of Technology (MIT, Cambridge, MA, USA), 
includes information on 46,520 patients who were admit-
ted to various ICUs of BIDMC in Boston, Massachu-
setts from 2001 to 2012 [11–13]. The database contains 
charted events such as demographics, vital signs, labo-
ratory tests, fluid balance and vital status; documents 
International Classification of Diseases and Ninth Revi-
sion (ICD-9) codes; records hourly physiologic data from 
bedside monitors validated by ICU nurses; and stores 
written evaluations of radiologic films by specialists cov-
ering in the corresponding time period. The use of the 
data in the database, provided by clinicians, data scien-
tists, and information technology personnel and uniden-
tified health information of patients, has been deemed 
not human subjects research and there was no require-
ment for individual patient consent because of the uni-
dentified health information [12, 13]. The users, whereas, 
must pass a test to qualify to register for the database 
and be approved by MIMIC-III database administration 
staff. After passing a training course “Protecting Human 
Research Participants” on the website of National Insti-
tutes of Health (NIH), an author (NZ Hou) was approved 
to extract data from this database for research purposes 
(certification number: 37258322).

Study population
Adult patients who were diagnosed with sepsis-3 were 
included in our study. The inclusion criteria were: (I) 
patients who were older than 18 years old; (II) length of 
stay in the ICU was over 24  h to ensure sufficient data 
for analysis; (III) patients with the diagnosed of sepsis 
according to The Third International Consensus Defini-
tions for Sepsis and Septic Shock (sepsis-3) [2]. Because 
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MIMIC-III database has shifted their date of birth to 
obscure their age, we excluded patients who were over 
89  years, and if a patient had multiple admissions with 
sepsis, only the first admission was analyzed. As it is 
common with missing data in the MIMIC-III database, 
we also removed the variables with more than 20% obser-
vations missing to facilitate and ensure the accuracy of 
the review. However, for those with less than 20% missing 
data or randomly missing data, we explored and visual-
ized them with Templ’s method (R Package “VIM”) [14] 
and multiple imputation method (R Package “mice”) [15] 
for further analysis respectively.

Data extraction
We obtained the raw data about patients who were diag-
nosed with “sepsis”, “severe sepsis” and “septic shock” 
on discharge using pgAdmin PostgreSQL tools (version 
1.22.1) and Navicat Premium (version 12.0.28). After 

that, R software (version 3.4.3, CRAN) was used for fur-
ther process. The code, supporting the MIMIC-III doc-
umentation and generating the descriptive statistic, is 
publicly available and contributions from the community 
of users are encouraged (https​://githu​b.com/MIT-LCP). 
The detailed process of data extraction is shown in Fig. 1. 
Following demographic data were extracted: age, gen-
der, ethnicity, weight, height and body mass index (BMI), 
length of stay in hospital, length of stay in the ICU, hospi-
tal expire flag (in-hospital death recorded in the hospital 
database) at the first ICU admission. Then, we collected 
vital signs of the patients from the first 24 h of ICU stay, 
including heart rate (HR), systolic blood pressure (SBP), 
diastolic blood pressure (DBP), mean arterial pressure 
(MAP), temperature (TEMP), respiratory rate (RR) and 
oxyhemoglobin saturation (SpO2). Afterwards, labora-
tory values, such as blood routine examination, liver and 
kidney function, blood glucose, and arterial blood gas 

Fig. 1  The detailed process of data extraction

https://github.com/MIT-LCP
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(ABG) were abstracted. Furthermore, advanced cardiac 
life support (mechanical ventilation, renal replacement 
therapy, etc.) and accompanied diseases (diabetes, malig-
nant tumour, etc.) were accessed. Because of the high 
sampling frequency, we use the maximum, minimum and 
the mean value when incorporating the characteristics of 
vital signs and related laboratory indicators. Ultimately, 
we obtained the list of anonymized patients with sepsis 
from the Table 1 (Additional file 1). 

Statistical analysis
Patients were divided into two groups based on whether 
death or alive within 30  days and variables were dis-
played and compared between groups. We revealed and 
excluded these confounders of the independent risk fac-
tors, then, performed correlation analysis to determine 
the impact of them on 30-days mortality. Normally and 
non-normally distributed continuous variables were 
summarized as the mean ± SD and the median respec-
tively. Continuous variables of normal distribution were 
tested by Kolmogorov–Smirnov test. Student’s t test, 
One-way ANOVA, Mann–Whitney U or Kruskal–Wallis 
H test were used to compare continuous data of non-nor-
mally distribution, if appropriate. Categorical variables 
were expressed as numbers or percentage and assessed 
using Chi-square test or Fisher’s exact test according to 
different sample sizes as proper.

In the model-development phase, we constructed 
three predictive models: conventional logistic regression 
model, SAPS-II score model and XGBoost algorithm 
model. Firstly, the conventional logistic regression model 
was conducted using these significant variables identified 
by backward stepwise analysis with Chi-square test. Then 
we chose an entry probability of < 0.05 by the stepwise 
selection method. Secondly, in the construction of SAPS 
II model, we used these time-stamp variables to do pre-
diction based on the methods provided by the original lit-
erature of SAPS II [16]. Thirdly, we performed XGBoost 
model [17, 18] to analysis the contribution (gain) of each 
variable to 30-days mortality, at the same time, back-
ward stepwise analysis was processed to select the vari-
able with a threshold of p < 0.05 according to the Akaike 
information criterion (AIC) [19]. After identifying the 
variables through XGBoost, we used these clinical and 
laboratory variables included to construct the XGBoost 
algorithm model. In the model-comparison phase, we 
tested and compared the performances of the three 
predictive models by area under curves (AUCs) of the 
receiver operating characteristic curves (ROC) and deci-
sion curve analysis (DCA), then, selected the model that 
achieved the highest overall diagnostic value for further 
verification. At last, nomogram and clinical impact curve 
(CIC) were plotted to evaluate the clinical usefulness and 

applicability net benefits of the model with the best diag-
nostic value. All the analyses above were conducted using 
R software, and p value < 0.05 was defined as statistically 
significant.

Results
Baseline characteristics
A total of 4559 sepsis-3 patients are included in our 
study, in which, 889 patients were death and 3670 sur-
vival within 30  days, respectively. In these patients of 
death, the age, ethnicity, admission type, heartrate_
mean, sysbp_min, diasbp_mean, meanbp, meanbp_min, 
resprate_mean, tempc_min/max, spo2_mean, aniongap 
(AG)_min/max, creatinine_min, hemoglobin_min/max, 
lactate_min, potassium_min, sodium_max, bun (blood 
urea nitrogen)_min/max, wbc (white blood cell)_min/
max/mean, INR (international normalized ratio)_max/
mean, urine output, score system, comorbidity and com-
mon sources of infection differ significantly compared 
these of survived, however, the sex, heart rate_min, chlo-
ride_min, platelet_min, sodium_min and advanced life 
support show no significant difference between the two 
groups. Figure 1 is a flow chart describing the procedure 
for subjects selection; Table  1 is a summary conclud-
ing the comparisons of the baseline characteristics, vital 
signs, laboratory parameters between the non-survivors 
and the survivors within 30 days, and the overall ethnic-
ity characteristics/the common sources of infection are 
listed in Fig. 2.

Features selected in models
As shown in Table 2, the most important features, which 
were identified by the results of backward stepwise anal-
ysis and strongly associated with mortality in 30  days, 
were applied in conventional logistic regression model, 
all of which with p value < 0.05. Moreover, according to 
the analysis results of each features’ contribution by 
XGBoost model (Table  3 and Fig.  3), urine output, lac-
tate, Bun, sysbp, INR, age, cancer, SpO2, sodium, AG, 
and creatinine were the top 11 most important features 
of the data set and these variables are also included to 
construct XGBoost predictive models in our study.

Model comparisons
In the model-development and validation phase, the 
three models (traditional logistic regression model, 
SAPS-II score model and XGBoost algorithm model) 
showed good discriminatory power with AUCs of 0.819 
(95% CI 0.800–0.838), 0.797 (95% CI 0.781–0.813), and 
0.857 (95% CI 0.839–0.876), respectively (Fig.  4). The 
XGBoost algorithm model showed the largest test AUC 
but the traditional logistic regression model was the 
smallest. According to the DCA of the three prediction 
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Table 1  Baseline characteristics, vital signs, laboratory parameters and statistic results of mimic-III patients with sepsis

Death within 30 days Survival within 30 days p

Number (sample size) 889 3670

Baseline variables and in-hospital factors

 Age (year, mean SD) 71.42 ± 15.93 63.61 ± 17.73 8.95E−36

Sex (%)

 Female 413 1609

 Male 476 2061 0.1706

Ethnicity (%)

 White 617 (69.4%) 2642 (72.1%)

 Black 66 (7.4%) 338 (9.2%)

 Yellow 34 (3.8%) 145 (4%)

 Others 172 (19.3%) 545 (14.9%) 0.005914

 Weight (kg), mean (SD) 76.91 ± 21.31 82.69 ± 28.61

 Height (cm), mean (SD) 168.27 ± 11.66 169.51 ± 10.73

 BMI (kg/m2), mean (SD) 27.82 ± 7.65 29.25 ± 8.91

 Length of stay in hospital, days, mean (SD) 7.04 ± 6.3 10.99 ± 10.4

 Length of stay in the ICU, days, mean (SD) 4.87 ± 4.99 4.66 ± 6.31

Admission type

 MED 580 (65.2%) 1912 (52.1%)

 CMED 86 (9.7%) 477 (13.0%)

 Others 223 (25.1%) 1282 (34.9%) 1.36E−11

Vital signs

 Heartrate_min (times/min), mean (SD) 72.92 ± 19.16 73.08 ± 15.72 0.826205355

 Heartrate_mean (times/min), mean (SD) 91.12 ± 18.27 87.81 ± 16.15 0.00000579

 Sysbp_min (mmhg), mean (SD) 80.46 ± 20.01 90.69 ± 16.18 6.49E−36

 Diasbp_mean (mmhg), mean (SD) 58.65 ± 10.42 61.7 ± 10.08 6.62E−13

 Meanbp_min (mmhg), mean (SD) 48.41 ± 15.65 56.24 ± 13.89 6.74E−34

 Resprate_mean (times/min),mean (SD) 21.73 ± 4.68 19.54 ± 4.06 3.66E−30

 Tempc_min (℃), mean (SD) 35.77 ± 1.17 36.15 ± 0.86 1.78E−16

 Tempc_max (℃), mean (SD) 37.34 ± 1.17 37.65 ± 0.85 3.37E−11

 Spo2_mean (%), mean (SD) 96.03 ± 4.02 97.1 ± 1.96 3.06E−12

Laboratory parameters

 Aniongap_max (mmhg), mean (SD) 19.12 ± 6.26 16.17 ± 4.65 1.45E−31

 Aniongap_min (mmhg), mean (SD) 14.58 ± 4.66 12.45 ± 3.08 1.48E−30

 Creatinine_min (ng/dL), mean (SD) 1.65 ± 1.23 1.35 ± 1.39 3.89E−09

 Chloride_min (mmol/L), mean (SD) 101.67 ± 7.65 101.93 ± 6.69 0.39868745

 Hemoglobin_min (g/dL), mean (SD) 9.84 ± 2.21 10.08 ± 2.08 0.009534544

 Hemoglobin_max, (g/dL), mean (SD) 11.77 ± 2.26 12 ± 2.09 0.012634047

 Lactate_min (mmol/L), mean (SD) 2.36 ± 2.07 1.55 ± 0.81 4.26E−24

 Platelet_min (109/L), mean (SD) 189.73 ± 125.29 195.98 ± 108.29 0.207608419

 Potassium_min (mmol/L), mean (SD) 3.84 ± 0.7 3.71 ± 0.54 0.00000328

 Sodium_min (mmol/L), mean (SD) 136.27 ± 6.62 136.08 ± 5.35 0.454879474

 Sodium_max (mmol/L), mean (SD) 141.28 ± 6.8 140.51 ± 5.03 0.003570629

 Bun_min (mmol/L), mean (SD) 36.09 ± 25.43 24.22 ± 19.69 8.45E−31

 Bun_max (mmol/L), mean (SD) 42.88 ± 28.49 30.23 ± 24.39 1.12E−27

 Wbc_min (109/L), mean (SD) 12.54 ± 12.22 10.41 ± 6.55 4.81E−06

 Wbc_max (109/L), mean (SD) 17.54 ± 19.99 14.8 ± 9.87 0.000293182

 Inr_max, mean (SD) 2.12 ± 1.79 1.61 ± 1.34 2.89E−14

 Urine output 1225.29 ± 1307.53 1993.04 ± 1551.57 2.82E−48
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model, the net benefit for XGboost model was larger over 
the range of traditional logistic model and SAPS-II score 
model, which means XGboost model is the optimal and 
the SAPS-II score model inferior (Fig. 5).

Optimal model analysis
For visualization of the XGboost predictive model, the 
risk nomogram that integrated 11 selected variables 
for the incidence of mortality within 30  days is shown 
in Fig.  6. Clinical impact curve (CIC) analysis was per-
formed in Fig.  7 to evaluate clinical applicability of risk 
prediction nomogram. CIC visually showed that the 
nomogram had a superior overall net benefit within the 
wide and practical ranges of threshold probabilities and 
impacted patient outcomes, which indicates that the 
XGboost model possesses significant predictive value.

Discussion
Sepsis, which is associated with profound mortality and 
substantial economic burden, is no longer defined sim-
ply as serious infection. In a systematic review and meta-
analysis, Reinhart et al. [20] concluded that the mortality 
rate estimate of ICU- and hospital-treated sepsis patients 
were 41.9% and 26.7% respectively, or one out of four 
sepsis patients did not survive their hospital stay. Torio 
et  al. [21] estimated sepsis accounted for 6.2% of the 

aggregate costs for all hospitalizations, or 23.7 billion 
USD in 2011. Furthermore, Moss et al. [22] conducted a 
study spanning two decades (from 1979 to 2000), which 
reported the annual increase of sepsis cases was around 
8.7%. The improvement of sepsis prevention, recognition, 
and treatment has been a global health priority since the 
declaration repeatedly by the World Health Organization 
(WHO) in 2017 [23]. Progressive exacerbation of sepsis 
can lead to organ failure and death, but early aggressive 
therapy also forestalls further progression and rescues 
a decompensating patient. Unfortunately, in ICU it is 
very difficult for clinicians to predict which patients will 
respond favorably and could be out of the crisis or will 
deteriorate despite all interventions and resuscitative 
efforts. At present, these findings indicate the urgent 
need to increase efforts to promote reliable predic-
tion models to identify patients with sepsis who are at 
increased risk of developing organ dysfunction and to 
prognosticate their mortality.

In this present study, the AUCs and DCAs we devel-
oped have demonstrated the benefit of using a XGboost 
model- as opposed to the classic logistic regression 
analysis and traditional SAPS II scoring system for early 
prediction of probability of septic mortality. Moreover, 
CIC and nomogram were plotted to evaluate the clini-
cal usefulness and applicability net benefits of the model 

MED medical-general service for internal medicine, CMED cardiac medical-for non-surgical cardiac related admissions, sysbp systolic blood pressure, diasbp diastolic 
blood pressure, meanbp mean blood pressure, resprate respiratary rate, tempc temperature, bun blood urea nitrogen, wbc white blood cell, INR international 
normalized ratio, sofa sequential organ failure assessment, qSOFA quick SOFA, SAPS II simplified acute physiology score II, Spo2 oxyhemoglobin saturation, Max 
maximum, Min minimum

Table 1  (continued)

Death within 30 days Survival within 30 days p

Score system

 SOFA 8.02 ± 4.33 5.22 ± 2.85 2.74E−55

 qSOFA 2.15 ± 0.64 1.9 ± 0.69 4.60E−21

 SAPS II 54.67 ± 16.37 37.51 ± 13.22 2.2E−16

Advanced life support

 Mechanical ventilation 531 (59.69%) 1668 (45.55%)

 Renal replacement therapy 53 (5.95%) 135 (3.61%) 0.2503

Accompanied diseases (comorbidity)

 Diabetes 246 (27.64%) 2631 (71.70%)

 Malignant tumour 116 (13.05%) 160 (4.37%)

 Others 527 (59.31%) 879 (23.93%) 2.20E−16

Common sources of infection

 Blood culture 418 (47%) 1343 (36.6%)

 MRSA screen 267 (30%) 1384 (37.72%)

 Urine 151 (17%) 642 (17.5%)

 Swab 18 (2%) 70 (1.9%)

 Others 35 (4%) 231 (6.3%) 7.82E−08

Outcome

 Within 30-days mortality 19.50% 80.50%
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Fig. 2  Characteristics of MIMIC-III patients with sepsis by ethnicities (a) and characteristics of MIMIC-III patients with sepsis by common sources of 
infection (b)
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with the best diagnostic value. Logistic regression analy-
sis as one of the classic regression analyses is widely used 
to test the association between sepsis and mortality. For 
instance, through the logistic regression analysis, Vivien 
et  al. [24] observed an association between mortality 
at day 28 and the tidal volume indexed on ideal body 
weight (VTIBW) in pre-hospital mechanically ventilated 
patients with septic shock; Wu et  al. [25] revealed that 
dynamic changes of serum S100B levels from day 3 to 1 
were more associated with mortality than those on day 
1 in patients with sepsis; Oud et  al. [26] indicated that 
sepsis was associated with most of the short-term deaths 
among ICU patients with SLE despite its relatively low 
mortality; Song et  al. [5] revealed that combined bio-
markers approach showed good performance in predict-
ing 28-day all-cause mortality among patients diagnosed 
with either sepsis or septic shock according to the sep-
sis-3 definition, however, the differences might not be 
statistically proven. Furthemore, some studies [27, 28] 
found conventional logistic regression had a relatively low 
indicator of performance as measured by AUCs for ROC 
curves or showed higher prediction error and worsen 
performance compared to some novel techniques.

Several conventional prognostic scoring systems have 
been developed to provide relevant evaluation results 
considering the hospital mortality of ICU patients. The 
advantages of such scoring systems are easy to calcu-
late and interpret. SAPS II, as one of the commonly 
used model, has better discrimination, calibration and 
power to predict deaths on ICU than the sequential 
organ failure assessment score (SOFA), which has been 
recommended for the identification and mortality prog-
nostication of patients in ICU by sepsis-3 [7]. Moreover, 
the ability of SAPS II to discriminate between survivors 
and non-survivors is as excellent as APACHE II score 
and other scores and even to help to play in end-of-life 
decision-making in ICUs [8]. However, the specificity 
and sensitivity of scoring systems such as SAPS II are 
low, and the predictive performance is worse than that 
of multivariate predictive models. Last but not least, the 
evaluation systems and the accurate outcomes depended 
heavily on the practitioner’s experience [6].

In recent years, various machine learning algorithms, a 
subset of artificial intelligence and a data analysis tech-
nique that develops algorithms to predict outcomes by 
“learning” from data, have been investigated for early 
detection of sepsis-3 and outperformed than conven-
tional or classic statistic methods, which could auto-
matically analyze complex data and produce significant 
results. Following is four notable examples of such algo-
rithms. Buchman et  al. [29] concluded that machine 
learning-based CDS tools can accurately predict the 
onset of sepsis in an ICU patient 4–12 h prior to clinical 

Table 2  Features selected in  the  conventional logistic 
regression

OR odds ratio, CI confidence interval, SOFA sequential organ failure assessment, 
bun blood urea nitrogen, wbc white blood cell, sysbp systolic blood pressure, 
meanbp mean blood pressure, resprate respiratary rate, Spo2 oxyhemoglobin 
saturation, vent ventilation, Max maximum, Min minimum

OR_with_CI p value

(Intercept) 52,913.003 (87.92–
33,934,517.782)

< 0.001

Sofa 1.142 (1.106–1.179) < 0.001

Aniongap_min 1.078 (1.043–1.115) < 0.001

Creatinine_min 0.676 (0.592–0.767) < 0.001

Chloride_min 0.98 (0.962–0.999) 0.03393

Hematocrit_min 1.113 (1.053–1.178) < 0.001

Hemoglobin_min 0.748 (0.623–0.895) 0.00169

Hemoglobin_max 0.926 (0.863–0.992) 0.02993

Lactate_min 1.308 (1.194–1.435) < 0.001

Potassium_min 1.179 (1.001–1.389) 0.04922

Sodium_max 1.046 (1.019–1.074) < 0.001

Bun_min 1.033 (1.018–1.048) < 0.001

Bun_max 0.986 (0.973–0.997) 0.01542

Wbc_min 1.062 (1.036–1.09) < 0.001

Wbc_max 0.969 (0.952–0.987) < 0.001

Heartrate_min 0.987 (0.977–0.997) 0.0111

Heartrate_mean 1.022 (1.011–1.033) < 0.001

Sysbp_min 0.991 (0.984–0.998) 0.00839

Meanbp_min 0.992 (0.985–1) 0.0468

Resprate_mean 1.062 (1.038–1.086) < 0.001

Tempc_min 0.897 (0.81–0.993) 0.03242

Tempc_max 0.781 (0.698–0.873) < 0.001

Spo2_mean 0.947 (0.909–0.986) 0.00839

Age 1.029 (1.022–1.035) < 0.001

Diabetes 0.779 (0.639–0.948) 0.01328

Vent 1.824 (1.48–2.251) < 0.001

Table 3  Features selected in the XGboost model

OR odds ratio, CI confidence interval, bun blood urea nitrogen, sysbp systolic 
blood pressure, INR international normalized ratio, Spo2 oxyhemoglobin 
saturation, Max maximum, Min minimum

OR_with_CI P

(Intercept) 493.907 (9.063–27,931.087) 0.00247

Urineoutput 1 (1–1) < 0.001

Lactate_min 1.401 (1.288–1.527) < 0.001

Bun_mean 1.018 (1.013–1.023) < 0.001

Sysbp_min 0.979 (0.974–0.984) < 0.001

Metastatic_cancer 2.997 (2.217–4.038) < 0.001

Inr_max 1.058 (1.002–1.115) 0.03709

Age 1.019 (1.013–1.025) < 0.001

Sodium_max 1.016 (1.001–1.031) 0.03835

Aniongap_max 1.048 (1.026–1.069) < 0.001

Creatinine_min 0.766 (0.686–0.852) < 0.001

Spo2_mean 0.897 (0.865–0.93) < 0.001
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Fig. 3  Top 11 features selected using XGBoost and the corresponding variable importance score. X-axis indicates the importance score which is the 
relative number of a variable that is used to distribute the data, Y-axis indicates the top 11 weighted variables

Fig. 4  The receiver operating characteristic (ROC) curves. a traditional logistic regression model, area under curves (AUC) is 0.819 [95% confidence 
interval (CI); 0.800–0.838]; b SAPS-II score model, AUC is 0.797 [0.781–0.813]; c XGboost model, AUC is 0.857 [0.839–0.876], the best performance of 
the models was the XGboost model
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Fig. 5  Decision curve analysis (DCA) of the three prediction models. The net benefit curves for the three prognostic models are shown. X-axis 
indicates the threshold probability for critical care outcome and Y-axis indicates the net benefit. Solid green line = XGboost model, solid red 
line = traditional logistic model, solid blue line = SAPS-II score mode. The preferred model is the XGboost model, the net benefit of which was larger 
over the range of traditional logistic model and SAPS-II score model

Fig. 6  Nomogram to estimate the risk of mortality in sepsis patients. To use the nomogram, we first draw a line from each parameter value to the 
score axis for the score, the points for all the parameters are then added, finally, a line from the total score axis is drawn to determine the risk of 
mortality on the lower line of the nomogram
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recognition. Seymour et  al. [30] performed different 
machine learning methods and suggested 4 clinical phe-
notypes may help in understanding the heterogeneity of 
treatment effects for patients with sepsis. Kashyap et al. 
[31] used JMP statistical software to conduct a super-
vised machine learning for identification of sepsis and 
septic shock and found it’s a reliable and efficient alterna-
tive to manual chart review. Winslow et al. [32] applied 
machine learning to features calculated from patient with 
sepsis to estimate whether or not a patient enters this 
pre-shock state. However, all those articles mentioned 
above haven’t verified the superiority of machine learning 
models or done relevant further analysis or offered inter-
pretation compared to other types of prediction model. 
More importantly, the primary outcomes of these studies 
are the emergence of detection of sepsis rather than poor 
clinical outcomes (i.e. mortality) of sepsis. XGBoost, a 
decision-tree-based algorithm, has been found to be the 
best algorithm for machine learning and prediction com-
petition hosted by Kaggle.com [10, 33]. Due to its best 
precision value and performance, XGBoost-based algo-
rithm machine learning is increasingly emphasized as a 
competitive alternative to regression analysis and used in 
predicting clinical adverse outcomes.

In terms of the prognosis of sepsis, an artificial intel-
ligence algorithm based on XGBoost has been published 
by Yuan et al. [9] in 2020. Nevertheless, both of our arti-
cles about XGboost models have its own merits. Firstly, 

there are several limits in Yuan’s study mentioned by him-
self. For instance, the features selected were according to 
clinical experience but not algorithm; the representative-
ness of features may not clear in sepsis and some impor-
tant dynamic features were not included; left or right 
censoring may be resulted from incomplete recording of 
electronic medical records (EMR) when patients transfer 
or discharge; besides, there were no validations for the 
XGboost model and no traditional regression analysis 
was used as a control. Secondly, there are some superi-
orities in our model compared to Yuan’s machine learn-
ing: the features selected were according to backward 
stepwise analysis which increased representativeness and 
accuracy; some important features are not missing such 
as lactate, AG, etc.; data was from MIMIC-III which is 
an updated database and provides detailed information; 
classic logistic regression analysis with AUCs and DCAs 
were used to contrast with XGboost except for tradi-
tional scoring system; crucially, nomogram and CIC were 
plotted to evaluate the clinical usefulness and applica-
bility net benefits of the model. Thirdly, of course, some 
common limitations exist in both of our articles: meas-
urement bias within calculation is possible due to the 
method is based on experts’ opinion; sepsis could happen 
at any time during ICU admission (even possibly hours 
before labelled), although with the help of algorithm, it’s 
still difficult for intensivists to integrate the data of point-
of-care vital signs, latest lab reports and etc. all the time 

Fig. 7  Clinical impact curve (CIC) of XGboost model. The red curve (number of high-risk individuals) indicates the number of people who are 
classified as positive (high risk) by the model at each threshold probability; the blue curve (number of high-risk individuals with outcome) is the 
number of true positives at each threshold probability. CIC visually indicated that nomogram conferred high clinical net benefit and confirmed the 
clinical value of the XGboost model
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and to determine the patient condition with sepsis or not 
according to any database.

An interesting finding in our study is that the fea-
tures included in the XGBoost-based model and logistic 
regression model showed consistent, which indicated 
the excellent performances of XGBoost model were sig-
nificant, although the two models may fit and perform 
differently in different datasets. However, these recogni-
tions of the features and sepsis-induced mortality cannot 
be entirely explained. Hence, further studies and efforts 
are needed to investigate the mechanisms underlying the 
role of these variables included in patients with sepsis-3. 
Following is a brief summary of remarkable or contro-
versial features included in the XGBoost model. Among 
these features, the weight of urine output is the great-
est which represents it is the most important predictor 
for 30-day mortality MIMIC-III patients. This result is 
compatible with some clinical studies. Vieira et  al. [34] 
reported higher urine output is associated with success-
ful enteral nutrition therapy in septic shock patients. 
Laranja et al. [35] concluded that septic patients with no 
acute kidney injury (AKI) had a more preserved urine 
output compared to that in all groups with AKI or AKI/
chronic kidney disease (CKD). Lin et  al. [36] indicated 
decreased urine output could be manifested as a com-
pensatory mechanism to maintain intravascular volume, 
and also imply intrinsic renal injury for patients in sepsis. 
Teixeira et al. [37] confirmed that the use of diuretics was 
inversely associated with mortality and itself may exert a 
protective effect. Sodium_max is an interesting feature 
in our XGBoost-based model. Hypernatremia can be an 
independent predictor of poor outcome in septic patients 
in the ICU, which is similar to some views [38]. However, 
another study [39] showed the risk of death increased 
by 71.6% when serum sodium was < 129  mmol/L for 
patients with sepsis. Lactate and AG are typical meta-
bolic indicators. Patients with a normal lactate level alone 
should not be excluded life-threatening sepsis, and with 
high AG levels regardless of lactate levels, have high 
rates of mortality and should also be considered for early, 
aggressive therapy [40]. However, Liu and Velissaris et al. 
[41, 42] clearly pointed out that plasma lactate were asso-
ciated with poor outcomes in patients with sepsis and 
predicted mortality. INR is another crucial predictive fac-
tor in the machine learning model. Several studies [43, 
44] found septic patients with elevated INR and platelet 
count appeared to have a greater risk of death compared 
with those without coagulopathy. There is no doubt that 
age and metastatic cancer as basic demographic infor-
mation could be included in the model which plays 
unfavorable effects for the mortality. Whereas, survival 
in critically ill cancer patients with sepsis improved sig-
nificantly over time but reasons or mechanisms for this 

condition haven’t been identified [45]. In consideration of 
the source of infection, we found blood infection ranks 
the highest (38.49%), followed by MRSA screen (35.49%) 
and urine (17.36%), which indicates that we can per-
form empirical antibiotics treatment, but de-escalation 
or determination of whether or not to stop antibiotics or 
successful implementation of antimicrobial stewardship 
may help to improve a patient’s clinical prognosis while 
preventing adverse outcomes [46].

The strength of this study was mainly that it was the 
first time to predict the 30  day mortality of MIMIC-III 
patients with sepsis-3 using the XGBoost model, and 
compared to traditional regression analysis and clinical 
scoring system, and meanwhile verified by nomogram 
and CIC. We must acknowledge some other limitations 
of our study: firstly, because the data come from only one 
database and the majority of patients were white, poten-
tial bias may occur; secondly, further exploration for the 
database was not performed, which may lead to the aban-
donment of some key variables; thirdly, the proposed 
model was not designed to be validated by developing set 
from the database or our clinical data. Even so, we believe 
that the proposed model may contribute to further our 
understanding of the prognosis of patients suffering from 
sepsis in ICU.

Conclusions
In conclusion, this study shows that the machine learn-
ing based on XGboost algorithm does outperform con-
ventional logistic regressions and scoring system. This 
XGboost model may prove clinically useful and assist cli-
nicians in tailoring precise management and therapy for 
the patients with sepsis-3 which is essential for maximiz-
ing the patient’s chance of survival.
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