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Abstract

Background: Mutations in the PLA2G6 gene have been identified in autosomal recessive neurodegenerative diseases
classified as infantile neuroaxonal dystrophy (INAD), neurodegeneration with brain iron accumulation (NBIA), and dystonia-
parkinsonism. These clinical syndromes display two significantly different disease phenotypes. NBIA and INAD are very
similar, involving widespread neurodegeneration that begins within the first 1–2 years of life. In contrast, patients with
dystonia-parkinsonism present with a parkinsonian movement disorder beginning at 15 to 30 years of age. The PLA2G6
gene encodes the PLA2G6 enzyme, also known as group VIA calcium-independent phospholipase A2, which has previously
been shown to hydrolyze the sn-2 acyl chain of phospholipids, generating free fatty acids and lysophospholipids.

Methodology/Principal Findings: We produced purified recombinant wildtype (WT) and mutant human PLA2G6 proteins
and examined their catalytic function using in vitro assays with radiolabeled lipid substrates. We find that human PLA2G6
enzyme hydrolyzes both phospholipids and lysophospholipids, releasing free fatty acids. Mutations associated with different
disease phenotypes have different effects on catalytic activity. Mutations associated with INAD/NBIA cause loss of enzyme
activity, with mutant proteins exhibiting less than 20% of the specific activity of WT protein in both lysophospholipase and
phospholipase assays. In contrast, mutations associated with dystonia-parkinsonism do not impair catalytic activity, and two
mutations produce a significant increase in specific activity for phospholipid but not lysophospholipid substrates.

Conclusions/Significance: These results indicate that different alterations in PLA2G6 function produce the different disease
phenotypes of NBIA/INAD and dystonia-parkinsonism. INAD/NBIA is caused by loss of the ability of PLA2G6 to catalyze fatty
acid release from phospholipids, which predicts accumulation of PLA2G6 phospholipid substrates and provides a
mechanistic explanation for the accumulation of membranes in neuroaxonal spheroids previously observed in
histopathological studies of INAD/NBIA. In contrast, dystonia-parkinsonism mutations do not appear to directly impair
catalytic function, but may modify substrate preferences or regulatory mechanisms for PLA2G6.
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Introduction

Mutations in the PLA2G6 gene (Entrez GeneID:8398) have

been identified in autosomal recessive neurodegenerative diseases

classified as infantile neuroaxonal dystrophy (INAD), neurodegen-

eration with brain iron accumulation (NBIA), and dystonia-

parkinsonism [1–3]. Although there is significant overlap between

the NBIA and INAD phenotypic spectrum, the clinical features of

dystonia-parkinsonism are distinct in many ways from those

reported for NBIA and INAD. INAD and NBIA caused by

PLA2G6 mutations typically begin in the first two years of life and

involve progressive impairment of movement, speech and

cognition, secondary to widespread degeneration in the peripheral

and central nervous system [4–6]. Additional clinical features

specific for the INAD/NBIA phenotypic spectrum include

cerebellar atrophy and iron accumulation in the globus pallidus,

both of which can be observed on magnetic resonance imaging of

the brain. In contrast, dystonia-parkinsonism begins primarily as a

movement disorder in the age range of 15–30 years old, and is

further distinguished from NBIA/INAD by the absence of

cerebellar atrophy and iron accumulation [2,3]. A combination

of dystonia and parkinsonism are the common presenting features,

and similar to idiopathic PD, the parkinsonism is responsive to

levodopa or a dopamine receptor agonist. Cognitive impairment is

observed with disease progression.

The PLA2G6 gene encodes group VIA calcium-independent

phospholipase A2 (PLA2G6) also known as calcium-independent

phospholipase A2 beta (iPLA2b). The enzyme was originally

identified in Chinese hamster ovary cells based on its ability to

hydrolyze the sn-2 acyl groups of phospholipids, producing free

fatty acids and lysophospholipids [7,8]. Morgan et al originally

mapped a gene locus containing PLA2G6 in multiple families with
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autosomal recessive inheritance of INAD or NBIA [1]. Sequencing

of the PLA2G6 gene in INAD and NBIA revealed a total of 44

unique mutations associated with disease. In all but one case in

which PLA2G6 mutations were detected, mutations were present

in both alleles, indicating that disease is caused by loss of function

rather than a dominant gain of function. In some INAD/NBIA

cases, both alleles were affected by early frame shift and stop

codon mutations, suggesting a complete loss of protein function

[1,6]. However the majority of disease-associated mutations cause

missense single amino acid substitutions.

Subsequent studies identified PLA2G6 mutations in patients

with dystonia-parkinsonism. Paisan-Ruiz et al identified regions of

homozygosity on chromosome 22 in two families with dystonia-

parkinsonism [2]. Sequencing of genes in this region revealed

missense mutations in PLA2G6, causing amino acid substitutions

R741Q in one family and R747W in the other. In each case,

affected patients were homozygous for the missense mutation in

PLA2G6. A third missense mutation in PLA2G6, causing amino

acid substitution R632W has been identified in association with

dystonia-parkinsonism in 3 siblings [3]. The three affected siblings

in this family were homozygous for the missense mutation, while 3

unaffected siblings and parents were heterozygotes. Interestingly,

the R632W mutation has been identified on one allele in an INAD

patient with compound heterozygous mutations in PLA2G6 [1].

Distinct phenotypes associated with mutations in the same gene

may result from the influence of additional genetic and

environmental factors. Alternatively, individual PLA2G6 mutations

may primarily determine phenotype through distinct effects on

protein function, causing either different degrees of impairment in

a single function, or perhaps affecting different functions of the

same protein. To examine the hypothesis that disparate pheno-

types are determined primarily by distinct effects of mutations on

PLA2G6 enzyme function, we developed assays to assess the

catalytic activity of wildtype (WT) and mutant PLA2G6 proteins.

We find that the human PLA2G6 enzyme functions as an A2

phospholipase, hydrolyzing the sn-2 acyl chain of phosphatidyl-

choline (PC), and as a lysophospholipase, hydrolyzing the sn-1 acyl

chain of lysophosphatidylcholine (LPC), the product of its A2

phospholipase reaction. We find that mutations associated with

INAD and NBIA profoundly impair enzyme function in both

phospholipase and lysophospholipase assays. In contrast, muta-

tions associated with dystonia-parkinsonism mutations do not

impair catalytic function.

Results

Recombinant human PLA2G6 catalyzes the release of
free fatty acids from multiple lipid substrates

We produced purified recombinant wildtype human PLA2G6

protein and used in vitro assays with radiolabeled lipid substrates to

examine its catalytic function. Recombinant protein was produced

by transient transfection of the 293FT cell line and purified using

nickel affinity chromatography to capture a six histidine tag added

to the C-terminus of PLA2G6. We produced recombinant protein

for the longest PLA2G6 isoform, encoded by transcript variant 1,

and examined its catalytic lipase activity using two lipid substrates

(Figure 1). Recombinant PLA2G6 catalyzed the release of oleic acid

from the phospholipid substrate 1-palmitoyl-2-oleyl-phosphatidyl-

choline (PC). Recombinant PLA2G6 also catalyzed the release of

palmitic acid from the 2-lysophospholipid, 1-palmitoyl lysophos-

phatidylcholine (LPC). Lysophospholipids can be generated from

phospholipids by the A2 phospholipase activity of PLA2G6 as well

as other A2 phospholipase enzymes. Mutation of the catalytic serine

residue within the GXSXG lipase consensus sequence abolished the

Figure 1. Recombinant human PLA2G6 protein catalyzes the hydrolysis of fatty acids from PC and LPC. (A) Purified recombinant
protein preparations from cells transfected with an empty expression vector, WT PLA2G6 or S519A PLA2G6 were added to in vitro catalytic assays.
Free fatty acids (FFA) released from 14C-labeled 1-palmitoyl lysophosphatidylcholine were separated on TLC and detected using a phosphorimager.
Incubation of substrate with WT PLA2G6 enzyme produces robust release of fatty acids compared to control preparations from vector-transfected
cells. Catalytic activity is abolished by mutation of S519 in the lipase catalytic site. (B) Quantitation of catalytic activity for the 14C-labeled
phospholipid substrate 1-palmitoyl-2-oleyl phosphatidylcholine. (C) Quantitation of activity for 14C-labeled LPC lysophospholipid substrate. Fatty acid
release in catalytic assays was quantitated from the phosphorimager screen in photostimulated luminescence (PSL) units, and the graphs indicate the
rate of hydrolysis for each substrate, measured by the increase in PSL units per min of incubation time in each assay. Since the PLA2G6 protein
concentrations, radiochemical specific activities and substrate concentrations were the same in both assays, the results indicate that the catalytic
rates for the two substrates are similar.
doi:10.1371/journal.pone.0012897.g001

PLA2G6 Mutations
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ability of the enzyme to hydrolyze either phospholipid or lysopho-

spholipid substrates (Figure 1b–c).

Mutations associated with INAD and NBIA cause loss of
enzyme activity

We used site directed mutagenesis to introduce missense

mutations previously identified in patients diagnosed with either

NBIA or INAD. These mutations included Y790X, the most

frequent mutation found in association with INAD/NBIA that

results in a premature stop codon, truncating the last 15 amino

acids of the WT protein. We selected several other mutations

based on their location within proposed functional regions of

PLA2G6, including the ankyrin repeat region that may be

responsible for protein-protein interactions (A341T), the first

glycine residue in the GXSXG lipase domain (G517C), and a C-

terminal region that includes a calmodulin binding domain

(G638R). The location of disease-associated mutations relative to

functional domains in the PLA2G6 protein is illustrated in

Figure 2. We produced recombinant proteins containing each of

the disease-associated mutations and compared catalytic activity to

the WT PLA2G6 protein. To compare specific activities of WT

and mutant proteins, quantitative western blot analysis was used to

determine the relative PLA2G6 protein concentration for each

recombinant protein preparation and add equal amounts of WT

and mutant proteins to the catalytic assays.

We found that the above mutations associated with INAD/

NBIA significantly reduced PLA2G6 phospholipase activity

compared to WT protein. The A341T, G517C, G638R, and

Y790X mutant proteins had less than 10% of the activity of WT

protein (Figure 3A). We also examined the catalytic activity of

mutant proteins using the substrate LPC. The lysophospholipase

assay yielded results that were similar to those in the phospholipase

assay, with INAD-associated mutations causing impaired enzyme

activity for the LPC substrate (Figure 3B).

To further investigate the potential significance of genotype

differences between INAD/NBIA and dystonia-parkinsonism, we

examined the catalytic activity of two other mutations associated

with NBIA/INAD. Mutations causing a missense amino acid

substitution at position 741 are associated with both INAD/NBIA

(R741W) and dystonia-parkinsonism phenotypes (R741Q). We

examined the effect of the INAD/NBIA-associated tryptophan

substitution at amino acid 741 (R741W) and found that this amino

acid change reduced PLA2G6 phospholipase activity to approx-

imately 25% of the level of WT activity and lysophospholipase

activity to approximately 10% of WT activity (Figure 4A–B). We

also examined the catalytic activity of the V691del mutation

because it has been identified in combination with an R632W

mutation in an INAD patient with compound heterozygous

mutations, which is in contrast to homozygous R632W mutations

associated with dystonia-parkinsonism. To investigate the potential

contribution of the V691del mutant allele observed in combina-

Figure 2. Disease-associated PLA2G6 mutations examined in this study and their relationship to functional domains of the PLA2G6
protein. Illustrated functional domains in the PLA2G6 protein (encoded by transcript variant 1) include the ankyrin repeat regions (numbered
regions between amino acids 150–382) and the GXSXG lipase catalytic site (S519). Shaded regions indicate a nucleotide binding domain centered at
amino acid 485, and a calmodulin binding region (amino acids 747–759). The locations of amino acid changes resulting from mutations associated
with INAD/NBIA are indicated above the diagram and mutations associated with dystonia-parkinsonism are indicated below the diagram.
doi:10.1371/journal.pone.0012897.g002

Figure 3. PLA2G6 mutations that cause NBIA/INAD significant-
ly disrupt the ability of PLA2G6 to hydrolyze PC and LPC.
Phospholipase and lysophospholipase catalytic activities of mutant
PLA2G6 proteins were compared to wild type (WT) PLA2G6 in assays
with PC and LPC substrates, respectively. Initial experiments examined
the group of INAD-associated mutations A341T, G517C, G638R, and
Y790X. Phospholipase (A) and lysophospholipase (B) activities are
shown as percent of WT activity measured when equal concentrations
of protein were added to assays measuring release of fatty acids from
radiolabeled substrate. Bars indicate mean plus standard deviation
(n = 3) from representative experiments. The specific activities of all
mutations were significantly different from WT (p,0.05, unpaired t-
test). Similar results were obtained in at least two experiments with
independent transfection and purification of recombinant proteins.
doi:10.1371/journal.pone.0012897.g003

PLA2G6 Mutations
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tion with an R632W allele in INAD/NBIA, we used site directed

mutagenesis to delete valine 691. The V691del mutation reduced

phospholipase activity to15% of WT, and lysophospholipase

activity to less than 1% of WT (Figure 4C–D).

Mutations that cause dystonia-parkinsonism do not
impair PLA2G6 catalytic activity

We also produced recombinant PLA2G6 proteins containing

the three mutations associated with dystonia-parkinsonism

(R632W, R741Q, and R747W). In contrast to the effects of

INAD/NBIA-associated mutations, the three mutations associated

with dystonia-parkinsonism did not impair phospholipase catalytic

activity (Figure 5). In fact, PLA2G6 enzyme with the R747W and

R632W mutations displayed an increased rate of PC-hydrolysis

relative to WT enzyme in the phospholipase assay. In the

lysophospholipase assay, the catalytic rates of the three mutant

proteins were not significantly different from WT. Since PLA2G6

has also been observed to hydrolyze palmitoyl coenzyme A (CoA)

in vitro [9], we examined PLA2G6 catalytic activity using

radiolabeled palmitoyl CoA, and observed that the dystonia-

parkinsonism mutations also do not impair PLA2G6 thioesterase

activity (Figure S1).

Discussion

Our results provide insight into pathogenic mechanisms

underlying the spectrum of neurodegenerative diseases caused by

PLA2G6 mutations. We find that mutations associated with NBIA/

INAD impair the catalytic activity of the PLA2G6 protein. In

contrast, mutations associated with dystonia-parkinsonism do not

impair catalytic activity. These results clarify the mechanisms

underlying the phenotypic expression associated with PLA2G6

mutations; selective effects on protein function, rather than other

genetic or environmental factors, produce the two different disease

spectrums, NBIA/INAD and dystonia-parkinsonism. Comparison

of the effects of a glutamine (Q) versus a tryptophan (W)

substitution at the 741 position further illustrates the correlation

between enzymatic activity and disease phenotype. A tryptophan

substitution for arginine at position 741 produces an 80%

Figure 4. The effects of additional mutations illustrate the significance of genotype distinctions between INAD/NBIA and dystonia-
parkinsonism. The INAD/NBIA-associated R741W mutation (A, B) was investigated because mutation of the same residue to a glutamine (R741Q)
has been identified in dystonia-parkinsonism. The V691del mutation was examined given its association with an R632W mutation in an INAD patient
with compound heterozygous mutations (C, D), in contrast to homozygous R632W mutations associated with dystonia-parkinsonism. Phospholipase
(A,C) and lysophospholipase (B,D) activities are shown as percent of WT activity measured when equal concentrations of protein were added to
assays measuring release of fatty acids from radiolabeled substrate. Bars indicate mean plus standard deviation (n = 3) from representative
experiments. Asterisks indicate mean activities that were significantly different from WT (p,0.05, unpaired t-test). Similar results were obtained in at
least two experiments with independent transfection and purification of recombinant proteins.
doi:10.1371/journal.pone.0012897.g004
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reduction in activity, associated with INAD in one patient and

NBIA in another patient, while glutamine substitution results in no

apparent reduction in catalytic activity and is associated with a

dystonia-parkinsonism phenotype.

Although our studies do not detect a loss of catalytic function

resulting from dystonia-parkinsonism mutations, the recessive

pattern of inheritance suggests that they are more likely to cause a

loss of function rather than a dominant gain of function. The

R632W mutation has been observed in one patient with INAD in

addition to three siblings with dystonia-parkinsonism. In the

patient with INAD, a heterozygous R632W mutation was found in

combination with a heterozygous V691del mutation, which is

distinct from the situation in dystonia-parkinsonism patients who

have all been homozygous for the R632W mutation. The

complete loss of enzyme function caused by the V691del mutation

suggests that a genotype-phenotype correlation may exist based on

the degree of impairment in PLA2G6 function, and that

impairment below a certain level may cause the early onset

INAD/NBIA disease phenotype and more widespread effects in

the nervous system. Although our assays did not detect

impairment of catalytic activity, they do not exclude the possibility

of impaired enzyme function in vivo. An alternative explanation is

that an additional PLA2G6 mutation was present in this patient but

was not detected by sequencing of PLA2G6 exons.

Our results suggest that the R632W and R747W mutations

might alter PLA2G6 function by increasing the catalytic rate for

PC. We did not observe an increase in the catalytic rate for LPC.

Further experiments are needed to determine whether these

mutations alter the relative catalytic rates for PC and LPC. Such a

change in substrate preference could significantly alter enzyme

function in vivo. By promoting phospholipid hydrolysis over

lysophospholipid hydrolysis, the mutations may alter the relative

levels of phospholipids, lysophospholipids, and fatty acids normally

regulated by the PLA2G6 enzyme. It is also possible that these

mutations interfere with other mechanisms regulating PLA2G6

function, such as interactions with calmodulin, calcium/calmod-

ulin-dependent protein kinase IIb or other proteins [10,11], which

may not be detected in our in vitro assays.

The capacity for human PLA2G6 to hydrolyze both phospho-

lipid and lysophospholipid substrates supports a role for the

enzyme in phospholipid homeostasis, which is also supported by

histopathological changes in INAD and experimental results in

cultured cells. In cultured cell lines, PC levels remain constant in

the face of increased PC synthesis produced by over-expression of

a rate-limiting PC synthesis enzyme. Cells compensate for

increased PC production by the conversion of PC to free fatty

acids and glycerophosphocholine (GPC), a process that is

associated with increased expression of PLA2G6 and blocked by

an inhibitor of PLA2G6 [12,13]. Our results for human PLA2G6,

consistent with previous studies of Chinese hamster PLA2G6

[8,14], demonstrate the capacity of PLA2G6 to catalyze both

enzymatic steps in the conversion of PC to fatty acids and GPC.

The proposed role for PLA2G6 in phospholipid turnover does

not exclude additional roles in membrane remodeling or

arachidonic acid signaling pathways, but a role in phospholipid

homeostasis may explain the axonal accumulation of membranes

in neuroaxonal spheroids, the hallmark feature of NBIA/INAD

observed throughout the peripheral and central nervous system

[15–21] The core component of neuroaxonal spheroids is

tubulovesicular membrane accumulation, and this feature is

reproduced in mouse models of INAD produced by mutations

in the PLA2G6 gene [22–24], including a missense mutation that

disrupts PLA2G6 phospholipase activity [23]. Interestingly mice

with mutations in the PLA2G6 gene develop neurological

impairment later within the mouse lifespan than observed in

human INAD [22,23]. Later onset disease in the mouse may result

from differences between species in neuronal vulnerability to loss

of PLA2G6. Species differences in axon length, metabolic

requirements or compensatory metabolic pathways could explain

differences in age of onset and degree of neurological impairment.

Our results predict that PLA2G6 mutations may cause not only

accumulation of phospholipid substrates but also decreased

production of fatty acids. Fatty acid release by PLA2G6 may be

important in the synthesis of new phospholipids, triglycerides and

other lipids, or alternatively catabolic pathways such as fatty acid

beta-oxidation. The INAD/NBIA phenotype is also associated

with accumulation of alpha-synuclein in Lewy bodies and Lewy

Figure 5. PLA2G6 mutations associated with dystonia-parkin-
sonism do not impair phospholipase and lysophospholipase
activity. Purified recombinant protein was produced for WT PLA2G6
protein and for PLA2G6 proteins containing missense mutations
associated with dystonia-parkinsonism, Equal amounts of WT or mutant
proteins were added to enzymatic assays utilizing (A) PC or (B) LPC as
substrate. Relative rates of fatty acid release are shown for WT and each
mutant protein (mean percent WT + standard deviation, n = 3
independently prepared protein preparations for each of WT and 3
mutants). Asterisks indicate mean activities that were significantly
different from WT (p,0.05, unpaired t-test). Although an initial
experiment with n = 1 recombinant protein preparations indicated
decreased activity of all three mutant proteins relative to WT, results
similar to those shown in panels A and B were observed in all
subsequent experiments, which included at least 3 additional
independent protein preparations.
doi:10.1371/journal.pone.0012897.g005
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neurites [4]. Since alpha-synuclein binds fatty acids and regulates

brain fatty acid metabolism [25–30], altered fatty acid metabolism

may be a mechanism underlying alpha-synuclein accumulation.

Additional studies in neuronal culture and mouse models may

further define mutation-induced changes in PLA2G6 function,

and mechanisms linking changes in PLA2G6 catalytic activities to

these histopathological features of neurodegeneration.

Materials and Methods

Materials
Chemicals were obtained from Sigma unless otherwise indicated.

Plasmids
The full length human PLA2G6 coding sequence for transcript

variant 1 was amplified by PCR from the human cDNA clone

MGC:45156 (IMAGE:5166749, Genbank:BC036742), using for-

ward primer aagaattcaccatgcagttctttggccgcctg and reverse primer

aatctagagggtgagagcagcagctggat. The forward primer contains an

added EcoRI restriction site upstream of the ATG start codon and

the reverse primer contains an XbaI site downstream of the last

codon. The PCR product was subcloned into pcDNA3.1 myc-his.

Mutations were generated in the PLA2G6 transcript variant 1

pcDNA 3.1 expression vector using the Quickchange Site-

Directed Mutagenesis protocol (Stratagene, La Jolla, CA).

Mutations were confirmed by sequencing.

Production and purification of recombinant PLA2G6
protein

293FT cells (Invitrogen) were cultured in DMEM containing

10% fetal bovine serum (FBS), penicillin and streptomycin. Cells

were transfected in 10 cm culture dishes using Lipofectamine

2000, by combining 36 ml of Lipofectamine 2000 reagent and

12 mg plasmid DNA in a total volume of 3 ml Optimem medium.

After incubating the mixture for 20 min at room temperature, it

was added dropwise to 5 ml DMEM with 10% FBS in a 10 cm

tissue culture dish. To this mixture were added 96106 293 FT cells

suspended in 5 ml DMEM with 10% FBS, which were prepared

by trypsin digestion and trituration. The DNA liposome-

containing medium was replaced with growth medium the next

morning and cells were cultured for an additional day before

extraction of protein at approximately 42 hours after transfection

(longer incubation times after transfection led to significant cell

death that was specific to PLA2G6 plasmids). After washing in

5 ml phosphate buffered saline, cells were extracted in 1.25 ml

Triton Wash Buffer (0.1% Triton X-100, 50 mM TrisHCl

pH 8.0, 500 mM NaCl, 20 mM imidazole, 2 mM 2-mercapto-

ethanol, 5 mg/ml aprotinin and 5 mg/ml leupeptin. The extract

was frozen at 280uC, thawed, sonicated with five pulses of 1 sec,

and centrifuged at 15,0006 g for 10 min. The supernatant was

combined with 0.1 ml Ni-NTA Agarose beads (Invitrogen)

equilibrated in Triton wash buffer, and incubated with gentle

rocking for 30 min at 4uC. Beads were collected from the

suspension using a 0.8 ml Handee spin column (Pierce) with

centrifugation at 5006 g. Beads were washed two times in Triton

Wash buffer, then washed an additional two times in glycerol wash

buffer (same composition as Triton wash buffer except 20%

glycerol was substituted for 0.1% Triton X-100). Bound protein

was eluted in glycerol elution buffer (20% glycerol, 50 mM

TrisHCl pH 8.0, 500 mM NaCl, 250 mM imidazole, 2 mM 2-

mercaptoethanol, 5 mg/ml aprotinin and 5 mg/ml leupeptin) using

three separate 0.1 ml additions of elution buffer and collection of

eluate by centrifugation.

Quantitation of PLA2G6 protein levels in purified
fractions

PLA2G6 protein concentrations in catalytic assays for WT and

mutant PLA2G6 were normalized based on quantitative Western

blot analysis of purified fractions. Typically 1.2 ml of each purified

fraction was loaded on a 26-well Criterion 10% SDS-PAGE gel

(Bio-Rad), with 2–3 replicate lanes per protein sample. Electro-

phoresed proteins were transferred to nitrocellulose membrane,

incubated with mouse anti-myc monoclonal antibody 9E10,

followed by horseradish peroxidase conjugated anti-mouse

secondary antibody (Jackson Immunoresearch). Bound secondary

antibody was detected by enhanced chemiluminescence (ECL)

using Immobilon Western ECL Substrate (Millipore). Blots were

imaged with a Kodak Image Station 4400 and the intensity of

individual bands compared using Kodak 1D analysis software.

Standard curves containing a range of WT protein amounts were

included in the analysis of each set of recombinant proteins, in

order to verify that ECL signal for the amount of protein loaded

was in the linear range for quantitation. A graph demonstrating

the linear relationship between PLA2G6 protein concentration

and ECL signal intensity is shown in Figure S2. Average ECL

signal intensity was used to determine the relative PLA2G6 protein

concentrations in each preparation, which was used to add equal

amounts of WT and mutant proteins to the catalytic assays.

Assays for PLA2G6 catalytic activity
Catalytic activities of purified recombinant enzymes were

measured using in vitro reactions containing 25 mM Tris HCl

pH 7.5, 1 mM EGTA, and 4.5 mM lipid substrate, using methods

similar to previously reported catalytic assays [7–9,31]. Substrates

were L-a-1-palmitoyl-2-oleyl phosphatidylcholine [oleyl-1-14C]

(POPC, from American Radiolabeled Chemicals, 55 mCi/mmol),

and Lysopalmitoyl-phosphatidylcholine L-1-[palmitoyl-1-14C]

(LPC, from Perkin Elmer, 55 mCi/mmol), which were supplied

in 1:1 toluene:ethanol. Palmitoyl Coenzyme A [palmitoyl 1-14C]

(Palmitoyl CoA, from American Radiolabeled Chemicals,

55 mCi/mmol) was supplied in 1:1 0.01M sodium acetate:ethanol.

Prior to experiments, the substrate was evaporated under a stream

of nitrogen and redissolved in 100% ethanol at a concentration of

100 mM. The aqueous portion of the reaction, minus the enzyme

volume, was rapidly mixed with the ethanol-dissolved substrate,

and the reaction mixture was then sonicated in either a cup horn

or bath sonicator for 20 minutes at 25uC prior to addition of

enzyme. Immediately after addition of enzyme in a 5 ml volume,

reactions (50 ml final volumes) were incubated at 37uC for 2 min

for phospholipase assays or 4 min for lysophospholipase assays.

Fatty acid products were extracted by addition of butanol (25 ml)

immediately after the incubation period, followed by vortexing

and centrifugation at 20006 g for 4 minutes. Butanol-extracted

lipids were separated by thin layer chromatography on silica gel

plates (Partisil LK6F, Whatmann) using a 80:20:1 petroleum

ether:diethyl ether:acetic acid solvent system. TLC plates were

exposed to image phosphor plates, which were analyzed using a

FLA-7000 phosphorimager and Multigauge software (Fujifilm).

Control reactions were included in each experiment and contained

equivalent volumes of purified protein from vector-transfected

cells. The average amount of product obtained in control reactions

(typically less than 5% of product produced by WT PLA2G6

preparations) was subtracted to obtain the final value for each

enzyme preparation. Less than 5% of substrate was converted to

product under the reaction conditions used in experiments, and

for the amount of enzymes added to the reactions, product

formation was linear with respect to enzyme concentration (Figure

PLA2G6 Mutations
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S3) and was also linear with respect to incubation time (not

shown).

Supporting Information

Figure S1 PLA2G6 mutations associated with dystonia-parkin-

sonism do not impair PLA2G6 thioesterase activity. WT or

mutant proteins were added at equal enzyme concentrations to

catalytic assays utilizing radiolabeled palmitoyl CoA as substrate.

Relative rates of fatty acid release are shown for WT and each

mutant protein (mean percent WT + standard deviation, n = 3

independently prepared protein preparations for each of WT and

3 mutants). The asterisk indicates that the mean activity of R632W

was significantly different from WT (p,0.05, unpaired t-test).

Similar to the results observed in phospholipase and lysopho-

spholipase assays, mutations associated with dystonia-parkinson-

ism do not impair the thioesterase catalytic activity of PLA2G6.

Found at: doi:10.1371/journal.pone.0012897.s001 (0.17 MB TIF)

Figure S2 Western blot analysis of purified recombinant protein

to normalize WT and mutant protein concentrations in catalytic

assays. The graph shows the western blot ECL signal measured for

different amounts of purified WT PLA2G6 protein (diluted 15,

n = 3 lanes for each volume). The graph also shows a standard

curve (y = 16400x-1184) obtained by linear regression (R2 = 0.92)

for the relationship between luminescence (after subtracting

average luminescence of control lanes from vector transfected

cells) and volume of WT PLA2G6 protein. Western blot analysis

was used to determine the relative PLA2G6 protein concentration

in each recombinant protein preparation and to normalize the

amount of protein added to the catalytic assay as outlined in

Material and Methods.

Found at: doi:10.1371/journal.pone.0012897.s002 (0.26 MB TIF)

Figure S3 Linear relationship between enzyme concentration

and free fatty acid production in catalytic assays used to compare

specific activities of WT and mutant PLA2G6 enzymes. Different

amounts of WT enzyme were added to a catalytic assay with 14C-

labeled LPC. Released free fatty acids were separated on TLC and

quantified by phosphorimager. The graph shows a linear

relationship between enzyme concentration and fatty acid release.

In experiments examining the effects of mutations associated with

dystonia-parkinsonism, the amount of enzyme added to the assays

was equivalent to 2 ml WT PLA2G6 enzyme in the above

experiment.

Found at: doi:10.1371/journal.pone.0012897.s003 (0.19 MB TIF)
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