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Abstract

We investigate the application of deep learning to biocuration tasks that involve clas-

sification of text associated with biomedical evidence in primary research articles. We

developed a large-scale corpus of molecular papers derived from PubMed and PubMed

Central open access records and used it to train deep learning word embeddings

under the GloVe, FastText and ELMo algorithms. We applied those models to a distant

supervised method classification task based on text from figure captions or fragments

surrounding references to figures in the main text using a variety or models and

parameterizations. We then developed document classification (triage) methods for

molecular interaction papers by using deep learning mechanisms of attention to aggre-

gate classification-based decisions over selected paragraphs in the document. We were

able to obtain triage performance with an accuracy of 0.82 using a combined convo-

lutional neural network, bi-directional long short-term memory architecture augmented

by attention to produce a single decision for triage. In this work, we hope to encourage

biocuration systems developers to apply deep learning methods to their specialized tasks

by repurposing large-scale word embedding to apply to their data.

Database URL: http://purl.org/ske/ro/biocuration2019

Introduction

Modern deep learning systems provide powerful machine
learning capabilities that do not require extensive feature
engineering to provide state-of-the-art performance (1).
Although deep learning methods derive their power from
the use of very large quantities of training data required

to build models, their utility stems from their ability to
learn general-purpose representations from large unlabeled
corpora (2). These representations provide structured input
for subsequent machine learning analysis that effectively
captures lexical semantics without requiring researchers
to use natural language processing (NLP) approaches to
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represent that meaning explicitly as features. The pop-
ularization of industrial-standard open toolkits for deep
learning further supports researchers and developers in
developing machine learning components for biocuration
tasks. We here describe deep learning methods focused on
the classification of scientific text directly describing exper-
imental evidence for some tasks relevant to biocuration
(identifying experimental methods and article triage). We
focus on biological work studying molecular interaction.

The first impactful work on developing word embed-
ding representation for large-scale biomedical corpora was
performed by Pysallo et al. where they trained so-called
Word2Vec models (2) on a collection of large-scale biomed-
ical technical corpora made of the entire PubMed database,
the open access collection from PubMed Central (PMC) and
Wikipedia (3). This paper has a disproportionately large
impact (in terms of citations) due largely to the fact that
the authors shared the representations online as open access
data, enabling other researchers to build effective neural
network systems for a range of tasks [see (4–6) for exam-
ples]. A variety of different computational methods for gen-
erating word representations have subsequently been devel-
oped. The GloVe algorithm attempts to learn word vectors
so that their distance reflects words’ semantic similarities
(7). Facebook’s FastText algorithm uses subword informa-
tion to augment performance for previously unseen words
(8). Deep contextualized word representations (‘ELMo’)
from AI2 provide a deeper representation that encodes
the context information and outperforms other methods
at several domain-independent benchmark tasks (9). Very
recently, the ‘Bidirectional Encoder Representations from
Transformers’ (BERT) architecture has built upon and sur-
passed even these prior results across a range of tasks (10).
We have not yet had the opportunity to build and apply
BERT models to our data.

In this paper, we seek to investigate the use of deep
learning on specialized biocuration-specific tasks, taking
into account (i) how these tasks differ from standard infor-
mation retrieval (IR) and information extraction (IE) tasks,
(ii) the specialized nature of biomedical scientific language
and (iii) the comparatively limited resources of academic
bioinformatics research teams in developing deep learning
models for biocuration tasks.

Past evaluations of the application of deep learning
to biomedical tasks use standard NLP tasks such as IR
and IE to describe improvements made by deep learning
methods (11). We specifically describe tasks designed to
develop text-mining tools to enable biocuration. These tools
typically center around supporting human-centered tasks
that are time consuming to execute in a typical work-
flow (12). ‘Document triage’, the task of identifying which
papers should be prioritized for detailed examination, is a

key step that we have previously investigated with non-
neural methods (13, 14). Recent work has demonstrated
deep learning can accelerate triage in genome-wide asso-
ciation studies based on input data from PubMed and
Pubtator services (15). Other important work in this area
focuses on using deep learning to provide matching func-
tions that function at scale to compute relevancy in search
engines (16).

We present a medium-scale tokenized and sentence-
split document corpus derived from PubMed and PMC
that is also filtered for molecular studies using high-level
Medical Subject Heading (MeSH) terms. We provide word
embedding models using GloVe, FastText and ELMo meth-
ods and then investigated performance of simple classifier
architectures for two evidence-driven biocuration tasks:
(i) identifying the detection methods used in individual
molecular interaction experiments and (ii) document-level
classification (‘triage’) for experimental studies containing
legitimate work describing new interaction data. We sought
to investigate a possible role for evidence-based language
from articles’ results sections pertaining to figures for these
two text classification tasks. This work forms an early
component of a strategic investigation into ‘evidence extrac-
tion’: focused machine reading methods targeting scientific
evidence from figures and associated text.

Materials and methods

The molecular open access PubMed document

corpus

Every paper indexed into PubMed is tagged with MeSH
codes (https://www.nlm.nih.gov/mesh/) that provide basic
conceptual tagging by a human curator. In order to limit
our domain of discourse to molecular bioscience, we ran
searches over PubMed and PMC based on a set of high-level
terms within the MeSH controlled vocabulary hierarchy
that pertained to molecular work. These are listed here:

(i) Cells [A11]
(ii) Multiprotein Complexes [D05.500]
(iii) Protein Aggregates [D05.875]
(iv) Hormones [D06]
(v) Enzymes and Coenzymes [D08]
(vi) Carbohydrates [D08]
(vii) Lipids [D10]
(viii) Amino Acids, Peptides and Proteins [D12]
(ix) Nucleic Acids, Nucleotides and Nucleosides [D13]
(x) Biological Factors [D23]
(xi) Pharmaceutical Preparations [D26]
(xii) Metabolism [G03]
(xiii) Genetic Phenomena [G06].

Executing this query on PubMed returns 11,447,521
abstracts. Similarly, we retrieved 1,720,266 full-text

https://www.nlm.nih.gov/mesh/
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Figure 1. Neural network configurations for method classification based on INTACT evidence fragment corpus.

document identifiers from PMC, 509,722 of which are
open access. We downloaded, parsed and concatenated
403,825 PMC open access PMC documents, combined with
all relevant PubMed titles and abstracts. We concatenated
the text from the two queries into a single 30 GB file where
each line is a single sentence, and the text is fully tokenized
(17). These preprocessing steps were implemented using
the ‘UIMA-Bioc’ software library that uses the ClearTk
sentence splitter and tokenizer (with corrections for
headings and titles that do not end in periods, see https://
github.com/SciKnowEngine/UimaBioC).

Word embeddings

We computed word embeddings using provided tools for
GloVe, FastText and ELMo based on the corpus described
in Burns et al. (2018) (17) as well as using word embedding
data trained on non-biomedical text (GloVe and FastText).
We trained models with 50, 100, 300, and 1024 dimensions
for GloVe as well as 100 dimensions FastText based on

the molecular open access PubMed document corpus in
order to explore performance across the models on the
classification tasks described. Training the ELMo model is
computationally expensive, and we created only one avail-
able embedding dataset with 3 × 1024 dimensions based on
two epochs of the training process. A key contribution is a
complete, well-documented file distribution for use by the
community for biocuration application development (17).

INTACT detection method prediction

We followed the approach described in Burns et al. (2018)
(18) where curated PSI-MI2.5 data from the INTACT data
records are linked to text from captions and the main text
body from the paper via the designated subfigure of the data
record (i.e. ‘Figure 1C’, etc.). This application of distant
supervision (19) allows us to attempt to train a machine
learning model that can predict the type of methods being
used based on text associated with a given subfigure. As
with Burns et al. (2018) (18), we used PSI-MI2.5 codes

https://github.com/SciKnowEngine/UimaBioC
https://github.com/SciKnowEngine/UimaBioC
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for interaction or participant detection methods as clas-
sification targets, reducing the number of available tar-
gets from 44 finely delineated participant detection codes
to 8 grouped codes and from 84 interaction detection
method codes to 17 grouped codes. We also investigated
the classifier’s performance at a simple yes/no classification
task for specific common experimental methods: (i) use
of western blot methods for participant detection and (ii)
use of coprecipitation methods for interaction detection.
Training data for these tasks are available from the Zenodo
repository (20).

We developed deep neural network classification soft-
ware that could use any of the available word embed-
ding models as input for one of several available neural
network configurations based on (i) long short-term mem-
ory (LSTM) and (ii) convolutional neural network (CNN).
These correspond to the same level of generic, unsophis-
ticated models that are provided as examples from stan-
dard documentation for the Keras deep learning library
(see https://keras.io) and are shown in detail in Figure 1.
For these machine learning experiments, we ran multiple
executions of all classifiers with randomized initialization
settings to control for variability and local minima in the
training process.

Document triage for molecular interaction with

‘Darkspace’ data

The ‘Darkspace Project’ is an initiative from the INTACT
biocuration team to develop technology capable of find-
ing previously unseen papers from the scientific literature
containing molecular interaction data (https://github.com/
pporrasebi/darkspaceproject). We are grateful to Dr Pablo
Porras for providing a list of 537 positive and 451 negative
training examples of open access papers that either con-
tain or do not contain scientific information pertaining to
molecular interactions. We queried PubMed to obtain title,
abstract and MeSH data for each paper. We downloaded
∗.nxml-formatted files from PMC and invoked the UIMA-
Bioc preprocessing pipeline (as described previously) to
extract figure captions and ‘evidence fragment’ text pertain-
ing to each subfigure mentioned in the textual narrative
(21). Given these data, we performed document-level text
classification as a ‘triage’ task (i.e. to assist biocurators to
identify papers of interest). In particular, we hypothesize
that evidence-based text would be more informative in that
classification than text generally derived from the paper as
a whole.

As a baseline, we used a simple CNN to classify
document-level text such as the title, abstract and MeSH
keywords. We wanted to judiciously use the text from
within the full text of the paper to help the system make its

triage decision, but found that the memory requirements of
the system prevented us from naively classifying the entire
full text. We therefore investigated methods of breaking
the full text into paragraphs and then used neural network
attention methods to learn an aggregated signal that formed
the basis of the final document-level classification. We
investigated four cases (i) using each paragraph in the full-
text document, (ii) using each ‘evidence fragment’ (i.e. the
text surrounding a figure reference that directly describes
the figure) (21), (iii) using each figure caption and (iv) using
evidence fragments and captions together. We broke the
document-level text into collections of paragraphs so that
the network classifier could make inferences aggregated
over classification decisions made for each individual
paragraph. More technically, the network architecture
is based on a CNN-Bidirectional LSTM model for each
paragraph, augmented with attention to convert the array
of paragraph-level vectors into a single vector for whole
document and then completed with a fully connected layer
to convert the representation to a triage decision. As with
our method classification problem, we focus on the use
of simple, easy-to-implement machine learning models
that could be easily replicated by researchers without
deep knowledge of NLP. We tested a variety of machine
learning methods over available word embedding models
to determine classification performance.

Source code distribution

In order to render this work as accessible and useful as
possible, all code and data are available as open source and
are described on aggregate as a Research Object (22) with
the following URI: http://purl.org/ske/ro/biocuration2019.
This is a relatively simple aggregation of persistent URIs
for all source code and data used to generate this paper.
In particular, we highlight the code distribution associated
with the GitHub repository associated with this project:
https://github.com/SciKnowEngine/evidX. We use Docker
to build the core functionality of our system as components
that execute on well-defined virtualized containers, ensur-
ing that the complexities of managing dependencies and
other issues are not a barrier to reusing our code.

Results

Exploring molecular interaction method

prediction

Here we describe the task of predicting the PSI-MI2.5
codes for ‘participant detection method’ and ‘interaction
detection method’ for specified subfigures in the INTACT
database (based only on open access data). We sought to
characterize the performance of several different standard

https://keras.io
https://github.com/pporrasebi/darkspaceproject
https://github.com/pporrasebi/darkspaceproject
http://purl.org/ske/ro/biocuration2019
https://github.com/SciKnowEngine/evidX
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Figure 2. Neural network configurations for document triage applied to ‘Darkspace’ data.

neural network approaches in order to support the use of
these tools across various similar focused text classification
tasks of relevance to biocuration. This directly builds on
previous work performing the same classification task with
non-deep learning methods (21) or with FastText classifiers
as part of a broader workflow (18). We here examine
classification performance for all available word embedding
models under a variety of parameterizations (see Figure 2).

Based on these experiments, we make a number of
claims. For this task (method classification), text of figure
captions performed better than the text of evidence frag-
ments (compare ‘Caption + LSTM + BioGlove 300’ to ‘Evi-
dence Frag. + LSTM + BioGlove 300’ in Figure 2). This is
consistent with earlier findings (23). Embeddings trained on
bio-domain generally perform better than general-purpose
embeddings (compare ‘Caption + LSTM + BioGlove 300’
to ‘Caption + LSTM + Glove 300’ in Figure 2). Among the

BioGloVe embeddings the 300-dimensional model had the
best performance (see the ‘Caption + LSTM + BioGlove’
series across 50,100,300, and 1024 dimensions in Figure 2).
The LSTM classifier generally performs marginally better
than the CNN (see the ‘Caption + LSTM + BioGlove 300’
vs. E‘Caption + CNN + BioGlove 300’ series in Figure 2).
Finally, in these experiments we found that the BioGlove
embeddings performed marginally better than the FastText
embeddings (see the ‘Caption + LSTM + BioGlove 300’ vs.
‘Caption + LSTM+ Bio Fasttext 100’ series in Figure 2).

Document triage for molecular interaction with

‘Darkspace’ data

We examined the application of relatively standard deep
learning tools based on a variety of word embeddings
trained from the molecular open access corpus. We
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Table 1. Triage Accuracy by text source, network model, and embedding type

Text source Model configuration
Triage accuracy

FastText-100 GloVe-50

Abstract CNNBiLSTM 0.71 ± 0.02 0.76 ± 0.02
All paragraphs CNNBiLSTM + attention 0.81 ± 0.01 0.76 ± 0.01
Captions CNNBiLSTM + attention 0.82 ± 0.01 0.79 ± 0.01
Captions + Evid. Frg. CNNBiLSTM + attention 0.82 ± 0.01 0.77 ± 0.01
Evid. Frg. CNNBiLSTM + attention 0.81 ± 0.01 0.77 ± 0.01
MeSH Simple CNN 0.61 ± 0.03 0.70 ± 0.02
Title Simple CNN 0.60 ± 0.02 0.69 ± 0.02
Title + Abstract CNNBiLSTM 0.72 ± 0.01 0.71 ± 0.01

found that, of the embedding configurations we used,
we obtained best performance from a 100-dimensional
FastText model, which narrowly surpassed performance of
a 50-dimensional GloVe model. Still, higher-dimensional
representations of GloVe models performed less well. As
described in the Methods section, we applied an attention
mechanism over designated passages from the paper to
make optimal use of the full text to classify the whole
document. In this way, we trained a classifier over (i) all
paragraphs in the document, (ii) all caption text from
the document, (iii) all extracted evidence fragments from
the paper and (iv) the combined captions and evidence
fragments.

As shown in Table 1, this aggregated method of
processing full text outperforms classifiers trained on
the abstract or the title and abstract combined. There is
also some indication that leveraging the text that directly
describes evidence (in figure captions and text surrounding
figure references) consistently outperforms analyses with
all text in the document across representations. We
found better performance overall with 100-dimensional
FastText embeddings with the 50-dimensional GloVe
embeddings coming in a close second. As was the case with
method classification, the bio-derived word embeddings
marginally outperform larger word embeddings trained on
general text.

Experiences with deep contextualized word

representations

ELMo was shown to be more efficient than other word
embeddings in various NLP tasks such as named entity
identification, semantic role labeling (9), as it uses three
layers of recurrent neural networks to efficiently model
the context information and thus efficiently disambiguate
words in the contexts. However, in our experiments, ELMo
struggles to perform even on par with GloVe and Fast-
Text embeddings. One reason lies in the fact that ELMo

is a computationally expensive model. We trained it for
4 months with 2 graphics processing units (GPUs) but
only finished 2 epochs of training, while 1024-dimensional
GloVe embedding training converged at 20 epochs within
a day. Similarly, it is hard to further fine-tune the ELMo
embeddings to tailor the downstream tasks as we do for
other embeddings due to its computational complexity.
Efficient algorithms are desirable for training richer contex-
tualized word embeddings for biomedical tasks. We found
that the training process was extremely resource hungry,
even with access to a large (by academic standards) local
GPU-enabled cluster. We were able to train a partial model
but were not able to generate competitive scores in either of
the tasks we described here. Clearly, this aspect of the use
of deep learning presents a possible difficulty for academic
biocuration work.

Discussion

In this paper, we have applied deep learning methods to
biocuration-driven NLP tasks. Part of the motivation for
this is that deep learning techniques can be used to train
classifiers with state-of-the-art performance with relatively
little training data (given the existence of an effective word
vector representation). We sought to investigate the use of
these methods for two, well-defined tasks in a specialized
subdomain: (i) identifying the type of an experiment based
on text from figure captions or relevant sections of the
results sections and (ii) document triage as described by
the ‘Darkspace Project’. A key aspect of both of these
experiments is our focus on the role of evidence as a
signal to be detected using NLP, either directly as with
method type classification or indirectly with the triage
task.

The main conclusion we have regarding the technical
implementation of these systems is that the choice of the
model structure and the embedding depends on the length
of the text being classified. Paragraph-level texts (300 words
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Figure 3. Classification accuracy for experimental methods based on text, network model, and embedding.

or less) are desirable. We found that the model would
predict perfectly on training data but could not perform
equally well on previously unseen testing data. This was
mitigated by reducing the number of trainable parame-
ters, such as making the embedding layer not trainable or
reducing the neural network size. Adding dropout layer
with appropriate dropout rate (from 0.25 to 0.5 in our
case) and regularization (1e-4 in our case) also improved
performance. Crucially, if the length of the text being clas-
sified size is greater than 300 words, the use of attention
mechanisms can produce high performance at document-
level classification tasks. Our work mainly focused on
comparing the effect of using different embedding layers on
top of several naive neural networks architectures such as
CNN and LSTM. These suboptimal architectures may be
one of the reason that results in poor performance. For the
future work, more investigation can be made on exploring
proper neural network architectures that better capture
input features and improve performance. For example, the
attention mechanism (24; see discussion) can be applied on

LSTMs to better summarize word representations to make
more accurate predictions.

As shown in Figure 3, we were able to obtain excel-
lent classification performance to identify interaction detec-
tion methods based on caption text. At best, our system
achieved accuracy of 0.89 using LSTM and BioGlove 300-
dimensional input vectors on caption text when the number
of target categories was reduced from 122 to 18. Captions
are easy to locate within full-text documents and we antic-
ipate that this approach could form the basis of functional
tools. Within the evidence extraction project at ISI (https://
github.com/SciKnowEngine/evidX/), we intend to use this
approach to help us automatically identify experimental
design templates for published molecular interaction exper-
iments based on our ‘Knowledge Engineering from Experi-
mental Design’ methodology (25).

Triage is a task that has justifiably attracted much atten-
tion from NLP researchers over the years including the
shared TREC competitions in 2004 (26) and 2005 (27). In
2004, the top-scoring system had an F-Score of 0.6512, and

https://github.com/SciKnowEngine/evidX/
https://github.com/SciKnowEngine/evidX/
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no system was able to substantially improve results over
simply using the MeSH term ‘Mice’ (with some improve-
ment the following year). Performance in triage tasks is
typically strongly dependent on the inclusion criteria being
specified to denote a document as being of interest to the
target system. For example, attempting to design a triage
system to detect papers based on criteria that requires
expert human interpretation to determine is likely to be very
difficult to automate (as was the case with the TREC 2004
challenge where papers were judged for having a mouse-
based phenotype). Our work investigates the strategy of
leveraging text describing evidence as a powerful signal
for document classification with an upper bound of 0.82
accuracy based on caption text. This is encouraging. We
expect to be able to improve this by (i) providing more
training data, (ii) improving the delineation of experimental
fragments that currently is based on a simple heuristic algo-
rithm and (iii) further investigating the role of attention in
identifying which intermediate, learned features to base the
final triage decision on. Attention is a powerful construct
in deep learning, where systems may learn which parts of
a long signal are most influential in making downstream
decisions (24). In the triage application, many parts of a full-
text paper may have some bearing on a curator’s decision
to include it in his workflow. The ability to automatically
identify which parts of the paper are most relevant would
suggest that studying attention as part of document triage
could have great value in developing effective tools for
biocurators.

It is worth noting that the curation rules provided by
the IMEX consortium (http://www.imexconsortium.org/)
do not provide explicit inclusion/exclusion criteria for
molecular interaction papers except to say that ‘a complex
or set of interacting molecules has at least been partially
purified’. There are many inherent aspects of experiments
described in the guidelines that could only be internalized
and used by an expert human biocurator. Clearly, the
necessary semantic information to make such a decision
is deeply embedded in domain-specific knowledge of the
domain.

The difficulties of developing effective ELMo models for
either task present a serious challenge to this work but we
remain quite optimistic about the potential impact of devel-
oping this resource for the community. An important part
of our work is centered on developing reusable resources
for biomedical developers that are tailored to biomedical
data needs. Our efforts with the molecular open access PMC
corpus (17) is based on all available open access documents
indexed in PMC with molecular-based MeSH terms. As part
of this work, we also make available GloVe and FastText
embeddings for use in the community. The potential power
of these richly contextualized models could provide still

further improved capabilities for biocuration tasks but the
sheer computational expense of constructing ELMo models
is proving to be a serious obstacle.

More broadly, these modern deep learning models have
very broad applicability to NLP in the life sciences beyond
the scope of the biocuration task. Our work serves as
a demonstration of the potential utility of deep learning
models across a range of more general applications (such
as document classification, automated or semi-automated
IE). The rapid progress made underlying the development
of high-quality representation models such as BERT is
encouraging and should be pursued.
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