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Histone deacetylases (HDACs) critically regulate gene expression by determining

the acetylation status of histones. Studies have increasingly focused on the activi-

ties of HDACs, especially involving non-histone proteins, and their various biologi-

cal effects. Aberrant HDAC expression observed in several kinds of human tumors

makes HDACs potential targets for cancer treatment. Several preclinical studies

have suggested that HDAC inhibitors show some efficacy in the treatment of acute

myelogenous leukemia with AML1-ETO, which mediates transcriptional repression

through its interaction with a complex including HDAC1. Recurrent mutations in

epigenetic regulators are found in T-cell lymphomas (TCLs), and HDAC inhibitors

and hypomethylating agents were shown to act cooperatively in the treatment of

TCLs. Preclinical modeling has suggested that persistent activation of the signal

transducer and activator of transcription signaling pathway could serve as a useful

biomarker of resistance to HDAC inhibitor in patients with cutaneous TCL. Panobi-

nostat, a pan-HDAC inhibitor, in combination with bortezomib and dexametha-

sone, has achieved longer progression-free survival in patients with relapsed/

refractory multiple myeloma (MM) than the placebo in combination with borte-

zomib and dexamethasone. Panobinostat inhibited MM cell growth by degrading

protein phosphatase 3 catalytic subunit a (PPP3CA), a catalytic subunit of cal-

cineurin. This degradation was suggested to be mediated by the blockade of the

chaperone function of heat shock protein 90 due to HDAC6 inhibition. Aberrant

PPP3CA expression in advanced MM indicated a possible correlation between high

PPP3CA expression and the pathogenesis of MM. Furthermore, PPP3CA was sug-

gested as a common target of panobinostat and bortezomib.

T he 11 known HDACs are divided into three classes (I, II,
and IV; Fig. 1),(1) and each class has different subcellular

location, substrate specificity, and enzymatic activity. Class I
HDACs (1, 2, 3, and 8) are generally located in the nucleus,
of which the HDAC 1, 2, and 3 subtypes are gene expression-
regulating substrates. Class II HDACs (4, 5, 6, 7, 9, and 10)
can shuttle between the nucleus and the cytoplasm; among
them, the substrates of HDAC6 are unique, and are involved
in cell signaling pathways and protein stability enhancement
through interaction with tubulin and HSP90.(2,3) Histone
deacetylases are involved in inducing numerous biological
effects such as cell apoptosis, senescence, differentiation, and
angiogenesis. Immunogenicity, similar to ligand expression of
immunoreceptors on NK cells, is also regulated by HDACs.(4)

Aberrant HDAC expression has been reported in several kinds
of human tumors including gastric, colorectal, liver, breast,
and lung cancers. Therefore, HDACs have been proposed as
potential targets for cancer treatment. In this study, we
describe the mechanisms of action of HDAC inhibitors in
treating hematological malignancies. Particularly, we discuss
the novel roles of calcineurin in the pathogenicity of MM and
its inhibition by HDAC inhibitors.

Mechanisms of action of HDAC inhibitors in the treatment
of AML and MDS

A transcriptional factor encoded by the AML1 (RUNX1) gene,
AML1, was first identified on chromosome 21, which is dis-
rupted in t(8;21)(q22;q22). This translocation leads to the gen-
eration of the AML1-ETO fusion protein in AML.(5) AML1
not only regulates the transcription of various genes that are
important for hematopoiesis,(6,7) but is also indispensable for
liver-derived hematopoiesis.(8) We previously reported that the
co-repressor mSin3A suppresses AML1 transcriptional activity
by linking AML1 to HDACs when the former is unphosphory-
lated.(9) AML1 is released from mSin3A following its ERK-
induced phosphorylation and becomes active as a transcrip-
tional activator. Transcriptional repression is mediated by ETO
through its interaction with a complex composed of N-CoR/
mSin3/HDAC1.(10) Indeed, several studies have shown HDAC
inhibitors to be effective against AML with t(8;21).(11–14)

However, the proposed mechanism of action is different
among these studies. A previous study reported that valproic
acid treatment induced cell differentiation and caspase-depen-
dent apoptosis, which was mediated by the dissociation of the
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AML1-ETO/HDAC1 complex from the promoter of AML1-
ETO target genes.(12) Proteasomal degradation of AML1-ETO
by HDAC inhibitors was reported in two different stud-
ies.(13,15) The induction of leukemic cell apoptosis by the acti-
vation of the death receptor pathway by HDAC inhibitors has
also been reported.(14)

Synergistic transcriptional repression by hypermethylation
and histone deacetylation at the promoter region of AML/MDS
has made HDAC inhibitors potentially useful candidates for
combined use with hypomethylating agents.(16) Entinostat is a
benzamide HDAC inhibitor that modifies chromatin structuring
through the inhibition of class I HDAC.(17) The methylation
status of tumor suppressor genes including p15INK4B, CDH-1,
DAPK-1, and SOCS-1 was studied in patients with AML or
MDS treated with 5-azacytidine, a hypomethylating agent, and
entinostat.(18) No correlation was observed between their clini-
cal response and baseline methylation and methylation rever-
sal. Thus, it was hypothesized that the methylation reversal of
tumor suppressor genes was not predictive of clinical response
to these combination therapies.
Histone deacetylase inhibition induces AML cell apoptosis

partly through the accumulation of DNA damage and inhibition
of DNA repair.(19) MLN4924 is the first-in-class neural precur-
sor cell expressed, developmentally downregulated 8-activating
enzyme inhibitor, and its antileukemia effects are mediated
through the inhibition of NF-jB.(20) In fact, MLN4924 and the
HDAC inhibitor, belinostat, were reported to show synergistic
anti-AML efficacy in diverse AML cell types.(21)

Mechanisms of action of HDAC inhibitors in the treatment
of TCLs

T-cell lymphomas are composed of a heterogeneous subset of
T-cell-derived non-Hodgkin’s lymphomas and show poor prog-
nosis following treatment with the presently available

therapeutic options.(22) Therefore, novel treatment strategies
are necessary for the improvement of the prognosis of patients
with TCLs. Recently, epigenetic defects due to recurrent muta-
tions in epigenetic regulators such as the Ras homolog gene
family, member A and FYN kinase have been detected in
TCLs.(23) Thus, epigenetic therapies are expected to be effec-
tive for TCLs. In cell lines derived from patients with TCL,
HDAC inhibitors including belinostat were synergistic in com-
bination with decitabine, a hypomethylating agent in vitro and
in vivo.(24) Gene expression profiling was different between
single treatment conditions and combination therapy in a gene
expression array. A greater fraction of genes was affected by
the combination therapy than that affected by single-drug treat-
ment. In addition, a significant upregulation of molecules
related to the protein kinase cascade and cell cycle arrest was
reported as the effects of the combination treatment on the
transcriptome.
Aurora A kinase is a serine-threonine kinase, and its func-

tion is crucial in cell signaling and mitotic division.(25)

Increased AAK expression is found to be related to malignant
transformation, especially in TCLs.(26,27) Alisertib selectively
inhibits AAK through its competitive binding to the ATP-bind-
ing site on AAK.(22) Treatment with alisertib perturbs the cell
cycle, leading to the accumulation of cells in the G2/M phase
and the development of polyploidization. Combination treat-
ment with alisertib and romidepsin was synergistically cyto-
toxic in TLCs but not in B-cell lymphomas. This combination
therapy led to the polyploidy of T cells and failure of their
cytokinesis.
Cutaneous TCL is a category of TCL, and suberoylanilide

hydroxamic acid (vorinostat) has been approved by the FDA
for its treatment.(28) A preclinical modeling study that sought
to identify biomarkers predictive of vorinostat responses in
patients with CTCL revealed that persistent activation of the
STAT signaling pathway is associated with lymphoma cell
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resistance to vorinostat.(29) An analysis of a phase IIB trial
studying the use of vorinostat for patients with CTCL reported
that increased nuclear localization of STAT1 and high levels
of nuclear STAT3 phosphorylation in skin samples correlated
with resistance to vorinostat therapy.(30)

Mechanisms of action of HDAC inhibitors in the treatment
of MM

The introduction of autologous stem cell transplantation and
novel drug treatments including a proteasome inhibitor (borte-
zomib) and immunomodulatory drugs (thalidomide, lenalido-
mide, and pomalidomide) has improved the survival rates of
patients with MM. However, many cases of relapsed/refractory
MM are reported and, therefore, new therapies to treat such
individuals are needed.
Several preclinical studies have revealed the efficacy of

HDAC inhibitors in treating MM.(31,32) Vorinostat induced
p21WAF1 by modifying the acetylation and methylation of core
histones and by restricting enzyme accessibility of DNase I
more strongly in the promoter region of myeloma cells.(33)

Vorinostat was also capable of overcoming cell adhesion-
mediated drug resistance by inhibiting interleukin-6 secretion
from the bone marrow stromal cells bound by MM cells.(31)

Pretreatment with bortezomib enhanced the mitochondrial dys-
function and apoptosis induced by vorinostat in MM cells.
Indeed, this combination was effective in both dexamethasone-
and doxorubicin-resistant MM cells.(32) Proteasomes contribute

to the maintenance of protein homeostasis by degrading the
ubiquitinated misfolded and unfolded proteins that are some-
times cytotoxic.(34) Abundant proteins including immunoglobu-
lins are produced in MM cells, and certain misfolded/unfolded
proteins interfere with cell functionality.(35) Cancer cells are
more sensitive to proteasome inhibition than normal cells due
to their dependence on proteasomes for the clearance of cyto-
toxic proteins. When ubiquitinated misfolded/unfolded proteins
are generated at levels beyond a proteasome’s capacity for
degradation, such proteins will accumulate into aggresomes.
An aggresome is a pericentriolar microtubule-based structure
formed by the retrograde transport of aggregate proteins.
Aggresome formation generally occurs as a cellular response
to the excessive accumulation of misfolded/unfolded pro-
teins.(36,37) The formed aggresomes within the peripheries of
cells travel in microtubules to microtubule organizing cen-
ters.(38) This transportation is mediated by dynein and HDAC6,
a microtubule-associated deacetylase,(39) which recruits mis-
folded/unfolded proteins to dynein motors for transport to
aggresomes. The HDAC6-inhibited cells fail to clear protein
aggregates due to the failure of proper aggresome formation.
Bortezomib is a reversible inhibitor of chymotrypsin that
occurs in the 20S subunit of proteasomes.(40,41) Treatment of
MM cells with bortezomib induces aggresome formation.(42,43)

LBH589 (panobinostat) is an oral pan-HDAC inhibitor and the
combination of bortezomib and panobinostat induced apoptosis
by inhibiting protein degradation through a synergistic mecha-
nism (Fig. 2).(44) This may partly explain the synergism
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Fig. 2. Ubiquitinated unfolded/misfolded proteins
degraded by proteasomes. Bortezomib induces
aggresome formation, and ubiquitinated proteins
are degraded by lysosomes. Bortezomib and
panobinostat synergistically block protein
degradation and induce growth inhibition and
apoptosis of multiple myeloma cells. HDAC6,
histone deacetylase 6.
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induced by combined bortezomib and panobinostat therapy in
MM patients.(45)

Histone deacetylase inhibitors induce calcineurin
degradation in MM

Recent studies suggest that HDAC inhibition by panobinostat
might induce antileukemia activity by blocking the chaperone
function of HSP90. C-X-C-chemokine receptor type 4 is a
receptor for stromal cell-derived factor 1, and its elevated
expression in AML cells is associated with poor prognoses of
AML.(46) C-X-C-chemokine receptor type 4 is a client protein
of HSP90 and is protected from degradation by the 20S protea-
some.(47) Treatment of AML cells with panobinostat not only
induced acetylation of HSP90, but also reduced CXCR4 pro-
tein levels by reducing interactions between CXCR4 and
HSP90. In an AML mouse model harboring t(8;21), treatment
with panobinostat resulted in a robust antileukemic response
through proteasomal degradation of AML1-ETO9a, the fusion
protein generated by t(8;21).(15)

We discovered that panobinostat induces degradation of
PPP3CA, a catalytic subunit of calcineurin, in MM cells
(Fig. 3).(48) Protein phosphatase 3 catalytic subunit a is a ser-
ine/threonine protein phosphatase, and NFATc1 is one of its
dephosphorylation targets.(49) The translocation of dephospho-
rylated NFATc1 from the cytoplasm to the nucleus is indis-
pensable for T cell activation induced by T-cell receptor
activation. Calcineurin inhibitors such as FK506 and

cyclosporine A are widely used as immunosuppressive agents
to inhibit the interaction between PPP3CA and its heterodi-
meric partner calcineurin B. In mouse models of T-cell acute
lymphoblastic leukemia, calcineurin activation has been shown
to play an important role in the maintenance of tumor cells.(50)

However, certain studies have highlighted the importance of
calcineurin in B cell functionality. This includes a study that
addressed defective B cell activation stemming from cal-
cineurin inactivation.(51) We found that PPP3CA was highly
expressed in CD138-positive bone marrow cells from patients
with advanced MM.(48) These results indicate a possible corre-
lation between high PPP3CA expression and the pathogenesis
of MM. In this study, PPP3CA acted as a client protein of
HSP90 in MM cells. Treatment with ACY-1215, a selective
HDAC6 inhibitor, resulted in PPP3CA degradation through its
release from HSP90.(52) Therefore, panobinostat may induce
protein degradation of PPP3CA by blocking the chaperone
function of HSP90.(48) PPP3CA has been shown to be indis-
pensable to the maintenance of MM cell growth via NF-jB
signaling. Moreover, MM cell growth was inhibited by panobi-
nostat treatment. Although FK506 itself did not affect PPP3CA
expression or MM cell growth, its combined use with panobi-
nostat enhanced the inhibition of PPP3CA and cell growth
induced by panobinostat in vitro and in vivo. Calcineurin B
has been shown to protect PPP3CA from degradation and the
additive effect of FK506 is thought to enhance the degradation
of unstable PPP3CA in panobinostat-treated MM cells.(53)

Clinical significance of targeting PPP3CA in MM treatment

FK506 is one of the several immunosuppressive drugs widely
used in allogeneic stem cell transplantation, including RIST.
The latter is both feasible and effective in certain heavily trea-
ted patients with relapsed/refractory MM including those who
experienced a relapse following autologous stem cell transplan-
tation, by reducing the intensity of other conditioning thera-
pies.(54) The introduction of panobinostat in combination with
FK506 as a consolidation therapy following RIST may be
effective in patients with residual disease due to the reduced
intensity of the conditioning therapies. Combined bortezomib
and an HSP90 inhibitor therapy has shown promising results
in relapsed/refractory MM.(55) However, HSP90 inhibitors such
as 17-AAG induce protein expression of HSP70, which pro-
tects cancer cells from apoptosis and may reduce the antimye-
loma effects of this combination therapy.(56) However,
increases in HSP70 expression by panobinostat alone or in
combination with FK506 proved that the loss of the antimye-
loma effects due to HSP70 expression were less pronounced
with this combination therapy than they were with direct inhi-
bition of HSP90.(48)

Combined panobinostat with bortezomib and dexamethasone
therapy is expected to be effective even in patients who are
resistant to bortezomib.(57) The analyses of our patients
revealed that PPP3CA expression was significantly higher in
patients who were bortezomib-resistant than in those who were
sensitive.(48) Bortezomib reduced PPP3CA expression through
HDAC6 inhibition and direct transcriptional suppression of
PPP3CA. Combined bortezomib and panobinostat therapy syn-
ergistically inhibited MM cell viability by reducing PPP3CA
(Fig. 3). These results show that PPP3CA is a common target
of panobinostat and bortezomib. Therefore, the antimyeloma
effects of this combination therapy may be explained by the
synergistic PPP3CA reduction as well as inhibition of aggre-
some formation induced by bortezomib.
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Fig. 3. Protein phosphatase 3 catalytic subunit a (PPP3CA) is a client
protein of heat shock protein (HSP90) deacetylated by histone
deacetylase 6 (HDAC6). HDAC6 inhibition by panobinostat and borte-
zomib blocks HSP90 function through its acetylation and degradation
of PPP3CA. Bortezomib also transcriptionally suppresses PPP3CA. Ac,
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Proper balancing of the activation and inactivation of adhe-
sion molecules a4 integrins are essential for the efficient
migration and homeostasis of lymphocyte distribution.(58) In
MM, ITGA4 are associated with cell adhesion-mediated drug
resistance.(59) The correlation between a4 integrin and
PPP3CA expression in patients with MM may explain why
patients with high PPP3CA expression respond so poorly to
bortezomib-containing chemotherapies.(48)

Lytic bone lesions generated by osteoclast formation are
serious complications often observed in patients with MM.(60)

The induction of NFATc1 is necessary for osteoclast differen-
tiation, which is inhibited by FK506 treatment.(61) Panobinos-
tat-inhibited osteoclast differentiation was believed to be
mediated by PPP3CA protein degradation.(48) The addition of
FK506 strengthened the blockade of osteoclast formation by
panobinostat alone. The inhibition of MM cell proliferation
and osteoclast formation by panobinostat and FK506 should
prove useful for MM treatment by stopping the vicious cycle
that occurs between the proliferation of MM cells and bone
lysis (Fig. 4).(60)

Conclusion

In this review, we interpreted the underlying mechanisms of
action of HDAC inhibitors used in the treatment of hematolog-
ical malignancies including AML/MDS, TCLs, and MM. The
fusion partner of AML1 in t(8;21)(q22;q22), ETO, mediates
transcriptional repression through its interaction with the com-
plex N-CoR/mSin3/HDAC1. In fact, HDAC inhibitors have
been proposed as effective treatment agents for patients with
AML associated with t(8;21). In TCL cell lines, HDAC

inhibitors including belinostat showed synergism with decita-
bine, a hypomethylating agent in vitro and in vivo. The useful-
ness of monitoring the persistent STAT signaling pathway
activation as a biomarker in patients with CTCL resistant to
vorinostat treatment was suggested. Panobinostat in combina-
tion with bortezomib and dexamethasone can be prescribed to
patients with relapsed/refractory MM. Indeed, this combination
therapy appears to be effective in such patients, including
those resistant to bortezomib treatment. We discovered that
panobinostat induces PPP3CA degradation in MM. Bortezomib
also reduced PPP3CA expression, and the latter was shown to
be a common target of panobinostat and bortezomib. The anti-
myeloma effects of panobinostat combined with bortezomib
and dexamethasone therapy may be explained by the synergis-
tic PPP3CA reduction in tandem with panobinostat-induced
blockade of aggresome formation enhanced by bortezomib.
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Abbreviations

AAK aurora A kinase
AML acute myelogenous leukemia
CTCL cutaneous T-cell lymphoma
CXCR4 C-X-C-chemokine receptor type 4
ETO eight twenty-one oncoprotein
HDAC histone deacetylase
HSP heat shock protein
MDS myelodysplastic syndrome
MM multiple myeloma

MM cell proliferation

Lytic bone lesions

MM cell

Osteoclast

Differentiation
block

IL-6MIP-1α RANKL

Fig. 4. Cytokine production like macrophage
inflammatory protein-1a (MIP-1a), interleukin-6 (IL-
6), and receptor activator of nuclear factor-jB
ligand (RANKL) by multiple myeloma (MM) cells
and osteoclasts creates a vicious cycle of MM cell
proliferation and induces bone lysis. Blockade of
MM cell proliferation and bone lysis by
panobinostat would be useful in stopping this
cycle. NFATc1, nuclear factor of activated T-cells,
cytoplasmic, calcineurin-dependent 1.
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mSin3A mammalian SIN3 transcription regulator family member
A

N-CoR nuclear receptor co-repressor
NFATc1 nuclear factor of activated T-cells, cytoplasmic,

calcineurin-dependent 1
NF-jB nuclear factor-jB

PPP3CA protein phosphatase 3 catalytic subunit a
RIST reduced intensity-conditioned allogeneic stem cell

transplantation
STAT signal transducer and activator of transcription
TCL T-cell lymphoma
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