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Accurate thermal conductivities 
from optimally short molecular 
dynamics simulations
Loris Ercole   1, Aris Marcolongo2 & Stefano Baroni1

The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear 
viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would 
allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute 
these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo 
theory of linear response and the cepstral analysis of time series. Information from the full sample power 
spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and 
optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the 
corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and 
statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol 
is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of 
elemental and molecular fluids (liquid Ar and H2O) and of crystalline and glassy solids (MgO and a-SiO2). 
We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to 
achieve an accuracy of the order of 10% on the estimated thermal conductivities.

Our microscopic understanding of heat and mass transport in extended systems is rooted in the Green-Kubo 
(GK) theory of linear response1,2, as applied to the Navier-Stokes equations for the densities of the conserved 
extensive variables3,4, which include energy, momentum, and the particle numbers for each molecular species. 
Transport coefficients are determined by the equilibrium fluctuations of the relevant currents and are in fact pro-
portional to their autocorrelation times. Notwithstanding its beauty, rigor, and broad scope, the practical imple-
mentation of the GK theory is known to require very long molecular dynamics (MD) simulations, much longer 
in fact than the current autocorrelation times one is required to evaluate5–9. Even though a number of expedients 
have been devised to cope with this problem7,9,10, none of them is fully satisfactory in that in some cases they fail 
to provide rigorous criteria to estimate the accuracy resulting from a given MD trajectory, and in all cases the 
length of the required simulations is unaffordable with accurate but expensive quantum simulation techniques11.

It has long been believed that the GK theory of heat transport could not be combined with modern sim-
ulation methods based on electronic-structure theory because energy densities and currents are inherently 
ill-defined at the quantum-mechanical level12. This misconception has been recently challenged by a couple of 
papers showing that, while energy densities and currents are actually ill-defined classically no less than they are 
quantum-mechanically, the heat conductivity resulting from the GK formula is indeed well defined by virtue of a 
kind of gauge invariance stemming from energy extensivity and conservation13,14. This finding spurred a renewed 
interest in the quantum simulation of thermal conduction11,15, and made it urgent to devise a data-analysis tech-
nique to make these simulations affordable, thus paving the way to the ab initio simulation of heat transport.

In this paper we propose a data-analysis protocol leading to an asymptotically unbiased and consistent esti-
mate of transport coefficients (i.e. the bias and the statistical error can be made both arbitrarily small in the limit 
of long simulation times) and requiring shorter simulations than used so far. This protocol avoids any ad hoc 
fitting procedure and naturally provides an accurate estimate of the statistical error, thus lending itself to an 
easy implementation and automated use. While motivated by heat-transport applications, our approach naturally 
applies to any other transport properties that can be expressed, in a GK framework, in terms of time integrals of 
suitable autocorrelation functions, such as, e.g., ionic conductivities, viscosities, and tracer diffusivity, to name 
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but a few. We test our procedure in the specific case of heat transport and we find that simulation times of one to a 
few hundred picoseconds are sufficient to achieve an accuracy of the order of 10% on the estimated thermal con-
ductivities in a wide range of systems at typical physical conditions. In the Theory section we present the general 
theory of our approach; in the Applications and Benchmarks section we validate it with extensive benchmarks 
performed on the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular flu-
ids (liquid Ar and H2O) and of crystalline and glassy solids (MgO and a-SiO2). The Conclusions and Perspectives 
section finally contains our conclusions.

Theory
Heat transport in insulators is determined by the dynamics of atoms, the electrons following adiabatically in 
their ground state, and the GK theory of linear response1,2 allows one to derive the thermal conductivity from an 
analysis of equilibrium, possibly ab initio, MD trajectories. According to this theory, the thermal conductivity of 
a macroscopic and isotropic system is given by:
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∞
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J t J dt1 ( ) (0) ,

(1)B
2 0

where V  and T  are the system volume and temperature, Ĵ  is one Cartesian component of the macroscopic heat 
flux14,16, kB is the Boltzmann constant, and the brackets 〈⋅〉 indicate ensemble averages over initial conditions. Here 
and in the following a caret, as in “Ĵ ”, denotes a realization of a random variable, whereas properties of the under-
lying stochastic process, such as time correlation functions, are indicated without carets. According to Eq. (1), the 
heat conductivity is proportional to the zero-frequency component of the power spectrum (aka the power spec-
tral density) of the heat flux: κ = =S f( 0)
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where ˆ ˆ= 〈 〉G t J t J( ) ( ) (0)  is the equilibrium time-correlation function of the heat-flux process.
In practice, MD gives access to a discrete sample of the process, ε=ˆ ˆJ J n( )n , where  ≤ ≤ −n N0 1, ε is the 

sampling period of the current, and N  the length of the time series, that we assume to be even. The 
Wiener-Khintchine theorem17,18 states that, for large N , the power spectrum of the heat-flux process evaluated at 
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for ≤ ≤ −k N0 1. The sample spectrumŜk is thus an estimator of the power spectrum of the process; in the sta-
tistics literature it is usually referred to as the periodogram. The reality of the Ĵ ’s implies that = −

∗
^ ^F Fk N k and 

= −
ˆ ˆS Sk N k, so that periodograms are usually reported for ≤ ≤k0 N

2
 and their Fourier transforms evaluated as 

discrete cosine transforms.
The heat flux is an extensive quantity whose density autocorrelations are usually short-ranged. In the thermo-

dynamic limit it can therefore be seen as the sum of (almost) independent identically distributed stochastic vari-
ables, so that, according to the central-limit theorem, its equilibrium distribution is Gaussian. A slight 
generalization of this argument allows us to conclude that the heat-flux process is Gaussian as well. The heat-flux 
time series is in fact a multivariate stochastic variable that, in the thermodynamic limit, results from the sum of 
(almost) independent variables, thus tending to a multivariate normal deviate. This implies that at equilibrium the 
real and imaginary parts of the F̂k’s defined in Eq. (5) are zero-mean normal deviates that, in the large-N  limit, are 
uncorrelated among themselves and have variances proportional to the power spectrum evaluated at fk. For =k 0 
or =k N

2
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. We conclude that 
in the large-N  limit the sample spectrum of the heat-flux time series reads:

ˆ ξ̂=S S f( ) , (6)k k k

where the ξ̂ ’s are independent random variables distributed as a χ1
2 variate for =k 0 or k N

2
=  and as one half a 

χ2
2 variate, otherwise. For the sake of simplicity, we make as though all the ξ̂k’s were identically distributed as one 

half a χ2
2 variate for all values of k, thus making an error of order  N(1/ ), which vanishes in the long-time limit 

that is being assumed in most of the arguments presented in this paper. In many cases of practical interest, multi-
ple time series are available to estimate the power spectrum of a process. For instance, in equilibrium MD, a same 
trajectory delivers one independent time series per Cartesian component of the heat flux, all of which are 
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obviously equivalent in isotropic systems. In these cases it is expedient to define a mean sample spectrum by 
averaging over  different realizations:

ˆ ˆ
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where the index “i” enumerates the realizations. For { }k 0, N
2

∉  the ordinates of the mean sample spectrum are 
therefore distributed as in Eq. (6), with the ξ̂ ’s being χ
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ξ̂ χ∼ .






1
2 (8)k 2

2

Eq. (6) brings both good and bad news. The good news is, the expectation of the periodogram of the time series 
is the power spectrum of the process, i.e. the former is an unbiased estimator of the latter. The bad news is, this 
estimator is not consistent, i.e. its variance does not vanish in the large-N  limit. This is so because a longer time 
series increases the number of discrete frequencies at which the power spectrum is sampled, rather than its accu-
racy at any one of them. A consistent estimate of the zero-frequency value of the power spectrum (or the value at 
any other frequency, for that matter) can be obtained by segmenting a time series into several blocks of equal 
length and then averaging over the sample spectra computed for each of them. When the length of the trajectory 
grows large, so does the number of blocks, thus making the variance of the average arbitrarily small. In practice, 
the determination of the optimal block size is a unwieldy process that leads to an inefficient determination of the 
length of the trajectory needed to achieve a given overall accuracy. Here we adopt a different approach that allows 
us to obtain a consistent estimate of the zero-frequency value of the power spectrum from the statistical analysis 
of a single trajectory sample (i.e. no block analysis is needed) and such that the estimate of the trajectory length 
necessary to achieve a given accuracy is optimal.

Spectral density estimation from finite empirical time series is the subject of a vast literature in the statis-
tical sciences, embracing both parametric and non-parametric methods19. In the following we propose a 
semi-parametric method to estimate the power spectrum of a stochastic process, based on a Fourier representa-
tion of the logarithm of its power spectrum (the “log-spectrum”). The advantage of dealing with the log-spectrum, 
instead of with the power spectrum itself, is twofold. First and foremost, the noise affecting the former is addi-
tive, instead of multiplicative, thus making it simple and expedient to apply linear filters: limiting the number of 
components of the Fourier representation of the log-spectrum acts as a low-pass filter that systematically reduces 
the power of the noise and yields a consistent estimator of the log-spectrum at any given frequency. Second, as 
a bonus, the logarithm is usually smoother than its argument. Therefore, the Fourier representation of the loga-
rithm of the power spectrum is more parsimonious than that of the spectrum itself.

Let =^ ^ L Slog( )k k  be the “sample log-spectrum” of our time series. By taking the logarithm of Eq. (6), ˆLk can 
be expressed as:
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where ψ′ z( ) is the tri-gamma function20.
Eq. (9) explicitly shows that the sample log-spectrum of a time series is equal to the logarithm of the power 

spectrum one wishes to evaluate (modulo a constant), plus a (non-Gaussian) white noise. In order to eliminate 
the high-frequency components of the noise, and thus reduce its total power, we define the “cepstrum” of the time 
series as the inverse Fourier transform of its sample log-spectrum:21
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and its coefficients as the cepstral coefficients. According to a generalized central-limit theorem for Fourier trans-
forms of stationary time series22, in the large-N  limit, the (inverse) Fourier transform of the 



λ̂ ’s, appearing in Eq. 
(9) and implicitly in Eq. (12), is a set of independent (almost) identically distributed zero-mean normal deviates. 
It follows that:
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where µ ˆn are independent zero-mean normal deviates with variances µ σ=ˆ
n N
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


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2 2 2 otherwise. This result can be easily checked explicitly by using the definition of the discrete Fourier 

transform; the non-trivial extra information provided by the central-limit theorem is the asymptotic independ-
ence and normality of the µ̂’s. Similarly to the sample power spectrum, the cepstral coefficients are real, periodic, 
and even: ˆ ˆ= −C Cn N n. If the log-spectrum, S flog( ( ))k , is smooth enough, the number of non-negligible Cn coeffi-
cients in Eq. (14) is much smaller than N . Let us indicate with ⁎P  the smallest integer such that ≈C 0n  for 

≤ ≤ −⁎ ⁎P n N P , and let us restrict the discrete Fourier transform of the cepstrum defined in Eq. (12) to ⁎<n P  
or ⁎> −n N P . The =k 0 component of this restricted Fourier transform reads:
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Eqs. (17) and (18) are the main results of our method: they show how the logarithm of the transport coefficient 
can be estimated from the (inverse) Fourier coefficients of the sample log-spectrum, Eq. (17), and how the result-
ing statistical error only depends on the number of Fourier coefficients retained and the total simulation length, 
Eq. (18).

The value of ⁎P  is a property of the stochastic process underlying the time series, and is therefore independent 
of N : for any given value of ⁎P  the variance ⁎σ 2



 tends to zero in the large-N  limit, and 


λ−
∗

L̂0  is thus a consistent 
estimator of Slog( )0 . Notice that the absolute error on 



⁎L  directly and nicely yields the relative error on S0, which 
is proportional to the transport coefficient we are after. In general, all the cepstral coefficients are different from 
zero and assuming that many of them actually vanish introduces a bias. The optimal value of ⁎P  is the one for 
which the bias, which is a decreasing function of it, is of the order of the statistical error, which instead increases 
with ⁎P . Its choice is the subject of model selection theory, another vast chapter in the statistical sciences23. Among 
the several tests that have been devised to perform this task, we choose the optimization of the Akaike’s informa-
tion criterion (AIC)23,24, as described below.

Given a model depending on P parameters, θ θ θ θ= { , , }P1 2 , the AIC is a sample statistic defined as
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where  θ P( , ) is the likelihood of the parameters. The optimal number of parameters is then determined as the 
argument of the AIC minimum:

≡ .∗P Pargmin AIC ( ) (20)A
P

In the present case the parameters of the model are the P coefficients = −C C C C{ , , }P0 1 1  as defined in Eq. 
(14), and the log-likelihood reads, up to additive terms independent of P and C:
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Evidently, the above expression is maximized, for given P, by δ λ= −ˆ
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

= − ∑
σ =

^C P C2 max log ( , )C
N

n P

N

n2
2

2
. We conclude that the value of 

the AIC is:

ˆ∑
σ

= + .
=



P N C PAIC( ) 2
(22)n P

N

n2

2 2

The value of P that minimizes this expression is the optimal number of parameters in the Akaike sense, ⁎PA, as 
defined in Eq. (20).
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The maximum frequency available for spectral/cepstral analysis is the Nyqvist frequency25, determined by the 
sampling period ε as =

ε
fNy

1
2

. Transport coefficients only depend on the low-frequency behavior of the spec-
trum, which is independent of ε, as long as the latter is small enough as to avoid aliasing effects. For this reason it 
may prove convenient to eliminate the high-frequency portion of the spectrum ( ⁎>f f ) by applying a low-pass 
filter to the time series (e.g. a moving average26) and then resample the latter with a sampling period ε =⁎

⁎f
1

2
, 

thus resulting in a time series of ⁎ ⁎
=N N f

fNy

 time steps. The optimal number of cepstral coefficients resulting from 

Eqs. (20) and (22), as well as the error in the estimate of the transport coefficients resulting from Eq. (18), depends 
in general on the choice of the cutoff frequency, ⁎f . The smaller ⁎f , the smaller will presumably be the number of 
cepstral coefficients necessary to describe the log-spectrum to any given accuracy over such a shorter frequency 
range. However, the shorter length of the filtered time series, ⁎N , results in an increased variance of the estimator 

ˆ ⁎

L0  defined in Eq. (15), according to Eq. (18). Numerical experiments performed on the MD data reported in the 
Applications and Benchmarks section show that both the estimated value of ˆ ⁎

L0  and its variance are actually fairly 
insensitive to the value chosen for the cutoff frequency, ⁎f , provided that the power spectrum of the re-sampled 
time series faithfully features the first band of the original spectrum (i.e. the first prominent feature) and that this 
band is not too peaked at the origin.

Data analysis based on the theory presented above is straightforward. Given a current time series from a MD 
trajectory, the sample spectrum ˆSk is first determined from Eqs. (4), (5), and (7) and smoothed out using e.g. a 
moving average26 performed over a narrow frequency window, so as to reduce the statistical noise to a level where 
the shape of the power spectrum of the underlying process can be appreciated. A cutoff frequency, ⁎f , is then 
determined so as to encompass the first band of the smoothed power spectrum. The cepstrum ˆCn is computed by 
Fourier analyzing the logarithm of the sample spectrum up the cutoff frequency thus estimated, as in Eq. (12), and 
the optimal number of cepstral coefficients is determined using Eqs. (20) and (22). The logarithm of the 
zero-frequency value of the power spectrum is finally estimated from Eqs. (15) and (17) as ˆ ⁎

λ−




L0 , and its var-
iance from Eq. (18).

Mind the difference between the moving average performed in the frequency domain to smooth out the 
power spectrum and that performed in the time domain, as suggested before, and acting as a low-pass filter. 
Spectral smoothing using a moving average in the frequency domain is common practice in the analysis of time 
series, and it actually provides a consistent estimator of the power spectrum. In fact, the number of frequencies 
falling within a window of given width increases linearly with the length of the series, so that the variance of the 
average decreases as the inverse of the product of the length of the series times the width of the window. The 
resulting spectral estimate is however biased by the variation of the signal within the window, thus strongly reduc-
ing the width of the windows that can be afforded. Moreover, both the bias and the statistical error are difficult 
to estimate due to the multiplicative nature of the noise; therefore neither the plain periodogram nor a running 
average thereof are adequate for a quantitative estimate of the zero-frequency value of the power spectrum, which 
is proportional to the transport coefficient we are after.

Applications and Benchmarks
In order to benchmark the methodology described above, we have applied it to the calculation of the thermal 
conductivity in four systems representative of different classes of materials, spanning from elemental and molec-
ular fluids (Ar and H20) to crystalline and glassy solids (MgO and a-SiO2). Classical MD simulations were run 
using the LAMMPS package27 with the setup described below. For liquid Ar we used a Lennard Jones potential as 
described in Ref.28 at a temperature ≈T 220K and density ρ = .1 55 g/cm3, in a cubic supercell containing 864 
atoms, with a time step ∆ =t 4fs. For liquid H2O we used a flexible model as in Ref.29 at a temperature ≈T 300K 
and density ρ = .1 0g/cm3, in a cubic supercell containing 180 molecules, with a time step ∆ = .t 0 5fs. For crys-
talline (FCC) MgO we used a Buckingham-plus-Coulomb potential as in Ref.30 at a temperature ≈T 1000K and 
density ρ = .3 61 g/cm3, in a 4×4×4 simple cubic conventional supercell with 512 atoms, and a time step 
∆ = .t 0 3fs. For a-SiO2 we used the potential proposed by van Beest, Kramer, and van Santen31 as implemented 
by Shcheblanov et al.32, at a temperature ≈T 1000K and density ρ = .2 29 g/cm3, in a supercell containing 216 
atoms with a time step ∆ =t 1fs. The glass model was obtained from a quench from the melt ( ≈T 6500K) at a 
constant quenching rate of . ×5 5 10 K/s12 . Each system was equilibrated in the NVT ensemble at the target tem-
perature for several hundred picoseconds; data were then collected in the NVE ensemble for trajectories whose 
length was chosen so as to represent realistic simulation runs that could be afforded using ab initio MD 
( = 100ps for Ar, H2O, and a-SiO2, and  = 500ps for MgO). In order to compare our estimates of the transport 
coefficients and their statistical errors with reliable and statistically significant reference data, in all cases we ran 
much longer (≈50ns) simulations. This allowed us to compare our predicted conductivities with accurate values 
estimated from the direct integration of the time auto-correlation function in Eq. (1), as obtained from a block 
average33 performed over the long trajectory. In addition, we could collect abundant statistics of our estimator for 
the transport coefficients, Eq. (15), and validate its normal distribution specified by Eqs. (17) and (18).

In Fig. 1 we report the sample periodograms of the heat fluxes computed for the four systems considered in 
this paper and averaged over the three Cartesian components, as described above. The solid lines in color indicate 
a further moving average26 computed over a narrow frequency window, as explained at the end of the Theory 
section. The values of the cutoff frequencies used for cepstral analysis, ⁎f , are chosen so as to encompass the first 
prominent feature of the (smoothed) power spectrum. For instance, in H2O and a-SiO2 we choose ⁎f 29THz≈  
and ≈⁎f 28 THz, respectively. In MgO we assume ⁎ ≈ .f 0 6 THz, just at the upper edge of the first narrow peak, 
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whereas in Ar there is just one band, corresponding to a purely diffusive behavior of a simple fluid, and we assume 
≈⁎f 7THz, where the spectrum has exhausted most of the available power, but its value is not yet too small (see 

Fig. 1). The corresponding average numbers of cepstral coefficients given by the optimization of the AIC are: 
=⁎P 5A  (Ar), 7 (H2O), 4 (MgO), and 31 (a-SiO2). Later we will will display the dependence of the number of opti-

mal cepstral coefficients and of the resulting estimate of the thermal conductivity on the choice of ⁎f , and show 
that this choice is not critical.

In order to validate our data-analysis protocol, we first computed the heat conductivities from a direct integra-
tion of the current autocorrelation function, Eq. (1), combined with standard block analysis over the 50ns long 
trajectory, that will be taken as a reference, obtaining: κ = . ± .0 1965 0 0015ref , . ± .0 970 0 009, . ± .19 2 0 4, and 
. ± .2 115 0 025 W/mK, for Ar, H2O, MgO, and a-SiO2, respectively. Although our simulations were meant for 

benchmarking purposes only, and no particular care was paid to exactly match the simulation conditions of pre-
vious work, these data are in fair agreement with the foregoing theoretical results: ≈ .0 19 W/mK (Ar)28, 
≈ .0 85 W/mK (H2O)34, ≈ 12 W/mK (MgO)30, and ≈ .2 1 W/mK (a-SiO2)35.

In Fig. 2 we display the distributions of the values of κ κlog( / )ref  estimated by applying our protocol to multiple 
MD segments of 100ps (for Ar, H2O, a-SiO2) and 500ps (for MgO), extracted from the 50ns long trajectory. The 
optimal numbers of cepstral coefficients, ⁎P , have been redetermined for each segment independently, while the 
values of the cutoff frequency, ⁎f , which only depends on the qualitative features of the spectrum, have been 
determined once for all for one of them. The distribution of the resulting number of cepstral coefficients is 
reported in Fig. 3. The observed distributions of κlog( ) successfully pass the Shapiro-Wilk normality test36 (i.e. 
they do not fail it) and the observed sample standard deviations closely match the theoretical values estimated 
from Eq. (18) (sample/theory): . .0 104/0 079 (Ar), . .0 053/0 045 (H2O), . .0 17/0 11 (MgO), and . .0 114/0 095 (a-SiO2). 
Remember that the error on κlog( ) is the relative error on κ: the corresponding absolute errors achievable with a 
short trajectory of 100 (Ar, H2O, and a-SiO2) or 500 (MgO) ps, not to be confused with the long trajectory used to 
establish the reference data above, are therefore: σ ≈ .κ 0 015 (Ar), .0 045 (H2O), 2 (MgO), and .0 2 (a-SiO2) W/mK. 
This indicates that a single and short sample trajectory, such as one that is affordable with ab initio MD, is suffi-
cient to achieve and accurately estimate a very decent relative error on the computed transport coefficient. In an 
attempt to evaluate the thermal conductivity from the direct computation of the GK integral, Eq. (1), and stand-
ard block analysis using similarly short MD trajectories, our best estimate of the resulting statistical error was 2–3 
times larger than using our protocol (meaning 5–10× longer trajectories to achieve a comparable accuracy) in all 
cases but liquid Ar, where only a marginal improvement is achieved using our methodology. Much more than 
this, the standard analysis of MD data depends on a number of hidden parameters, such as the upper limit of the 
GK integral, Eq. (1), or the width of the blocks for error analysis, that are hard to determine and keep under con-
trol. Our method, instead, only depends on a single parameter, the number of cepstral coefficients, whose optimal 

Figure 1.  Sample power spectra of the heat flux computed from MD trajectories for Ar, H2O, a-SiO2 (100ps) 
and MgO (500ps) (gray line, see text). The solid lines in color correspond to a moving average performed over a 
narrow frequency window. The vertical arrows indicate the cutoff frequencies, ⁎f , used for the subsequent 
cepstral analysis (see text). The inset in the MgO panel is a magnification of the low-frequency region of the 
spectrum.
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Figure 2.  Distributions of the logarithm of the thermal conductivities, κlog( ), estimated over multiple MD 
segments (100ps for Ar, H2O, and a-SiO2, and 500ps for MgO) extracted from a 50ns long trajectory. The 
reported data are referred to κref , which is the value obtained from the direct integration of the current 
autocorrelation function in Eq. (1), combined with standard block analysis over the 50ns trajectory, and 
represented by the vertical gray bands. The Gaussian curves represent the distributions predicted by the theory, 
centered at the sample mean. Remember that the absolute error on κlog( ) is the relative error on κ.

Figure 3.  Distribution of the optimal numbers of cepstral coefficients, ⁎PA, as determined by optimizing the 
Akaike’s information criterion, Eqs. (20) and (22), for each segment of the 50ns long MD trajectory, as described 
in the text. The vertical dashed lines indicate the average value of ⁎PA.
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value can be easily determined from the Akaike’s information criterion, or other more sophisticated 
model-selection methods23,37, as appropriate.

In order to estimate the bias introduced by limiting the number of cepstral coefficients, we examined the sam-
ple mean computed over the distributions displayed in Fig.  2, κ〈 〉, obtaining: κ〈 〉 = . ± .0 1878 0 0007, 
. ± .0 969 0 002, . ± .16 7 0 2, and . ± .2 131 0 009 W/mK, for Ar, H2O, MgO, and a-SiO2, respectively. Comparing 

these data with the reference data obtained from the direct evaluation of the GK integral, we see that the bias is 
negligible for H2O and a-SiO2, very small for Ar, and small but not negligible for MgO. In Fig. 4 we display the 
dependence of κ κlog( / )ref  on the number of cepstral coefficients, ⁎P , as estimated from Eq. (15). We observe that 
when the number of cepstral coefficients, ⁎P , is larger than the optimal value determined from the AIC, ⁎PA, the 
estimated value of κ seems not to depend on ⁎P  for all systems but MgO, for which a slight bias seems to persist, 
and to a much lesser extent for Ar. Also, Eq. (18) seems to slightly underestimate the sample variance for small ⁎P  
in these cases. In the case of MgO this behavior is likely due to the difficulty of the AIC to cope with the sharp 
low-frequency peak in the power spectrum, due to the highly harmonic character and slow decay of the vibra-
tional heat carriers in periodic crystals11, thus requiring longer simulation times. In the case of Ar the very small 
bias observed for =⁎ ⁎P PA may be due to the difficulty of choosing a suitable cutoff frequency when only a single 
diffusive band is present in the spectrum, and to the divergence of the log-spectrum at high frequency. In all cases, 
use of the Aikake’s information criterion results in a bias that is smaller than the statistical error estimated from 
an individual short sample trajectory and that can be systematically removed by increasing the value of ⁎P , at the 
price of increasing the statistical error, if and when needed.

Finally, in Fig. 5 we report the dependence of the optimal number of cepstral coefficients, ⁎PA, as a function of 
the cutoff frequency, ⁎f , along with the dependence of the resulting estimate of κ κlog( / )ref . ⁎PA increases with ⁎f . 
Notwithstanding, the estimated value of the heat conductivity, as well as its variance, is fairly insensitive on the 
precise value of ⁎f  as long as the latter is large enough as to encompass the lowermost prominent feature of the 
spectrum. Some more comments are in order for MgO. In this case the high thermal conductivity, due to the 
strong harmonic character of slowly decaying phonon modes, manifests in the form of a narrow peak centered at 

=f 0, followed by a broad plateau that carries little spectral weight. This feature determines a more pronounced 
increase in the number of significant cepstral coefficients as ⁎f  increases and a corresponding increase of the bias 
when keeping ⁎P  at the value given by the AIC. The AIC is a less reliable indicator of the number of cepstral coef-
ficients necessary to keep the bias low, in this case. By increasing this number by a factor of two or more, the bias 
decreases, as indicated by the results reported in lighter colors in Fig. 5, and eventually vanishes, as shown in 
Fig. 4.

Figure 4.  Dependence of κlog( ), as estimated from Eq. (15), on the number of cepstral coefficients ⁎P . ⁎PA is the 
optimal number of coefficients estimated from the AIC using Eqs. (20) and (22). The black dots represent the 
mean values of κlog( ) computed over multiple MD segments (100ps for Ar, H2O, and a-SiO2, and 500ps for 
MgO) extracted from a 50ns long trajectory; the colored bands and dashed lines represent one standard 
deviation as estimated from the empirical statistics and from Eq. (18), respectively. The reported data are 
referred to κref , which is the value of thermal conductivity obtained from direct integration of the current 
autocorrelation function in Eq. (1), combined with standard block analysis over the 50ns trajectory, and 
represented by the horizontal gray bands. Remember that the absolute error on κlog( ) is the relative error on κ.
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Conclusions and Perspectives
We believe that the methodology introduced in this paper will finally open the way to the quantum simulation of 
heat transport, which has been considered out of its scope until very recently, particularly for strongly anhar-
monic and/or disordered systems. Its implementation is straightforward and its use robust, as the only parameter 
to be determined is the optimal number of cepstral coefficients, using e.g. the Akaike’s information criterion. Our 
methodology performs best when a low conductivity results from large cancellations in the integral of a highly 
oscillatory time auto-correlation function, such as in molecular liquids or amorphous solids, where simulation 
times of the order of 100ps seem sufficient to obtain accuracies of the order of 10% in the estimated thermal con-
ductivities. The performance is less spectacular in periodic crystals, where slowly-decaying strongly-harmonic 
phonon modes require longer simulation times and the ensuing sharp peak in the low-frequency region of the 
power spectrum requires a larger number of cepstral coefficients than predicted by the optimization of the AIC. 
Even so, simulation times of the order of a few hundred picoseconds seem sufficient to achieve a comparable 
accuracy. In the latter case, it is possible that a combination of the methodology introduced here with specialized 
techniques based on normal-mode analysis, such as that presented in Ref.11, will result in further improvements. 
Replacing the optimization of the AIC with more sophisticated and possibly more efficient approaches, such as 
e.g. weighted multi-model inference techniques23,37, may also assist in this and other difficult cases. Finally, we 
expect that our methodology will impact on the simulation of any transport phenomena to which the Green-Kubo 
theory applies, such as ionic conduction, viscosity, and many others.
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