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Neutrophils are short-lived cells of the innate immune system and the first line of
defense at the site of an infection and tissue injury. Pattern recognition receptors on
neutrophils recognize pathogen-associated molecular patterns or danger-associated
molecular patterns, which recruit them to the destined site. Neutrophils are professional
phagocytes with efficient granular constituents that aid in the neutralization of
pathogens. In addition to phagocytosis and degranulation, neutrophils are proficient in
creating neutrophil extracellular traps (NETs) that immobilize pathogens to prevent their
spread. Because of the cytotoxicity of the associated granular proteins within NETs, the
microbes can be directly killed once immobilized by the NETs. The role of neutrophils in
infection is well studied; however, there is less emphasis placed on the role of neutrophils
in tissue injury, such as traumatic spinal cord injury. Upon the initial mechanical injury,
the innate immune system is activated in response to the molecules produced by the
resident cells of the injured spinal cord initiating the inflammatory cascade. This review
provides an overview of the essential role of neutrophils and explores the contribution of
neutrophils to the pathologic changes in the injured spinal cord.
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INTRODUCTION

Innate immunity is the first line of defense against foreign agents and self-tissue injury (Buchmann,
2014; Hato and Dagher, 2015). The innate response is much faster than adaptive immunity
and can be initiated immediately or within a few hours (Hato and Dagher, 2015). The innate
immune response results in inflammation to control the infection or injury and signal the
recruitment of relevant immune cells, which aid in clearing the pathogens and cell debris while
promoting tissue healing and recovery (Newton and Dixit, 2012; Cui et al., 2014; Spiering,
2015). The components of the innate immune system that aid in its function are granulocytes,
monocytes, natural killer cells, and the complement system (Spiering, 2015). Neutrophils, also
known as polymorphonuclear leukocytes, are the key players of the innate immune system
and the first immune cells to arrive at the site of infection and injury (Kobayashi and DeLeo,
2009; Rosales et al., 2017; Kovtun et al., 2018). In humans, neutrophils are produced at a rate
of 1 × 1011 cells per day and are the most abundant granulocytes, comprising 60–70% of all
blood leukocytes and have a short life span of fewer than 24 h in the bloodstream (Hong
et al., 2012; Mayadas et al., 2014; McCracken and Allen, 2014; Sheshachalam et al., 2014). In
mice, neutrophils are the most common granulocytes and are produced at a rate of 1 × 107

cell per day, comprising 20–30% of all blood leukocytes (O’Connell et al., 2015; Ng et al.,
2019). Mature circulating neutrophils are destined for apoptosis and clearance by macrophages
(Mφ) in the liver, spleen, and bone marrow to maintain homeostasis (Savill et al., 1989;
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Fox et al., 2010; Hong et al., 2012; Greenlee-Wacker, 2016).
This review describes the involvement of neutrophils in different
pathological states with a focus on spinal cord injury (SCI).

SCI is a traumatic and detrimental condition that can result
in temporary or permanent paralysis in injured patients (Kumar
et al., 2018). An estimated 700,000 new SCI cases arise per
year worldwide, resulting in a global incidence of 10 cases per
100,000 people (Jin et al., 2019). The vast majority of SCI cases
are traumatic and caused by accidents in traffic, sports, falls,
and violence (Alizadeh et al., 2019). The major phases of injury
response after SCI can be categorized into the primary phase
and secondary phase of injury (Ahuja et al., 2017; Alizadeh
et al., 2019). Immediately after an SCI, the resulting initial
mechanical damage, commonly referred to as primary injury,
is characterized by a mechanical force acting on the spinal
cord, resulting in immediate hemorrhage, cell death, vascular
damage, ischemia, tissue disruption, edema, and the physical
disruption of neurons at the site of injury (Oyinbo, 2011; Singh
et al., 2012). The primary phase initiates a series of molecular
changes at the tissue and cellular levels contributing to the
secondary injury cascade, resulting in further permanent damage
and neurological dysfunction. Secondary injury can be further
divided into the acute, the subacute, and the chronic subphases
(Badhiwala et al., 2018).

Inflammatory Response: A Call for
Neutrophils
The first cells to be recruited to the injury site are neutrophils
(Figure 1; Popovich and Jones, 2003; Oyinbo, 2011; Kubota
et al., 2012; Wang et al., 2015; Guo et al., 2016). To respond
to a pathogenic invasion or tissue damage, pattern recognition
receptors (PRRs) on neutrophils recognize pathogen-associated
molecular patterns (PAMPs) or danger-associated molecular
patterns (DAMPs) (Suresh and Mosser, 2013; Amarante-
Mendes et al., 2018). The PRRs activate downstream signaling
pathways such as the mitogen-activated protein kinase and

FIGURE 1 | Immunohistochemical analysis showing neutrophils (red) in the
injury site at 24 h after SCI in CX3CR1GFP/+ mice where CX3CR1 is a marker
for microglia, and Gr-1 is a marker for neutrophils. The injury lesion is circled
with dotted lines. Although neutrophils can be detected as early as 3 h
postinjury and peak 12 h postinjury, they remain elevated up to 24 h postinjury
and decrease in concentration 3 days post-SCI. Adapted from Wang et al.
(2015).

nuclear factor κB (NF-κB) pathways responsible for upregulating
proinflammatory cytokines and chemokines (Chen and Nunez,
2010; Kigerl et al., 2014; Venereau et al., 2015; Pouwels et al.,
2017; Kaur et al., 2019). PAMPs, DAMPs, and their respective
receptors on neutrophils are summarized in Table 1 (Parroche
et al., 2007; Mogensen, 2009; Chen and Nunez, 2010; Kumar et al.,
2011; Venereau et al., 2015; Roh and Sohn, 2018; Wang, 2018).

Tissue damage in SCI is first detected by resident cells in
the spinal cord, such as glial cells and microvascular cells,
resulting in proinflammatory chemokine expression that attracts
neutrophils to the injured area (Anwar et al., 2016; Alizadeh
et al., 2019). The most common proinflammatory cytokines
and chemokines that facilitate neutrophil recruitment include
interleukin 1α (IL-1α), IL-β, IL-8, tumor necrosis factor (TNF),
granulocyte colony-stimulating factor, CCL3, CXCL1, CXCL2,
and CXCL5 (Kobayashi et al., 2018; Pelisch et al., 2020). IL-
1β is a crucial initial proinflammatory cytokine produced after
injury. Within an hour after contusion SCI in mice, astrocytes
and microglia release IL-1β, which peaks in expression 12 h
postinjury, correlating with the peak of infiltrated neutrophils to
the injured area (Pineau and Lacroix, 2007; Saiwai et al., 2010;
Kubota et al., 2012). IL-1β binds IL-1R on the cells, activating
the production of proinflammatory cytokines through the NF-
κB pathway (Zhang and Fuller, 2000; Albrecht et al., 2007).
Astrocytes produce two important neutrophil chemoattractants,
CXCL1 and CXCL2 (Pineau et al., 2010). Deletion of IL-
1R in mice showed a significant reduction in infiltration of
neutrophils to the injured spinal cord (Pineau et al., 2010).
Administration of IL-1 receptor antagonist (IL-1RA) inhibits
IL-1 signaling and suppresses neutrophil infiltration in the
injured spinal cord (Yates et al., 2021). SCI mice treated with

TABLE 1 | Examples of PAMPs and DAMPs and their respective
receptors on neutrophils.

PAMPs: Receptors: DAMPs: Receptors:

Viral ssRNA

dsRNA
LPS
Lipoarabinomannan
Zymosan
Lipoteichoic
acid
CpG motifs of
bacteria and
viruses
Bacterial
flagellin
Triacyl
lipoproteins
Fungal
mannose
Parasitic
hemozoin

TLR7/8

RIG-I, MDA5, PKR
TLR4
TLR2

TLR9

TLR5

TLR1/TLR2

Mannose receptor,
dectin-2, DC-SIGN
TLR9

RNA

DNA
Histones
HMGB1

S100 proteins

Biglycan

N-formyl peptides

ATP

Interleukin 1α

Interleukin 33
Heat shock
proteins (HSPs)
Amyloid-β

TLR3, TLR7,
TLR8, RIG-I,
MDA5
TLR9, AIM2
TLR2, TLR4
TLR2, TLR4,
RAGE
TLR2, TLR4,
RAGE
TLR2, TLR4,
NLRP3

FPR1

P2X7, P2Y2

IL-1R
ST2
TLR2, TLR4,
CD91
TLR2, NLRP1,
NLRP3, CD36,
RAGE
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colony-stimulating factor 1 receptor antagonist PLX5622 have
significantly reduced neutrophil infiltration in the injured spinal
cord (Li et al., 2020). Additionally, deletion of MyD88, an
adapter molecule of IL-1R and an intermediate protein in
the activation of the NF-κB pathway, showed low expression
of CXCL2 and no expression of CXCL1, resulting in low
recruitment of neutrophils in mouse SCI (Gasse et al., 2007;
Pineau et al., 2010). IKK-β is a regulatory unit of the NF-
κB pathway. When bound to NF-κB molecules, it keeps
this pathway inactive as it prevents NF-κB molecules from
translocating into the nucleus (Karin, 1999; Rothwarf and
Karin, 1999; Hacker and Karin, 2006). Similarly to the deletion
of Myd88, myeloid cell–specific IKK-β–deficient mice showed
decreased CXCL1 expression in the injured spinal cord and less
neutrophil recruitment, strengthening the importance of these
chemoattractants for the neutrophil infiltration via the NF-κB
pathway (Kang et al., 2011). Moreover, neutrophil infiltration
into the injured spinal cord is also attributed to the tight
regulation of the receptor for the complement activation product
3a, C3aR1. In C3aR1 knockout (KO) mice, CXCL1 level increases
2 h post-SCI and remains elevated after the injury, suggesting
that C3aR1 negatively regulates neutrophil mobilization by
acting as the antagonist for neutrophil chemotactic signals
(Brennan et al., 2019).

MAJOR FUNCTIONS OF NEUTROPHILS
IN THE INJURED SPINAL CORD

The role of neutrophils at the injured spinal cord is not well
understood. As mentioned earlier, upon SCI, there is physical
damage to the tissue, which generates cell debris (Oyinbo, 2011;
Singh et al., 2012). What is the exact role of neutrophils in
response to the present debris in the injured area is yet to
be elucidated. However, there are three major mechanisms by
which the neutrophils generally respond to an inflammation
and/or infection: degranulation, phagocytosis, and formation of
neutrophil extracellular traps (NETs) (Rosales, 2020).

Degranulation
Very little is known about the role of degranulation in the
pathophysiology of SCI, but a valuable lesson can be learned
from its general role in other diseases. Degranulation of
neutrophils is when granules directly translocate and fuse
with the plasma membrane and release their contents into
the extracellular space (Lacy, 2006). Upon an extracellular
stimulus, secretory vesicles are mobilized and regulate circulating
neutrophil transformation to an activated state (Table 2)
where they then secrete their granular contents into the
extracellular space (Borregaard et al., 1990; Ramadass and Catz,
2016). The purpose of degranulation into the extracellular
space is to kill the extracellular enemy (Yaseen et al., 2017).
Degranulation is stimulated upon ligand binding, such as
IL-8, to its G-protein–coupled receptor CXCR1/2 (Barlic et al.,
2000). Translocation of the granules to the neutrophil plasma
membrane depends on the actin remodeling and microtubule
assembly (Burgoyne and Morgan, 2003). Additionally, it requires

TABLE 2 | Common cytokines and chemokines expressed constitutively or upon
activation of neutrophils.

Proinflammatory
cytokines

Anti-inflammatory
cytokines

Chemokines

IL-1α

IL-1β

IL-6
IL-7
IL-9
IL-16
IL-17
IL-18
TNF-α
MIF

IL-4
IL-1
TGF-β1
TGF-β2

CCL2
CCL3
CCL4
CCL17
CCL18
CCL19
CCL20
CCL22
CXCL1–
CXCL6,
CXCL8–13

increase in intracellular Ca2+ concentration and hydrolysis
of ATP and GTP (Lacy, 2006). Fusion of granules with the
plasma membrane deposits granular component cytochrome
b558 onto the plasma membrane and stimulates assembly of
nicotinamide adenine dinucleotide phosphate (NADPH) and
reactive oxygen species (ROS) production (McLeish et al., 2013).
Rab-GTPase family regulates secretion of granular contents
in a time-dependent and granule-specific manner (Ramadass
and Catz, 2016). Neutrophils’ primary granules contain a
spectrum of serine proteases listed in Table 3, which effectively
kill the pathogen (Teng et al., 2017). Although these granular
contents are potent weapons to kill pathogens, they are also
toxic to the tissue (Kruger et al., 2015). As infiltrated neutrophils
are accumulated in the demyelinating lesion core (Figure 1),
where the area for new blood vessel formation occurs, further
studies are needed to know the functional consequences of
neutrophil degranulation in the pathogenesis of SCI, such as
destruction of myelin sheath and breakdown of the blood–spinal
cord barrier (BSCB).

Phagocytosis of Cell Debris
Phagocytosis is a cellular process for engulfing and
eliminating self or nonself particles. Particles opsonized with
immunoglobulins (Ig), IgG or IgM, and complement factors are
phagocytosed more effectively via Fcγ receptors and complement
receptors (CRs) on neutrophils, respectively (Flannagan
et al., 2009; Yu et al., 2016; Kobayashi et al., 2018). Stages of
phagocytosis start with the formation of the phagosome and then
continue with the maturation of the phagosome and finally with
the phagolysosome formation (Flannagan et al., 2009).

Myelin is an extension of oligodendrocytes’ plasma membrane
in the central nervous system (CNS) (Bunge, 1968; Hildebrand
et al., 1993; Simons and Nave, 2015). This extended plasma
membrane wraps around axons to create compact myelin sheaths
(Demerens et al., 1996; Williamson and Lyons, 2018; Stadelmann
et al., 2019). Myelin sheaths enable fast salutatory conduction of
action potentials, acting as electrical insulators and allowing for
impulse propagation along the axon diameter (Ford et al., 2015;
Hughes and Appel, 2016; Williamson and Lyons, 2018). Myelin
contains approximately 70% lipids and 30% proteins (Roots et al.,
1991; Jackman et al., 2009; Fledrich et al., 2018). Proteolipid
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TABLE 3 | Neutrophilic granules and function—primary, secondary, and tertiary.

Primary—azurophilic Secondary—specific Tertiary—gelatinase

Function:
Contain potent
hydrolytic enzymes that
kill and digest microbes

Function:
Help with the
replenishment of
membrane
components and free
radical reactions

Function:
Help with the
replenishment of
membrane
components and free
radical reactions

Granule components:
Cathepsin G
Elastase
Myeloperoxidase
Azurocidin
Defensins
Acid hydrolases
Lysozyme
BPI
Phospholipase A2

Proteinase 3
CD63
CREG1
Lysosome-associated
membrane protein 2
(LAMP2)
Complement C3

Granule components:
Lactoferrin
Cathelicidin,
Collagenase
Gelatinase B
Cytochrome b558

Lysozyme
IL-10R
Calprotectin
Secretory
phospholipase
Haptoglobin
Neutrophil
gelatinase-associated
lipocalin (NGAL)

Granule components:
Cathelicidin
Collagenase
Gelatinase B
Cytochrome b558

IL-1RA
TRAIL
Heparanase
BAFF
MMP9

protein and myelin basic protein together make up 80% of the
myelin protein by weight (Price et al., 1997; Wrathall et al.,
1998; Arvanitis et al., 2002). Other important myelin proteins
include myelin-associated glycoprotein, NogoA family proteins,
oligodendrocyte myelin glycoprotein, and chondroitin sulfate
proteoglycans, which are important for neuron regeneration and
recovery after SCI (Baldwin and Giger, 2015).

Myelin debris, which is generated from the breakdown
of myelin sheaths immediately after SCI, persists in the
injury site and contributes to regeneration failure because it
contains molecules that strongly inhibit axon regeneration and
remyelination (Chen et al., 2000; Filbin, 2003; Kotter et al.,
2006; Syed et al., 2016). Moreover, myelin debris is actively
involved in inflammatory responses during SCI progression (Jeon
et al., 2008; Sun et al., 2010; Wang et al., 2015). Therefore,
clearance of myelin debris from the injury site is critical for
axon regeneration, remyelination, and inflammation resolution.
Infiltrating bone marrow–derived Mφ (BMDMφ) and resident
microglia are the two major professional phagocytes for myelin
debris clearance. Complement-3 receptor (CR3), Mac-2 (Glactin-
3), CD36, scavenger receptor AI/II (SRAI/II), and triggering
receptor expressed on myeloid cells 2 (TREM2) have been
proposed as receptors for myelin debris phagocytosis by Mφ

and microglia (Kuhlmann et al., 2002; Napoli and Neumann,
2010; Sun et al., 2010; Zhou et al., 2014; Wang et al., 2015;
Kopper and Gensel, 2018). The semiprofessional phagocytes,
such as astrocytes and endothelial cells, can engulf myelin
debris as well (Zhou et al., 2019; Konishi et al., 2020; Wang
et al., 2020). We recently demonstrated that newly formed
microvessels and lining microvascular endothelial cells in the
injured spinal cord can engulf IgG-opsonized myelin debris
(Zhou et al., 2019).

The role of neutrophils with respect to phagocytosing myelin
debris post-SCI is not clear; however, engulfment of myelin debris
by neutrophils has been studied in Wallerian degeneration (WD),
a degeneration associated with the breakdown of the myelin
sheath (Qin et al., 2012; Lindborg et al., 2017). In a mouse
model of WD, deletion of neutrophils resulted in a significant
lack of myelin debris clearance (Lindborg et al., 2017). Despite
the results that neutrophils facilitate compensatory mechanism
of clearance of myelin debris in a collaboration with clearance
activity of Schwann cells in peripheral nervous system, there
is no direct evidence showing that neutrophils are responsible
for clearance of myelin debris, and the receptors utilized by
neutrophils for myelin debris uptake are as of yet unknown
(Lindborg et al., 2017). As a consequence, there are gaps in
our knowledge that prevents us from understanding the full
functional capacity of neutrophils in SCI in addition to their
contribution to secondary tissue damage and recovery post-
injury.

Neutrophil Extracellular Traps
In 2004, it was discovered that neutrophils release extracellular
fibers that contained granular proteins and chromatin that trap
bacteria (Brinkmann et al., 2004). Most commonly, NETs have
been described as a response mechanism to kill extracellular
pathogens (Brinkmann et al., 2004; Beiter et al., 2006; Ramos-
Kichik et al., 2009; Papayannopoulos et al., 2010; Pilsczek et al.,
2010; Juneau et al., 2011; Kaplan and Radic, 2012; Manda et al.,
2014; Rosales et al., 2016). It is dependent on the size of the
microbe and whether the microbe was able to avoid phagocytosis
(Estua-Acosta et al., 2019). The release of NETs is also deadly
to the neutrophils themselves and is thus classified as a type
of cell death called NETosis, or suicidal NETs (Steinberg and
Grinstein, 2007; Papayannopoulos, 2018). NETosis is stimulated
by binding molecules to the receptors on the neutrophils such
as Toll-like receptors (TLRs), FcRs, and CRs (Brinkmann et al.,
2004; Munks et al., 2010; Garcia-Romo et al., 2011; Kaplan and
Radic, 2012). Neutrophils about to undergo NETosis display
distinctive morphological features that differ from their natural
appearance (Fuchs et al., 2007; Vorobjeva and Pinegin, 2014;
Scieszka et al., 2020).

Molecules that can stimulate NETs, referred to as sterile
stimuli, include cytokines, DNA/RNA and histones, crystals,
autoantibodies, and immune complexes (Keshari et al., 2012;
Schorn et al., 2012; Behnen et al., 2014; Yalavarthi et al.,
2015; Shrestha et al., 2019). NETs are initiated as NADPH is
activated following the binding of proinflammatory cytokines,
such as TNF-α and TLR-binding molecules (El-Benna et al.,
2008; Stoiber et al., 2015). NADPH forms ROS, which
can easily be converted to radicals spontaneously or via
superoxide dismutase (Bedard and Krause, 2007; Stoiber
et al., 2015). An increase in ROS stimulates the release of
elastase from the membrane complex of azurophilic granules
into the cytosol, activating their proteolytic activity and
translocating them into the nucleus, where they aid in
chromatin decondensation. Before their translocation into
the nucleus, active elastase in the cytosol binds actin and
degrades it. This contributes to the plasma membrane and
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nuclear membrane permeability and the release of NETs into
the extracellular space (Metzler et al., 2014; Thiam et al.,
2020). NETs are eventually degraded by DNase 1 and cleared
by Mφ (Gupta and Kaplan, 2016). The most important
contents of the NETs include but are not limited to (1)
granular components: elastase, lactoferrin, azurocidin, cathepsin
G, myeloperoxidase (MPO), defensins, and lysozyme; (2)
nuclear components: histones H2A, H2B, H3, H4, and myeloid
nuclear differentiation agents; (3) cytoplasmic components: S100
calcium-binding proteins A8, A9, and A12; (4) cytoskeletal
components: actin, myosin, plastin, and cytokeratin; (5) catalase
peroxisome; and (6) glycolytic enzymes enolase and transketolase
(Kaplan and Radic, 2012; Vorobjeva and Pinegin, 2014;
Estua-Acosta et al., 2019).

There are no current NET formation reports in the injured
spinal cord; however, it has been reported that infiltrated
neutrophils in CNS release NETs, which may contribute to
the blood–brain barrier damage and neural injury in some
CNS disorders such as neurodegeneration, multiple sclerosis,
traumatic brain injury (TBI), and ischemic stroke (Tillack
et al., 2013; Perez-de-Puig et al., 2015; Laridan et al., 2017;
Pietronigro et al., 2017; Valles et al., 2017; Ducroux et al.,
2018; Farkas et al., 2019; Novotny et al., 2020; Vaibhav
et al., 2020). Vaibhav et al. (2020) reported recently that
NET formation worsens TBI outcomes, which is regulated
by TLR4 and downstream kinase peptidylarginine deiminase
4 (PAD4). Importantly, therapeutically targeting NETs by
administration of recombinant human DNase-I degrades NETs
and improves neurological outcomes (Vaibhav et al., 2020).
As little is known about the mechanisms of NET formation
and how it interacts with other CNS resident cells in SCI,
it is critical to determine to what degree this neutrophilic
defense process partakes in progression of secondary injury
in SCI. The research on the clear mechanistic view of
NET formation could lead to identifying new targets for
therapeutic interventions to treat not only SCI but also
other CNS disorders.

Potentially Detrimental Roles of
Infiltrating Neutrophils in SCI
In SCI, neutrophilic MPO activity can be measured within
3 h of the SCI and lasts up to 3 days postinjury. Within
1 day post-SCI, abundant neutrophils can be detected at the
injury lesion (Figure 1; Wang et al., 2015). As neutrophils have
not been extensively studied in SCI, not much information is
available on this topic; however, there are reports regarding
the general recruitment of neutrophils to an area of peripheral
injury. Infiltration of neutrophils to the injury site has mainly
been described as a negative event due to exposure of the
injured area to the neutrophilic tissue-damaging factors. Of the
four different granules in the neutrophils (Table 3), the most
toxic are azurophilic, which cause tissue damage (Lacy, 2006;
Nguyen et al., 2007; Kumar and Sharma, 2010). Neutrophils
also secrete ROS and proteases such as metalloproteinases
(MMPs), contributing to secondary tissue damage (Trivedi et al.,
2006). For example, MMP9 facilitates neutrophil penetration

of white and gray matter in the injured spinal cord (Fleming
et al., 2006). During the first 3 days after injury, there is
an increase in MMP9 and NADPH marker gp91phox, in
the necrotic and apoptotic areas. Both MMP9 and NADPH
contribute to the inflammatory response and secondary injury
as they generate byproducts such as hydrochlorous acid
(HOCl), which cause tissue damage in the surrounding area
(Fleming et al., 2006).

A constituent of azurophilic granules of neutrophils is
the enzyme elastase, which can create a lot of damage to the
surrounding tissues (Doring, 1994; Borregaard and Cowland,
1997; Lominadze et al., 2005). Additionally, elastase can induce
cell damage and dysfunction, degrade extracellular matrix
proteins, and cause cell death by interfering with normal
cellular pathways. Elastase is released into the surrounding
tissue after neutrophils degranulate or neutrophils release
NETs, resulting in inflammation (Kumar et al., 2018). In
chronic inflammation, elastase is present outside neutrophils
in high concentrations as elastase inhibitor, α1-proteinase
inhibitor, can be easily inactivated by the proteolytic and
oxidative attack, but the details of this mechanism remain
unknown. In the case of SCI, in response to proinflammatory
cytokines, elastase disrupts the neurovascular unit by inducing
endothelial cell apoptosis and degrading endothelial cell
junction proteins (Kumar et al., 2018). Inhibition of elastase
by the administration of sivelestat, an inhibitor of human
neutrophil elastase, after an SCI, resulted in the rescue of
angiopoietin-1, a vascular growth factor responsible for anti-
inflammatory effects and reduction of vessel permeability
(Kumar et al., 2018).

MPO is another enzyme of the neutrophils’ azurophilic
granules (Borregaard and Cowland, 1997; Lominadze et al.,
2005; Kato, 2016). Following the degranulation of neutrophils,
MPO is responsible for the generation of various acids,
depending on the ions present in the environment, such
as HOCl, to kill bacteria (Kato, 2016). MPO has been
referred to as the local mediator of tissue damage and
inducer of the inflammatory response (Aratani, 2018). It has
been reported that MPO worsens secondary injury (Kubota
et al., 2012). MPO-KO mice had less HOCl in the injured
area, more intact myelin in the core of the injury, and
an overall decrease in the production of proinflammatory
cytokines such as IL-6, IL-1β, and TNF-α, all of which are
contributors to secondary injury of SCI (Hausmann, 2003;
Kubota et al., 2012). Locomotor function of MPO-KO mice
was significantly better than that of wild-type (WT) mice,
indicating an overall increase in functional recovery of MPO-KO
injured mice (Kubota et al., 2012). We previously demonstrated
that Mφ that have taken up myelin debris have decreased
phagocytic capacity for apoptotic neutrophils (Wang et al.,
2015). Nonengulfed apoptotic neutrophils undergo secondary
necrosis and release MPO and elastase, which might be involved
in inflammation and secondary injury after SCI (Smith, 1999;
Wang et al., 2015).

Leukotriene B4 (LB4) is a proinflammatory moderator that
induces recruitment of neutrophils through LTB4 receptor 1
(BLT1) on the neutrophils (Crooks and Stockley, 1998). LB4 is
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produced from arachidonic acid and activated in the lesion area
of SCI (Xu et al., 1990). It has been shown that LB4 is involved
in the tissue damage caused by neutrophils (Crooks and Stockley,
1998). Neutrophil infiltration in BLT1-KO mice was significantly
less than that in WT mice (Saiwai et al., 2010). Coculture of
neural cells with neutrophils isolated from the lesion area showed
a significant increase in neural cell death compared to neural
cells cocultured with circulating neutrophils suggesting that the
toxicity present in the lesion area is possibly because of infiltrated
neutrophils (Saiwai et al., 2010).

In the earlier section, we discuss neutrophils’ ability to form
NETs in response to inflammation and/or infection. Because of
the nature of the components that make up the NETs, there is
a great potential for tissue damage in this neutrophilic response
(Villanueva et al., 2011; Saffarzadeh et al., 2012; Carmona-
Rivera et al., 2015; Sorensen and Borregaard, 2016; Brinkmann,
2018). As infiltrated neutrophils are accumulated in lesion core
(Figure 1), where the demyelinating area for new blood vessel
formation is located, it is likely that NET formation and NETosis
may be involved in the pathogenesis of SCI such as destruction
of myelin sheath and BSCB breakdown if NETs were to be
detected in SCI.

Potentially Beneficial Roles of Infiltrating
Neutrophils in SCI
Although recruitment of neutrophils is thought of as damaging
for the injured tissue, there is also a positive aspect of that
recruitment. As first responders to the injured site, they can
initiate clearance of debris and produce proinflammatory signals
that recruit other immune cells such as Mφ to eliminate leftover
debris and contribute to tissue healing (Trivedi et al., 2006).
Defective neutrophil recruitment to the injury site, mediated by
the absence in the expression of esophageal cancer–related gene
4 (ECRG4) causing suppression of CD44, shows impaired wound
healing process (Dorschner et al., 2020). A study reported that
depletion of Ly6G/Gr-1 neutrophils in SCI mice resulted in the
abolition of neutrophil infiltration into the injured spinal cord,
lack of appropriate proinflammatory response, and impairment
of injury recovery (Stirling et al., 2009).

Neutrophils are a heterogeneous cell population essential
for immune defense versatile in their defense mechanisms.
Heterogeneity of neutrophils is defined by the maturity
of the cells, activation state, and discrete subsets such as
low-density neutrophils, immunomodulatory neutrophils, and
neutrophils expressing surface maker CD177 (Grieshaber-Bouyer
and Nigrovic, 2019; Ng et al., 2019). A recent study reports
a new subset of neutrophils with axon regenerative properties
(Sas et al., 2020). This subset is characterized as CD14+Ly6Glo

granulocytes resembling immature neutrophils. In SCI, this new
subset promoted axonal regrowth, passing beyond the injury site
and exhibiting neuroprotective and proregenerative functions
(Sas et al., 2020). Therefore, heterogeneity of neutrophils offers
new therapeutic opportunities.

The secretory leukocyte protease inhibitor (SLPI) is a serine
protease inhibitor and a member of the innate immune

system with an anti-inflammatory role (Doumas et al., 2005).
It protects the tissue from damage by forming protease–
antiprotease complexes (Ying et al., 1994). SLPI is expressed
by neutrophils and is an important factor in SCI recovery
and the improvement of locomotor activity by pausing further
degradation of tissue matrix and thereby preventing further
secondary damage (Ghasemlou et al., 2010). Recombinant SLPI
treatment in SCI mice showed a reduced lesion size in the
epicenter of the injury and reduced myelin loss, indicating
a lesser degree of secondary injury (Ghasemlou et al., 2010).
Overexpression of SLPI inhibited proinflammatory signals and
significantly improved locomotor activity (Ghasemlou et al.,
2010; Svensson et al., 2017).

CONCLUSION

Although we started to understand the events in secondary
injury better, we have yet to uncover the early contributors of
secondary injury and why secondary injury has such irreversible
consequences. Neutrophils are the first immune cells to infiltrate
the injured spinal cord (Popovich and Jones, 2003; Oyinbo,
2011; Kubota et al., 2012; Guo et al., 2016). The role of
neutrophils in innate immunity has been well studied, their
response to the pathogenic invasion is well characterized, and
their infiltration into the injured tissue has been thoroughly
reported. Nevertheless, their role in SCI and their contribution
to the secondary injury cascade in SCI are not well understood.
The roles of neutrophils in SCI may be context-dependent. We
understand that neutrophils are important in propagation of
the inflammatory response and recruitment of other immune
cells, such as BMDMφ to the injured area for clearance of
damaged cells and cellular debris (Prame Kumar et al., 2018).
However, it remains unclear what are the other cellular functions
of neutrophils in the injured area. Understanding the role of
neutrophils at the different stages of SCI could lead to major
advances in determining the timeline of the irreversible and
detrimental changes following an SCI and allow us to pinpoint
the best therapeutic target.
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