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Non-equilibrium synergistic effects 
in atmospheric pressure plasmas
Heng Guo1, Xiao-Ning Zhang2, Jian Chen1, He-Ping Li   1 & Kostya (Ken) Ostrikov3,4

Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves 
complicated physical-chemical processes and plays a key role in various actual plasma processing. In this 
report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic 
effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-
chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model 
for the electrode sheath region. The free-burning argon arc is selected as a model system because both 
the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously 
in this arc plasma system. The modeling results indicate for the first time that it is the strong and 
synergistic interactions among the mass, momentum and energy transfer processes that determine 
the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to 
the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been 
discovered for the first time. It has a significant influence for self-consistently predicting the transition 
region between the “hot” and “cold” equilibrium regions of an AP-LTP system. The modeling results 
would provide an instructive guidance for predicting and possibly controlling the non-equilibrium 
particle-energy transportation process in various AP-LTPs in future.

Atmospheric-pressure low-temperature plasma (AP-LTP) operates in a non-equilibrium state under most oper-
ating conditions. One of the major features of AP-LTPs is that the characteristic electron energy ranges from a 
few eV to 10 eV, while the heavy-particle temperature varies from around the room temperature to a level which 
is comparable to but usually lower than the electron temperature1,2. This results from the physical facts that the 
significant mass difference between electrons and heavy particles (e.g., molecules, atoms and their ions), and con-
sequently, the lower energy exchange rate between the subsystems of electrons and heavy particles compared with 
that of power input; and the inevitable involvement of the solid walls in the production and application of the labo-
ratory plasmas. There may exist three types of non-equilibria in an AP-LTP system: (i) Non-electrical-equilibrium 
(NEQ): if a conductive or non-conductive object is inserted into the plasma region, a sheath deviating from the 
quasi-charge neutrality condition arises between the object surface and the plasma region3,4, and most of the total 
electric potential drop occurs at this NEQ region. (ii) Non-local-thermodynamic-equilibrium (NLTE): the low 
mass ratio of electrons to heavy particles in plasmas (e.g., 10−5 for argon) leads to an insufficient elastic energy 
exchange between electrons and heavy particles; and thus, the whole plasma system will be in an NLTE state, 
especially if the plasma density is also not high enough. (iii) Non-local-chemical-equilibrium (NLCE): since the 
mean electron temperature is around several electron volts (eV), which is lower than the inelastic collision energy 
thresholds of tens of eV, the excitation and ionization rates decrease significantly particularly when interacting 
with cold gas; and thus, the plasma will be in an NLCE state.

The non-equilibrium of the AP-LTPs is of great importance because we can re-distribute the input energy to 
other types of energies at various freedoms for their wide applications, e.g., kinetic energy in plasma flow control5, 
electronically and vibrationally excited energies in plasma assisted combustion6, energies stored in various reac-
tive species with optimized non-chemical equilibrium spatial distributions in plasma-aided synthesis of 
nano-scale materials7–12, etc. However, it is so difficult to describe, explain, and use such non-equilibria in the 
AP-LTPs since three types of non-equilibria usually appear in the same discharge. Even worse, there may co-exist 
the equilibrium and three types of non-equilibria in the same AP-LTP system, for example, the free-burning arc 
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with a higher arc current. Therefore, it is rather difficult to describe this strongly coupled phenomenon 
self-consistently. In our opinion, except for the NEQ effect in plasma sheath13–15, the NLCE process plays an 
important role among these three types of non-equilibria for various types of AP-LTPs with wide applications 
such as plasma biomedicine, advanced materials processing, plasma-assisted ignition or combustion, environ-
mental protection, etc.1,2,16,17. This is because the chemical reactions determine not only the spatial distributions 
of the species number densities but also the corresponding energy transfer processes significantly. For example, 
in an LCE-NLTE modeling of an arc discharge by Haidar18, a physically incorrect increase in the elastic collision 
frequency between electrons and heavy particles had to be made for obtaining the close electron and 
heavy-particle temperature distributions in the arc fringe region. This is because the approaching of the electron 
and heavy-particle temperatures to each other in the arc fringe region results physically from the energy 
re-distribution between the subsystems of electrons and heavy species due to the chemical reactions. In recent 
years, although some modeling work on the NLCE plasmas have been conducted, for example, the work by 
Tanaka19 and Baeva et al.20,21, the mutual interactions between the non-equilibrium effects of NLCE and NLTE 
have not been completely revealed with no considerations of the coupled energy and particle balance processes in 
the same plasma system. Furthermore, even purely for the NLTE situations, the spatially non-uniform tempera-
ture distributions of the electron and heavy-particle subsystems would: (i) influence the energy transfer process 
of the electron or heavy-particle subsystem itself through the traditional heat conduction, convection processes, 
and the elastic collision process between electrons and heavy particles, Qeh

el ; (ii) result in an extra energy transfer 
process to the electron or heavy-particle subsystem due to the spatial gradient of the temperature ratio, the term 
containing θ∇

→
ln  (here θ = Te/Th) in the energy conservation equations of electrons and heavy particles as shown 

in refs22,23. To our knowledge, the second non-equilibrium energy transfer process has never been reported up to 
now. This, to some extent, indicates a mutual influence between the electron and heavy-particle subsystems.

In this study, an atmospheric free-burning argon arc plasma, as illustrated in Fig. 1(a), is selected as a typical 
AP-LTP. The goal of this report is to reveal the NLTE-NLCE synergistic effects, especially the self-consistent 
transition between the thermal-chemical equilibrium and non-equilibrium states in the same AP-LTP system 
based on the self-consistent considerations of the energy and particle balance processes in plasmas23,24. This 
result provides a deep understanding to and a complete evaluation of the strongly coupled thermal and chemical 
non-equilibria, and a constructive guidance for the possible control of the non-equilibrium particle-energy trans-
portation process in the AP-LTPs in future.

Modeling Results
In this study, three dimensionless parameters are employed to describe the non-equilibrium features of the plas-
mas: (i) the temperature ratio, θ (=Te/Th), to quantitatively describe the NLTE state of the plasmas; (ii) the chem-
ical reaction ratio, ξ (=rion/rrec), and the electron number density ratio, ζ = ⁎n n( / )e e , to indicate the NLCE state of 
the plasmas, where rion and rrec are the ionization and recombination rates of the chemical reaction 
Ar + e ↔ Ar+  + 2e, ne and ⁎ne  represent the electron number densities based on the solution of the 
non-equilibrium governing equations and the Saha equation25 with an assumption of LCE, respectively. Therefore, 
the physical meanings of the preceding dimensionless parameters can be explained as: θ = 1.0 for the LTE state, 
while θ > 1 indicating the deviations of plasmas from the LTE state and a higher value of θ representing a higher 
non-thermal-equilibrium degree; similarly, ξ = ζ = 1.0 for the LCE state with a detailed balance of chemical reac-
tions, and the higher or lower values than 1.0 for ξ and ζ indicating the higher non-chemical-equilibrium degrees.

For an atmospheric gas discharge plasma, frequent collisions between diverse particles are essential to sustain 
the plasma itself. The elastic collisions transfer energy and momentum between species. The inelastic collisions 
transfer not only energy and momentum but also charges through the processes of charge exchange, ionization, 
and recombination. Both of the elastic and inelastic collisions drive the plasma system to be in an equilibrium 
state. From the aspect of energy transfer, each subsystem (electrons or heavy particles) obtains energy through the 
Joule heating process from the external power supply (

�� ��
⋅ =eJ E; , j e, ij ), and loses the energy to the surroundings 

via radiation, conduction and convection processes. Simultaneously, there exist the energy exchange processes 
between the electron and heavy-particle subsystems through the local elastic and inelastic collision processes 

Figure 1.  Schematic of an atmospheric free-burning arc plasma (a) and the selected calculation domain used in 
this study (b).
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( + =Q Q , j e, ieh
el

j
inel ), and a non-local energy transfer process related to the spatial gradient of the temperature 

ratio (λ θ∇
→θT lnj e , where j = e and i, λ θ

j  represents the non-equilibrium thermal conductivity of species j24) which 
represents a newly-revealed energy transfer process and will be discussed in the following section.

Figure 2 illustrates the spatial distributions of the Joule heating energy deposition process and the two energy 
exchange processes between the electrons and heavy particles at an arc current of I = 100 A, where the regions 
with different colors represent the dominated energy transfer process among the preceding three ones and are 
designated as the “Joule heating term”, “Collisional energy exchange term” and “Temperature ratio gradient term”, 
respectively. The radial profiles of the plasma parameters, including Te, Th, θ, ξ and ζ, at 1.5 (L1) and 5.0 mm (L2) 
downstream of the cathode tip are shown in Fig. 3. It is seen clearly from Figs 2 and 3 that: (i) The Joule heating 
process rules the energy deposition process near the cathode tip and the center of the anode surface (for elec-
trons) due to the higher current densities in these regions; and the Joule heating dominating region (Region I in 
Fig. 3) is larger in the electron subsystem than that in the heavy-particle subsystem because the current is mainly 
transported by electrons instead of ions. (ii) Due to the strong Joule heating effect, the gas is heated and partially 
ionized with a rapid expansion, and thus, experiences a collision-dominated process in both the Joule heating 
dominated region and the collisional energy exchange dominated region (Region II in Fig. 3). Just resulting from 
the frequent collisions between the electrons and heavy particles, the energy is exchanged sufficiently between 
these two subsystems, and θ stays nearly unity forming an LTE state. (iii) With a further expansion of the arc 
plasma, when the plasma meets the surrounding cold gas, a steep variation of θ occurs resulting from the vio-
lent interactions between the arc plasma and the cold gas; and thus, the steep decreases of the electron (Te) and 
heavy-particle temperatures (Th) occur in Region III of Fig. 3. The resulted large gradients of Te, Th and θ play a 
significant role in the energy transfer process which will be discussed in detail in the next section. In addition, 
it should be emphasized that: (i) Although the radiation loss is not dominated at any spatial positions in the arc 
column region, it still plays a vital role in the energy transfer process which will also be explained below. (ii) In the 
blue region of Fig. 2, the electron number density decreases to a very small value with no current passing through, 
and thus, the preceding energy transfer processes of Joule heating, elastic and inelastic collisions and the energy 
transfer related to the temperature ratio gradient all become very weak. This means that no plasma exists and just 
a cold gas left, which is designated as Region IV in Fig. 3.

Figure 3 also shows the radial distributions of the chemical reaction ratio (ξ) and the electron number density 
ratio (ζ). It is seen that ξ reaches the maximum in the vicinity of the arc axis and becomes minimum approaching 
the arc fringe. In the region near the geometrical axis of the arc, owing to the higher current density near the 
cathode tip, there exist strong Joule heating and very frequent energy exchanges between electrons and heavy 
particles; thus, the ionization process is dominated with LTE and LCE features, i.e., θ ~ 1 and ξ ~ 1 in Region I. 
With approaching the arc fringe in the radial direction, both Te and Th decrease, and the decreasing rate of Th is 
much faster than that of Te. This makes the value of θ increases to a maximum value first around r = 16.0 mm, and 
then, decreases to unity at the arc fringe where the cold gas dominated in Region IV. Correspondingly, the value 
of ζ experiences a drop to a minimum value and then a slight increase. The value of ζ is typically below unity with 
r > 5.0 mm. It means that the plasma departs from Saha equilibrium much more significantly than that of thermal 
equilibrium.

From the modeling results presented in Figs 2 and 3, it is seen clearly that the collision processes play a key 
role in the determination of the non-equilibrium characteristics of the arc plasmas. In the core region close to 
the arc axis, sufficient collisions between electrons and heavy particles result in an LTE-LCE state with a high 
electron number density and the equal values of Te and Th. While with the violent interactions between the arc 

Figure 2.  Illustrations of different dominated energy transfer processes in the arc column region for the 
electron (a) and the heavy particle (b) subsystems at I = 100 A. The two dashed lines in (b) indicate the two axial 
positions at the downstream of the cathode tip, i.e., z = 16.5 (L1) and 20.0 mm (L2), for presenting the radial 
profiles of the plasma parameters in Fig. 3.
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plasma and the cold surrounding gas, a strong quenching of plasma occurs with a significant recombination pro-
cess (i.e., ξ ≪ 1 in Region III of Fig. 3) and an accompanied significant decrease of the electron number density. 
This process results in the insufficient elastic collision energy exchanges leading to a large discrepancy between 
the temperatures of electrons and heavy particles (i.e., θ ≫ 1). At the same time, the energy release during the 
recombination process also leads to a big energy loss of the electron subsystem, and thus, results in the equal 
temperatures of electrons and heavy particles when the plasma decays to an ordinary cold gas in Region IV of 
Fig. 3. We can see that a self-consistent transition from the LTE-LCE plasma state, which can be called as a “hot” 
equilibrium state, to an obvious NLTE-NLCE plasma state, and then, to an ordinary cold gas state, which can be 
called as a “cold” equilibrium state, is revealed based on this newly-developed complete non-equilibrium plasma 
model with no non-physical treatments to the electron-heavy-particle collisions18. In our discussions hereafter, 
we also call Region III as the “transition region” to emphasize its unique features physically.

Discussions
The novel self-consistent physical-mathematical model23,24,26 is presented in the Methods and Validation Section. 
It is employed in this report for investigating the NLTE-NLCE synergistic effects in an AP-LTP system. For a 
non-equilibrium plasma system including electrons, ions and atoms as discussed in this study, starting from the 
Boltzmann equation for the distribution function of species j (fj) as


∑ σ= ′ ′ − Ω
=

∬
f

t
f f f f g c

D

D
( ) d d ,

(1)k

N
j

1
j k j k jk k

we can obtain the following equations for the electrons (j = 1) and heavy particles (j ≥ 2), respectively, based on a 
modified Chapman-Enskog method24.

Figure 3.  Radial profiles of the plasma parameters Te, Th, θ, ξ and ζ at the axial positions of L1: z = 16.5 mm 
(a) and L2: z = 20.0 mm (b) for the case of I = 100 A. The symbols I~III indicate the regions corresponding to 
the dominated energy transfer processes of Joule heating, collisional energy exchange and the term related to 
the spatial gradient of the temperature ratio for the heavy-particle subsystem in Fig. 2(b); while the symbol IV 
indicates the cold gas region.
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with expanding fj to its first order approximation, φ= +( )f f 1j j
(0)

j , under the assumption of φ  1j ; while the 
perturbation functions for electrons (φ1) and heavy species (φ ≥, j 2j ) can be expressed as
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The meaning of the symbols appearing in the preceding equations can be referred to ref.24. The major features 
of the non-equilibrium plasma model employed in this report23,24 can be briefly summarized as follows:

Firstly, the major difference between the species Boltzmann equations in this study [Equations (2) and (3)] 
and those employed in previous studies27,28 is that both the physical fact me/mh ≪ 1 and the inclusion of the cou-
pling between the electron and heavy-particle subsystems are considered. This leads to the appearance of the term 

φ φ σ− Ω →′∬ f f g c( ) d dj
(0)

1
(0)

1 1 j1 1 in Equation (3) and the term ∑
→

⋅
→

= C dk
N

1 j
k

k in Equations (4) and (5) representing 
the interactions between the electrons and heavy particles. Therefore, a complete set of diffusion coefficients can 
be obtained which ensures the exact mass conservation in a plasma system and differs from the simplified theory 
presented in refs27,28. The diffusion between electrons and heavy species represents the mass exchange process 
between these two subsystems; and there exists a significant influence on the diffusion coefficients due to the 
interactions between electrons and heavy particles. For example, the relative discrepancies between the thermal 
diffusion coefficients of heavy particles (i.e., argon atoms and ions) with or without considering the 
electron-heavy-particle interactions can reach 58% for θ = 3 at Te = 14000 K26. Furthermore, an energy exchange 
between the subsystems of electrons and heavy particles must be involved during the species diffusion process. 
Under an NLCE condition, this energy exchange process is represented by the terms Qe

inel and Qh
inel in the electron 

and heavy-particle energy conservation equations [Equations (10) and (11)]. Just this diffusion-related inelastic 
energy exchange process determines dominantly the self-consistent spatial temperature variations of the electrons 
and heavy-particles, i.e., the transition region (Region III in Fig. 3). We can explain physically the radial temper-
ature variations in Fig. 3 as follows: Starting from the arc axis, when the plasma expands towards the arc fringe, 
both the electron and heavy-particle temperatures decrease due to a lower current density and lower Joule heat-
ing. This also leads to lower species number densities, and consequently, lower collision frequencies between 
electrons and heavy particles. Thus, an NLTE plasma exits with a significant increase of θ, which has also been 
revealed in the recent work by Baeva et al.20. While with a further decrease of Te around lower than 5000 K, the 
recombination rate increases and exceeds the ionization rate significantly. Under such conditions, the inelastic 
collision energy exchange process plays a dominant role in controlling the energy re-distribution between the 
subsystems of electrons and heavy particles, and thus, makes the values of Te and Th close to each other. This 
means that the value of θ becomes unity again in the arc fringe region where the plasma decays to an ordinary 
cold gas quickly due to the strong interactions between the plasma mainstream and the cold surrounding gas. Our 
numerical modeling shows that in the transition region with a larger value and gradient of θ in Fig. 3, the radia-
tion loss of electrons can be neglected due to the lower value of Te (<7500 K in Fig. 3); and simultaneously, the 
Joule heating term is also very small because of the negligible current density in this region. Thus, the energy loss 
of electrons mainly comes from the electron-heavy-particle elastic collisions with a lower efficiency; while in 
contrast, the energy exchange between the heavy particles and the surrounding cold gas is sufficiently high, which 
leads to a much faster decrease of the heavy-particle temperature than that of electrons within the radial region of 
13~16 mm as indicated in Fig. 4. However, with further approaching the arc fringe in the radial direction, the fast 
electron decaying due to the recombination with ions takes away much more energy from the electron subsystem, 
which leads to a steep drop of the electron temperature in the radial direction from 16~20 mm, and a fast decrease 
of θ to unity in the cold gas region. For validating the important role of the chemical reactions on this 
self-consistent variation of the species temperatures, the modeling results based on the two-temperature (2-T) 
model are presented in Fig. 4. It can be seen clearly that the electron temperature is always much higher than that 
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of heavy particles along the radial direction away from the arc axis, even though in the cold gas region; and thus, 
the transition region cannot be predicted physically.

Secondly, for an NLTE plasma system, because there exist spatial temperature distributions of electrons and 
heavy particles, only two of the three parameters Te, Th and θ are independent; that is to say, the spatial gradient 
of θ has to be considered in the non-equilibrium model. This has been embodied in the species perturbation 
functions with the terms containing 

��
θ∇ ln  [Equations (4) and (5)], and also appears in the energy flux terms of 

the electron and heavy-particle energy conservation equations, i.e., 
�� ��

λ θ∇ ⋅ ∇θT( ln )e e  in Equation (10) and 

Figure 4.  Comparisons of the calculated radial profiles of Th, Te and θ at the axial location of z = 16.5 mm using 
different models for the case of I = 100 A. (a) Complete non-equilibrium model; (b) Non-equilibrium model 
with no terms containing 

��
θ∇ ln  in Equations (10) and (11); and (c) 2-T model. The corresponding various 

dominated energy transfer regions as those in Figs 2 and 3 are also indicated in this figure and the transition 
region is highlighted with a light-yellow background in (a) and (b).
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λ λ θ∇
→

⋅ + ∇
→θ θ T[( ) ln ]i a e  in Equation (11). These energy flux terms represent the mutual interactions between 

the subsystems of electrons and heavy particles, physically based on the assumption that there exits strong cou-
pling between electrons and heavy particles through the work and particle transfer between these two subsystems 
due to the occurrence of the chemical reactions and diffusions in our model23,24, instead of regarding them as two 
isolated systems in the previous simplified models27,28. Therefore, from the aspect of energy transfer, the electrons 
not only “feel” the existence of heavy particles through the direct collisions with them, but also “feel” the 
non-uniform distribution of the heavy particles due to the unbalanced diffusion driving force; and vice versa. It is 
anticipated that this energy exchange process related to the spatial gradient of the temperature ratio would 
become dominated in the region with a high gradient of θ, as illustrated in Region III of Fig. 3. And it would 
weaken the significant difference between Te and Th. By comparing the modeling results in Fig. 4(a,b), we can see 
clearly that: (i) The predicted transition region becomes larger if the terms λ θ∇

→
⋅ ∇

→θT( ln )e e  and 
λ λ θ∇

→
⋅ + ∇

→θ θ T[( ) ln ]i a e  are not included in Equations (10) and (11). And this discrepancy becomes much more 
significant with the increase of the arc current from 100 A to 600 A, as shown in Fig. 5. Therefore, we can conclude 
that the energy transfer terms λ θ∇

→
⋅ ∇

→θT( ln )e e  and λ λ θ∇
→

⋅ + ∇
→θ θ T[( ) ln ]i a e  in Equations (10) and (11) can be 

regarded as a negative feedback control of the temperature difference between electrons and heavy particles, 
together with the elastic collision energy transfer process, Qeh

el , and the inelastic energy transfer related to the 
chemical reactions, Qe

inel, to drive the non-equilibrium plasma system to an equilibrium one. (ii) Corresponding 
to the enlarge of the predicted transition region for the case in Fig. 4(b), the spatial distribution of the current 
density becomes flatter along the radial direction with a lower maximum current density at the arc axis compared 

Figure 5.  Variations of the area and maximum axial width of the transition region for the heavy-particle 
subsystem with the arc currents (solid lines), also compared with the modeling results (dashed lines) with no 
consideration of the terms containing 

��
θ∇ ln  in Equations (10) and (11).
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Table 1.  Boundary conditions for the modelling results in Figs 2~5. *The symbols vz and vr represent the axial 
and radial components of the velocity vector in the (r, z) coordinate; while I and S stand for the arc current and 
the area of the rear surface of the cathode, respectively.
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with their counterparts using the complete non-equilibrium model in Fig. 4(a). This also leads to a significant 
discrepancy of the calculated distributions of the electron and heavy-particle temperatures in the equilibrium 
region close to the arc axis between these two cases.

Methods and Validation
For a typical atmospheric free-burning argon arc as shown in Fig. 1(a), the calculation domain (ABCDEOFGA) 
employed in this study is illustrated in Fig. 1(b) with the geometrical dimensions. The plasma generator is com-
posed of a cylindrical tungsten cathode and a flat copper anode operating at specified arc currents. The diameter 
and length of the tungsten cathode are 4.0 and 15.0 mm, respectively, with a tip angle of 60°, while the thickness 
and radius of the copper anode are 2.0 mm and 25.0 mm, respectively. The electrode gap spacing between the 
cathode tip and the anode surface is fixed at 8.0 mm. As shown in Fig. 1(b), the whole calculation domain can be 
divided into five regions, i.e., the two solid electrode bodies, two electrode sheaths and one arc column region. 
Since the collisionless sheath near electrodes departures from the quasi-charge neutrality condition with its thick-
ness typically on the magnitude of 1.0 μm at atmospheric pressure29 which is much smaller than that of the arc 
column, no spatial cell is set for these two sheaths. The sheath serves as an interface between the plasma bulk and 
the electrodes. In this study, the physical-mathematical model for a free-burning argon arc in an axisymmetric 

Figure 6.  Comparison of isotherms of the calculated electron temperature (right) with the measured results32 
(left) of an atmospheric free-burning argon arc for the case of I = 100 A and d = 10 mm.

Figure 7.  Comparisons of the calculated and measured34 2-D electron temperature distributions (a), and the 
radial profiles of Te at L = 1.0 and 7.0 mm (b) for a TIG argon arc (I = 200 A, d = 8.0, Q = 12.0 slpm).
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coordinate (r, z) includes three sub-models, i.e., a two-dimensional (2-D) heat and electric conduction model 
for the solid cathode and anode bodies, a one-dimensional (1-D) collisionless electrode sheath model, and a 
2-D NLTE-NLCE arc column model. The non-equilibrium model for the plasma bulk is based on our previous 
research which includes the governing equations and the self-consistent transport properties with the considera-
tion of three components, i.e., argon atoms, firstly-ionized ions, and electrons. The governing equations with the 
necessary transport properties of the non-equilibrium argon plasmas23,24 are listed as follows:
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where the subscript “j” indicates the different species in plasmas including electrons and heavy particles with 
argon ions and atoms which are represented by the subscripts “e”, “h”, “i” and “a”, respectively; Qeh

el  represents the 
energy exchange of the elastic collisions between electrons and heavy particles, while the terms Qe

inel and Qh
inel 

stand for the energy exchanges related to the chemical reactions for the electron and heavy-particle subsystems, 
respectively. The physical meanings of other terms are listed in refs23,24. The boundary conditions for the model-
ling results in Figs 2~5 are listed in Table 1.

Since we focus on the non-equilibrium effects in the arc column region, a simple collisionless ion-electron 
sheath model30 is employed in this report. In this simplified sheath model, the electrode sheath works as an infor-
mation exchange interface between the solid electrode and the arc column. It gives the relationship between the 
sheath voltage drop and the current density; provides the potential and heat flux to the plasma side; provides the 
current density and heat flux to the electrodes based on the solution of the conservation equations of the sheath. 
That is to say, the cathode and anode sheaths are coupled in the form of the boundary conditions with the other 
parts of the arc system. The preceding complete non-equilibrium plasma model is solved numerically using a 
computer code based on the SIMPLE-like algorithm31 to study the NLTE-NLCE synergistic effects on the energy 
exchange and particle balance processes in an atmospheric free-burning argon arc working as a typical AP-LTP 
model.

In previous studies, many experimental investigations on the thermal and electrical characteristics of arc plas-
mas have been conducted, e.g., the work presented in32–35. In this section, we have done two validations (one is 
the free-burning argon arc, another is the tungsten inert gas (TIG) welding arc) before using this novel complete 
non-equilibrium model to study the NLTE-NLCE synergistic effects on the non-equilibrium characteristics of the 
AP-LTPs. A comparison between the experimentally measured temperature distributions of a free-burning argon 
arc based on the optical emission spectroscopy measurements32 and the calculated electron temperatures for the 
arc current of I = 100 A and the electrode gap spacing of d = 10 mm is shown in Fig. 6. It is seen that the calculated 
spatial distribution of Te is consistent well with that of the measured data, especially for the temperature profile 
along the arc axis. The calculated total discharge voltage including the potential drops through the arc column 
and the electrode sheaths is 23.2 V, which is also very close to the measured value of 22 V, with a relative discrep-
ancy of 5.1%. For the TIG argon arcs, the comparisons of the calculated and measured 2-D electron temperature 
distributions, as well as the radial profiles of Te at the axial locations of L = 1.0 and 7.0 mm downstream of the 
cathode tip are presented in Fig. 7(a,b), respectively, under the operating conditions of I = 200 A, d = 8.0 mm 
and a gas inlet flowrate of Q = 12.0 slpm along the cathode surface34. The maximum values of Te from modeling 
and measurements are both around 19000 K at L = 1.0 mm, which is also qualitatively consistent with the meas-
ured data in ref.35. The maximum discrepancies between the calculated and measured values of Te at L = 1.0 and 
7.0 mm are 1.7% and 1.5%, respectively. The preceding comparisons indicate the reliability of the non-equilibrium 
physical-mathematical model, as well as the developed computer codes in this report.
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