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Follicle arrest is one of the main characteristics of polycystic ovary syndrome (PCOS), the
most common endocrinological disorder in reproductive-aged women. Increasing
evidence proves that high anti-Mullerian hormone (AMH) levels may play an important
role in follicular development. Long noncoding RNA (lncRNA) with a length of more than
200 nt is widely involved in the directional differentiation, growth, and development of cells,
whereas whether lncRNA is involved in AMH’s role in follicular development is unknown. In
this study, we analyzed lncRNA expression in ovarian granulosa cells (GCs) collected from
women with and without PCOS via high-throughput sequencing. The results showed that
a total of 79 noncoding transcripts were differently expressed in GCs of PCOS patients,
including upregulated lncRNA MALAT1. The upregulation of MALAT1 was further
confirmed by RT-qPCR in GCs from a larger cohort of PCOS patients. Furthermore,
knockdown MALAT1 can promote the proliferation of KGN cell in vitro. These data
suggested a role for MALAT1 in the development of PCOS. Meanwhile, MALAT1 and
phosphorylated SMAD 1/5 (Ser463/465) protein were upregulated in KGN cells after
exogenous AMH stimulation, which identified AMH perhaps as a regulator for the
expression of MALAT1. We also found that MALAT1 can predict clinical pregnancy
outcome to a certain extent by ROC curve analysis (area: 0.771, p = 0.007, 95% CI:
0.617–0.925, sensitivity: 57.1%, specificity: 91.7%). Thus, our findings revealed a role of
lncRNA MALAT1 in inhibiting granulosa cell proliferation and may be correlated with
pregnancy outcome in PCOS.
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INTRODUCTION

Polycystic ovary syndrome (PCOS), the most common
endocrinological disorder, is characterized by chronic oligo/
anovulation, hyperandrogenism, and polycystic ovaries, and it
affects 8%–13% reproductive-aged women (1, 2). In addition,
women with PCOS often show other disorders, including insulin
resistance (IR), obesity, type 2 diabetes, cardiovascular disease,
and anxiety (3). The ovary of women with PCOS exhibit more
preantral or antral follicles (2–6 mm) than normal women,
leading to abnormal ovulation (4). These follicles in PCOS
present with a relative lack of granulosa cells and/or
degenerating granulosa cells (GCs) (4, 5), indicating abonormal
GC proliferation and/or apoptosis. Accumulating evidence
indicates that granulosa cells are essential in determining
follicular fate by providing the oocyte with nutrients and
growth regulators (6). Therefore, the abnormality of GCs
might be a critical factor in the pathogenesis of PCOS.

Anti-Müllerian hormone (AMH), or Müllerian-inhibiting
substance (MIS), is 2~4-fold higher in serum of women with
PCOS than in healthy women (7, 8). Increased serum AMH
produced by granulosa cells was thought to reflect the increased
number of small antral follicles (9, 10). Functional roles of AMH
in ovarian folliculogenesis were to inhibit the initial recruitment
of primordium follicles and reduce follicle sensitivity to follicle-
stimulating hormone (FSH) (11–13). As a member of the
transforming growth factor b (TGF-b) family, AMH binds to
an AMH type II receptor dimer and recruits a type I receptor
dimer to form a heterotetramer complex, phosphorylating
mothers against decapentaplegic (SMAD)-1/5/8 (pSMAD).
Phosphorylated SMAD proteins bind to co-SMAD (i.e.,
SMAD4), as a transcription factor complex, aggregating in the
nucleus and getting involved in the regulation of target gene
expression (14–16). The complexity of AMH signal opens up a
lot of possibilities for the regulation of different pathological
mechanisms in PCOS.

Long noncoding RNAs (lncRNAs) are a class of transcripts
(>200 nucleotides) lacking protein-coding capacity (17).
LncRNAs, as functional RNA, are categorized into six groups
depending on the location on the genome (18). LncRNAs have
various biological processes and regulate the expression of target
genes via epigenetics, cis regulation at enhancers, and
posttranscriptional regulation of mRNA processing in the
nucleus and cytoplasm (19, 20). It has been reported that
lncRNAs may play a crucial role in follicular development (19–
22). Furthermore, several aberrant lncRNAs are expressed in
different tissues of women with PCOS, including granulosa cells,
follicular fluid, and peripheral blood (23–26). Despite these
investigations, it remains unclear whether lncRNA mediates
the pathological mechanism of high AMH in PCOS and
whether there is a potential link between lncRNA and the
clinical outcomes of PCOS.

In this study, we conducted RNA sequencing analysis to
identify differentially expressed genes in luteinized granulosa
cells obtained from women with and without PCOS. We
identified that MALAT1, a lncRNA with 7–8 kb transcript
located at chromosome 11, was elevated in women with PCOS.
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We investigated the role of MALAT1 in the granulosa cells from
PCOS patients and found the potential value of MALAT1 in
predicting clinical pregnancy outcomes in PCOS.
MATERIALS AND METHODS

Human Subjects and Sample Collection
Ovarian granulosa cells and follicular fluids were collected
from 68 PCOS patients and 65 controls who underwent in
vitro fertilization (IVF) or intracytoplasmic sperm injection
(ICSI) at the Center for Reproductive Medicine, Women’s
Hospital, Zhejiang University School of Medicine, between
July 2016 and Oct 2018. The study was approved by the ART
Ethnics Committee of the Women’s Hospital, School of
Medicine, Zhejiang University, and informed consent was
obtained from all participants. Diagnosis of PCOS was
carried out according to the revised Rotterdam consensus.
Women, who were infertile due to fallopian tube factors
or male factors, with regular menstruation, normal
ovarian function, no clinical or biochemical profiles of
hyperandrogenism, and no systemic or other gynecological
and endocrine diseases served as controls. All participants
were under 40 years old.

RNA-Sequencing
Single-end libraries were synthesized using the Ion Total RNA-
Seq Kit according to the supplied protocol. Library construction
and sequencing was performed by Ion Proton™ Sequencer at
NovelBio Bio-Pharm Technology Co. Ltd. (Shanghai, China).
High-quality reads that passed the ion proton quality filters were
kept for sequence analysis.

Culture of KGN Cell Lines and
AMH Treatment
The human granulosa-like KGN tumor cell line, purchased from
Beina Biotechnology Co. Ltd. (Beijing, China), was grown in
DMEM/F12 medium (HyClone) supplemented with 10% fetal
bovine serum (BI, Beit-Haemek, Israel). The cell incubator was
set at 37°C and 5% CO2. KGN cells were grown in 12-well plates
and incubated with different doses of AMH (0, 5, 20, and 50 ng/
ml) (R&D Systems, Abingdon, UK) for 24 h or within 2 h prior
to RNA extraction.

Transfection of Cells
KGN cells were seeded into 12- and 96-well plates and then
transfected with three siRNAs (GenePharma, Shanghai, China)
using Lipofectamine 3000 Reagent (Invitrogen, Carlsbad, CA,
USA), following the supplied guidelines. After transfection, the
cells were incubated for 24, 48, or 72 h before further treatments.
The siRNA sequences are presented in Supplemental Table S1.

RNA Isolation and RT-qPCR
Total RNA was isolated using the RNAiso Reagent and then
reverse transcribed into cDNA (PrimeScript™ RT Reagent Kit).
Quantitative real-time polymerase chain reaction (RT-qPCR)
was performed to detect the gene expression by using the
April 2022 | Volume 13 | Article 825431
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Lightcycler 480 Real-Time PCR System (Roche Diagnostics). The
relative expression of RNA was performed using the DDCT
method. The primer sequences of the tested genes are shown
in Supplemental Table S2.

Western Blotting Assay
Cultured KGN cells were treated with AMH (20 ng/ml) within
120min and were immediately lysed in radioimmunoprecipitation
assay (RIPA) lysis buffer (Beyotime Biotechnology, Shanghai,
China) containing protease and phosphatase inhibitor, which
were centrifuged at 13,000×g for 30 min at 4°C. The
concentrations of protein were determined using a Pierce BCA
Protein Assay Kit (Thermo). The protein denatures at 100°C for
5 min and −80°C freeze storage. Denatured proteins were
separated with sodium dodecyl sulfate-polyacrylamide gel
electrophoresis gels (10%) and transferred onto Hybond-NC
(0.22 µm) membrane (Beijing Solarbio Science & Technology
Co. Ltd., Beijing, China). Followed by blocking with 5% BSA for
1 h at room temperature, the membranes were washed with PBS
(containing 0.5 ml/L Tween-20) for three times (5 min each time).
Membranes were then incubated with specific primary antibodies
overnight at 4°C. The antibodies used in the Western blot analysis
are summarized in Supplementary Table S3. Next day, the
membranes were washed thrice and then incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies
for 1 h at room temperature. ECL detection kit was used to detect
the protein bands which were analyzed by ChemiDoc XRS System
(Bio-Rad, Hercules, CA, USA). Quantitative analysis of protein
bands was performed by ImageJ version 1.42.

Cell Proliferation Assay
After siRNA transfection, cell viability was determined using
the CCK-8 assay according to the manufacturer’s protocol and
measured at 450 nm. Also, EdU Cell Proliferation Assay
Kit (RiboBio, Guangzhou, China) was used following the
manual book. Cell proliferation was analyzed under a
fluorescent microscope.

Clinical Pregnancy Criteria
Clinical pregnancy was diagnosed by ultrasonography on the
35th day after fresh embryo transfer with intrauterine cyst and/or
fetal heartbeat. The pregnancy outcomes of the enrolled patients
with or without PCOS were followed up, and whether there was a
positive clinical pregnancy was included in the ROC
curve analysis.

Statistical Analysis
Statistical differences were calculated using the SPSS statistical
software package (version 22.0) (IBM Corp., Armonk, NY, USA).
Our data were presented as the mean ± standard deviation (SD).
Student’s t-test was performed to analyze two different groups.
Pearson was used for correlation analysis. Receiver operating
characteristic curve (ROC) was used to evaluate the predictive
value of the expression level of MALAT1 on the positive rate of
single live birth. p value less than 0.05 was considered
statistically significant.
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RESULTS

Clinical Characteristics
A total of 133 patients were included in this study, among them 8
cases (4 control patients and 4 PCOS patients) were selected for
transcriptome sequencing and the others (65 control patients and
68 PCOS patients) for RT-qPCR. The major clinical characteristics
of PCOS patients and the control group are shown in Table 1. The
serum level of AMH were significantly higher in women with
PCOS, which is consistent with most previous studies (9, 10).

Expression Profiles of Differentially
Expressed Transcripts
High-throughput sequencing is one way to target disease-causing
genes.We evaluated the transcriptome profiling in granulosa cells of
women with or without PCOS. Most differentially expressed genes
were protein coding (Figure 1A). There were 79 noncoding genes,
among them, 3 were microRNAs, 5 were snoRNAs, 2 were rRNAs,
11 were tRNAs, and 58 were long noncoding transcripts
(Figure 1A). A total of 261 transcripts were shown to be
differently expressed in GCs of PCOS patients compared with
controls (log2FC > |1.5|, p < 0.05) (Figures 1B, C). Ten
differently expressed genes including lncRNA and mRNA were
randomly selected to verify their expression in PCOS patients of
cohort 2 (13 control and 16 PCOS patients). The results showed that
trends in six mRNAs (STK4, ZMAT3, CNOT6, ELK, NUCKS1,
CIR1) and one lncRNAMALAT1 expression levels were consistent
with the RNA-seq, while other mRNA (PRDX2, LITAF, ST3GAL4)
was opposite (Figures 1D, E). In order to further target meaningful
genes with high expression in GCs, we conducted further screening
based on read counts (more than 50). In total, 23 genes were
differentially expressed in granulosa cells of the PCOS group and
control group, among which 7 genes were downregulated and 16
genes were upregulated. Three noncoding genes were found in the
upregulated genes, including lncRNA MALAT1 and two tRNAs
(TRNS2 and TRNT) (Figure 1F). To further verify the expression of
MALAT1, 48 cases of PCOS patients with matching basic data and
48 cases of normal control granulosa cells were selected as cohort 3,
respectively. The RT-qPCR results showed that the expression of
MALAT1 in PCOS patients’ granulosa cells was significantly
increased (p < 0.01, Figure 1G). The whole RNA-seq data were
uploaded to NCBI’s Sequence Read Archive (SRA) database
(accession number: PRJNA762274).

Knockdown MALAT1 Promoted Granulosa
Cell Proliferation In Vitro
To investigate the role of MALAT1 in the granulosa cells of
PCOS, KGN cells were transfected with three different siRNA
sequences. A scramble sequence was used as control, and the
knockdown efficiency of MALAT1 was verified by RT-qPCR
(Figure 2A). We measured cell proliferation after transfection.
EdU and CCK8 assays consistently showed that downregulated
MALAT1 increased the proportion of proliferating cells in total
cells (Figures 2B, C) and promoted cell proliferation ability
(Figure 2D). These findings suggest that upregulated MALAT1
may inhibit granulosa cell proliferation.
April 2022 | Volume 13 | Article 825431
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AMH May Upregulate MALAT1 Expression
Through the SMAD Signal Pathway
There is a lot of consensus that upregulation of AMH plays a
critical role in the follicular development of PCOS. We further
investigated whether AMH affected granulosa cell proliferation
through the high expression of MALAT1. We first determined
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the effective concentration of AMH on KGN cells. We found that
AMH at 20 ng/ml significantly upregulated MALAT1 after
stimulating KGN cells for 24 h (Figure 3A). As expected, the
expression of MALAT1 in KGN cells increased gradually by
prolonging AMH (20 ng/ml) treatment time (Figure 3B), which
identified AMH perhaps as regulators for the expression of
TABLE 1 | Characteristics of the PCOS and control patients.

Cohort 1 Cohort 2 Cohort 3

Control (n = 4) PCOS (n = 4) p-value Control (n = 13) PCOS (n = 16) p-value Control (n = 48) PCOS (n = 48) P-value

Age (years) 32.00 ± 0.00 30.75 ± 0.96 0.040* 28.08 ± 2.81 29.56 ± 3.46 0.111 30.29 ± 3.93 28.77 ± 3.60 0.051
BMI (kg/m2) 22.01 ± 0.45 21.35 ± 1.33 0.31 20.52 ± 2.48 23.06 ± 2.50 0.000*** 21.34 ± 2.55 22.03 ± 2.45 0.183
Basal FSH (IU/L) 6.91 ± 1.06 6.39 ± 0.99 0.499 6.20 ± 2.28 6.34 ± 1.59 0.422 6.56 ± 1.67 6.03 ± 2.03 0.17
Basal LH (IU/L) 5.20 ± 1.06 12.41 ± 5.99 0.055 4.87 ± 2.04 11.88± 5.21 0.000*** 5.14 ± 2.76 10.88 ± 10.49 0.000***
LH/FSH 0.78 ± 0.28 1.93 ± ± 0.84 0.039* 0.81 ± 0.27 1.90 ± 0.88 0.000*** 0.84 ± 0.57 1.81 ± 1.26 0.000***
Basal E2 (IU/L) 125.58 ± 22.61 131.50 ± 36.60 0.793 89.65 ± 40.51 115.57 ± 43.58 0.056 99.66 ± 59.73 113.37 ± 98.84 0.413
Basal PRL (ng/ml) 13.85 ± 11.87 9.025 ± 6.61 0.504 9.87 ± 9.80 5.89 ± 6.60 0.102 15.71 ± 10.34 15.48 ± 14.90 0.93
Basal P (ng/ml) 2.38 ± 0.58 1.01 ± 0.69 0.023* 1.17 ± 0.69 1.20 ± 1.27 0.470 1.79 ± 1.61 1.61 ± 1.47 0.475
Basal T (ng/ml) 0.98 ± 0.41 0.73 ± 0.59 0.513 0.47 ± 0.42 0.71 ± 0.70 0.140 0.72 ± 0.68 1.10 ± 1.33 0.081
AMH (ng/ml)a – – – 3.62 ± 1.89 8.20 ± 4.14 0.000*** 3.05 ± 2.18 9.94 ± 5.69 0.000***
April 2022 |
 Volume 13 | Articl
Cohort 1 represents patients with granulosa cells for transcriptome sequencing; cohort 2 represents patients with granulosa cells for quantitative real-time PCR for differentially expressed
genes; cohort 3 represents patients with granulosa cells for quantitative real-time PCR for lncRNA MALAT1. Abbreviations: BMI, body mass index; FSH, follicle-stimulating hormone; LH,
basal luteinizing hormone; E2, basal estradiol; PRL, prolactin; P, progestational hormone; T, total testosterone; AMH, anti-Müllerian hormone; SEM, standard error of the mean. All results
are presented as mean ± SEM. Indexes with significance differences (*p < 0.05; ***p < 0.001) are shown in bold. an = 22 in the control group (separately 10 in the first cohort and 12 in the
second cohort) and n = 29 in the PCOS group (13 in the first cohort and 19 in the second cohort).
A B

D

E

F G
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FIGURE 1 | LncRNA MALAT1 is upregulated in granulosa cells of women with PCOS. (A) Graph showing the biotypes of RNA transcriptome sequencing profile.
(B, C) Graph showing the whole differentially expressed genes. Among them, 48 were downregulated and 216 were upregulated. Red: upregulated genes; blue:
downregulated genes. (D) Ten differentially expressed genes (DEGs) in RNA-seq. (E) Graph showing the DEG expression level in granulosa cells of women with or
without PCOS (13 control patients and 16 PCOS patients) (*p < 0.05, **p < 0.05, ***p < 0.001). (F) Heatmap showing the hierarchical clustering of the most striking
differentially expressed genes in patients with and without PCOS. Red: upregulated genes; green: downregulated genes. (G) Graph showing the expression levels of
MALAT1 in a larger cohort (48 control patients and 48 PCOS patients) using RT-qPCR (***p < 0.001).
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MALAT1. Furthermore, we detected that AMH treatment in
KGN cells increased p-SMAD1/5 levels but not total SMAD1 and
SMAD5 (Figures 3C, D). Taken together, these data suggested
that exogenous AMH increased lncRNA MALAT1 level through
increasing phosphorylated SMAD1/5 protein level.

Correlations Between MALAT1 Expression
and Clinical Parameters
Whether lncRNA MALAT1 can be used as a marker of PCOS is
crucial for clinical application. We investigated the relationship
between MALAT1 expression level in GCs and various clinical
parameters presented in Tables 1 and 2. We found that high
expression level of MALAT1 was positively related with basal
estrogen, progesterone, retrieved oocyte number, and fertilized
ovum (2PN) in PCOS patients (Figure 4B), while not found in
control patients (Figure 4A). No significant correlation was
exhibited between MALAT1 expression and others (BMI, basel
FSH, basel LH, total testosterone, PRL, and AMH). All controlled
ovulation induction programs in cohort 3 are listed in
Supplementary Table S4.

Diagnostic Values of MALAT1 Expression
for Positive Clinical Pregnancy in PCOS
Binary logistic regression analysis showed that the relative
expression level of MALAT1 significantly affected the clinical
pregnancy rate in PCOS (p = 0.032), not in control patients
(Table 3). Furthermore, ROC curve analysis was used to evaluate
the diagnostic value of MALAT1 expression for positive clinical
Frontiers in Endocrinology | www.frontiersin.org 5
pregnancy in PCOS. The area under the curve (AUC) was 0.771
with 95% confidence interval of 0.617–0.925 (p = 0.007), while
sensitivity was 57.1% and specificity was 91.7% (Table 3;
Figure 4D). The results of the ROC analysis were not
significant in the control (Table 3; Figure 4C). Those findings
suggested that MALAT1 may serve as a potential diagnostic
marker of positive clinical pregnancy for PCOS.
DISCUSSION

Here, we identified that lncRNA MALAT1 was elevated in
granulosa cells of women with PCOS using RNA-seq and RT-
qPCR. The results of this study demonstrated that, in KGN cells,
high level of AMH increased MALAT1 expression and suggest that
the increase was mediated by p-SMAD1/5 protein but not SMAD1
and SMAD5. Furthermore, knockdown MALAT1 promoted KGN
cell proliferation. In sum, we found that AMH increased a nuclear
lncRNA, inhibiting granulosa cell proliferation in PCOS, perhaps
resulting in the barrier of crosstalk between granulosa cells and eggs,
and eventually the stagnation of follicle development (Figure 3D).
However, we also found that MALAT1 expression in GCs had a
positive relationship with estrogen, progesterone, retrieved oocyte
number, and fertilized ovum in PCOS. Furthermore, ROC analysis
implied that MALAT1 may be a potential diagnostic marker of
positive clinical pregnancy for PCOS.

Notably, it has been widely recognized that arresting at the
small- or medium-sized antral follicle stage is a key feature of
A B

D

C

FIGURE 2 | Knockdown of MALAT1 promoted KGN cell proliferation. (A) Graph showing the expression level of MALAT1 in KGN cells treated with three different
siRNA sequences via RT-qPCR (*p < 0.05). (B) Graphs showing the proportion of proliferation cells via Edu assay in granulosa cells treated with the most efficient
siRNA sequence in (A). The amount of cells was detected by staining with Hochest (blue), as the proliferated cells were detected by staining with EdU (red). The
result was analyzed by fluorescence microscope. (C) Graph showing the percentages of EdU-positive cells (*p < 0.05). (D) Graph showing the viability of KGN cells
treated with siRNA-MALAT-1 was measured by using Cell Counting Kit-8 at the indicated time points (*p < 0.05; ***p < 0.01).
April 2022 | Volume 13 | Article 825431
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PCOS (27, 28). The core causes of follicle arrest and failure to
ovulation are still unclear. Granulosa cells, one of somatic cells in
follicle, play a key part in the follicle development in PCOS. Poor
responsiveness of GCs to LH and higher levels of AMH produced
by GCs of antral follicles are thought to impair GC function and
contribute to follicle arrest (29–31). Previous studies found that
different concentrations of AMH in vitro could decrease granulosa
cell proliferation by binding to AMHRII transmembrane receptor
to active intracellular SMAD signalling pathway (32, 33).
However, whether the SMAD signaling pathway can affect the
Frontiers in Endocrinology | www.frontiersin.org 6
function of granulosa cells by regulating the expression of lncRNA
has not yet been clarified.

LncRNA MALAT1, also known as NEAT2, is highly
expressed in cancer and mainly associated with tumor cell
proliferation, apoptosis, migration, invasion, and functions as
ceRNA (34–38). Fewer are reported in reproductive disorders.
Previous studies put forward that MALAT1 is reduced in
granulosa cells of women with PCOS (39, 40). On the
contrary, in our study, we found that the abundance of
MALAT1 was higher in the granulosa cells of women with PCOS.
A B

D

C

FIGURE 3 | AMH upregulated SMAD signal pathway and MALAT1 expression. (A) KGN cells were treated with a range of AMH dose (5 to 50 ng/ml) for 24 h. The
expression level of MALAT1 was determined by RT-qPCR (*p < 0.05; ***p < 0.01). (B) Graph showing the expression level of MALAT was gradually increased in
KGN cells treated with 20 ng/ml AMH and was determined by RT-qPCR (*p < 0.05; ***p < 0.01). (C) Representative Western blot images using anti-pSMAD 1/5,
anti-SMAD1, and anti-SMAD5 antibodies on total protein lysates extracted from KGN cells treated with AMH (20 ng/ml) for 120 minutes. Quantitative analysis of
protein bands was performed by ImageJ. *p < 0.05; **p < 0.01. (D) Scheme graph of MALAT-induced proliferation decreased in granulosa cells. AMH upregulated
the expression of MALAT via activing phosphorylated SMAD1/5, leading to suppress granulosa cell.
TABLE 2 | Retrieved oocyte number, embryo development, and embryo transfer outcome.

Cohort 3 Retrieved oocyte
number

2PN number Embryo transfer

No embryo
transfer

Negative clinical
pregnancy

Positive clinical pregnancy

Ectopic
pregnancy

abortion Twins live
birth

Single live
birth

Singleton neonatal
weight (kg)

Control
(n = 48)

9.85 ± 7.26 4.19 ± 3.15 6 20 1 4 2 15 3.24 ± 0.41

PCOS
(n = 48)

15.81 ± 10.24** 7.71 ± 5.08*** 8 13 1 0 2 24 3.24 ± 0.48
Apr
il 2022 | Volu
All results are presented as mean + SEM. Indexes with significant differences (**p < 0.01; ***p < 0.001).
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Compared with previous studies in PCOS patients (39, 40),
PCOS patients in previous studies have higher T level but
not ours (Supplementary Table S5). However, patients we
included have higher LH and AMH levels. There is no
Frontiers in Endocrinology | www.frontiersin.org 7
significant difference in the LH level, and no AMH values are
displayed in their studies. Based on the main difference in
androgen levels, we hypothesized that MALAT1 expression in
GCs might be downregulated in women with PCOS with
A

B

DC

FIGURE 4 | Correlations between MALAT1 expression and clinical parameters. (A) Graph showing correlation between the relative expression of MALAT1 in GCs of
control patients and clinical parameters. (B) Graph showing correlation between the relative expression of MALAT1 in GCs of OCOS patients and clinical parameters.
(C) ROC curve showing diagnosis value of MALAT in GCs for the positive clinical pregnancy in women without PCOS. (D) ROC curve showing diagnosis value of
MALAT in GCs for the positive clinical pregnancy in women with PCOS.
April 2022 | Volume 13 | Article 825431
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hyperandrogenism, while MALAT1 level might be up-regulated
in patients without hyperandrogenism and with high AMH. To
investigate the relationship between androgen and MALAT1, in
vitro, KGN cells were treated with a range of DHEA dose for
24 h. As expected, the expression of MALAT1 in KGN cells
decreased gradually with the increase of the DHEA
concentration (Supplementary Figure S1). In vivo, the
decreased expression of MALAT1 in the ovaries of DHEA-
induced PCOS rat model (41) also suggested that androgen
inhibited MALAT1 expression. These results preliminarily
supported our hypothesis that MALAT1 expression levels were
inconsistent in women with PCOS with or without
hyperandrogenism. In our next study, it is necessary to
construct a PCOS animal model with high AMH to verify the
relationship between AMH and MALAT1. Nevertheless, it was
worth noting that the effect of knockdown MALAT1 on KGN
cell proliferation was consistent between our study and the
previous one (39). Those findings indicated that PCOS is a
highly heterogeneous disease, but there may be common
pathological mechanisms among diverse clinical manifestations.

In our study, we discovered that MALAT1 was mainly located
in the nucleus of KGN cells (Supplementary Figure S2) and a
certain dose of AMH upregulated lncRNA MALAT1 expression
in vitro possibly by increasing phosphorylated SMAD1/5 protein
for the first time. Our data were supported by the sufficient
clinical samples and RNA-sequencing results. We believed that
these clues implied that upregulated MALAT1 might play a key
role in the etiology of PCOS. As part of the sample data about
AMH in serum is missing, we failed to find a statistically
significant correlation between MALAT1 in GCs and AMH.
However, we found a positive correlation between MALAT1
with E2, P, retrieved oocyte number, and fertilized ovum,
implying that MALAT1 may play a vital role in embryo
development and pregnancy. Especially, the positive
relationship between MALAT1 and retrieved oocyte number
indicated that high expression of MALAT1 in granulosa cells
probably did not affect follicle response to exogenous ovulation-
stimulating hormone, and it may even be an indicator of ovarian
overstimulation. Sequentially, diagnostic values of MALAT1
expression for positive clinical pregnancy in PCOS are found
via ROC analysis. Therefore, interestingly, it is worthwhile for us
to further expand the sample size and investigate profoundly the
role of MALAT1 in granulosa cells of women with PCOS and its
relationship with the kinds of clinical findings according to
different clinical phenotypes.
Frontiers in Endocrinology | www.frontiersin.org 8
It should be noted that there are limitations to this study. We
have to point out that we do not provide a more detailed analysis
about the expression of MALAT1 in different clinical sample
subtypes. Our results lack the expression of MALAT1 in serum
of women with PCOS, which could be a biomarker for diagnosis.
However, these problems could be solved if we further increase
the amount of patients and collect the peripherial blood samples.
In addition, it remains to be elucidated that whether AMH acts
directly on the expression of MALAT1 and how the SMAD
signaling pathway acts on the promoter site of MALAT1 to
regulate its expression. Furthermore, it needs more molecular
mechanism investigation to explain how MALAT1 regulates
target gene expression and destroys granulosa cell functions,
leading to follicle arrest and participation in follicular maturation
and fertilization after controlled ovulation induction.

Notwithstanding its limitation, our findings do uncover a
possible pathological connection between lncRNAMALAT1 and
AMH, which allows us to gain new insights into the mechanisms
of follicular development and provides a potential diagnostic
marker for positive clinical pregnancy and ovarian
overstimulation in PCOS.
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