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Abstract: A person high in neuroticism is more likely to experience anxiety, stress, worry, fear, anger,
and depression. Previous studies have shown that the gut microbiota can influence personality and
mental disorders, including stress, anxiety, and depression, through the gut–brain axis. Here, we
investigated the correlations between the sub-facet of neuroticism and gut microbiota using the Re-
vised NEO Personality Inventory and the 16S rRNA gene sequencing data 784 adults. We found that
the high anxiety and vulnerability group showed significantly lower richness in microbial diversity
than a group with low anxiety and vulnerability. In beta diversity, there was a significant difference
between the low and high groups of anxiety, self-consciousness, impulsiveness, and vulnerability.
In taxonomic compositions, Haemophilus belonging to Gammaproteobacteria was correlated with
the Neuroticism domain as well as N1 anxiety and N6 vulnerability facets. The high N1 anxiety and
N6 vulnerability group was correlated with a low abundance of Christensenellaceae belonging to
Firmicutes Clostridia. High N4 self-consciousness was correlated with a low abundance of Alistipes
and Sudoligranulum. N5 impulsiveness was correlated with a low abundance of Oscillospirales. Our
findings will contribute to uncovering the potential link between the gut microbiota and neuroticism,
and the elucidation of the correlations of the microbiome–gut–brain axis with behavioral changes
and psychiatric cases in the general population.

Keywords: microbiota; neuroticism; gut–brain axis; 16s sequencing; anxiety; depression;
vulnerability

1. Introduction

Personality traits represent the different behavioral, emotional, and cognitive patterns
of individuals. Specific personality traits have been suggested to affect the risk of physical
illnesses and behavior-related health risk factors [1,2]. In previous studies, interest in
personality traits, particularly neuroticism, has been motivated by the fact that personality
traits remain stable into adulthood [3], have genetic–environmental underpinnings [4],
and are also predictive of late-life developments such as cognitive dysfunction [5] and
psychiatric symptoms [6]. Neuroticism can be viewed as a heterogeneous trait consisting of
multiple facets, including anxiety (N1), hostility (N2), depression (N3), self-consciousness
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(N4), impulsiveness (N5), and vulnerability to stress (N6) [7]. These facets are highly
correlated but partially distinct, including anger, sadness, anxiety, worry, and hostility [8].
However, most studies have used measures that capture only a domain level of relevant
personality traits. They rarely assessed these facets. These more circumscribed facets have
greater predictive power for specific behavioral and health outcomes than the broader
domain-level neuroticism [9,10].

Recently, the importance of the gut microbiome in human health has been in the spot-
light [11]. Since the gut microbiota play a central role in the gut–brain axis that regulates
mood and behavior, they can affect various aspects of normal psychology, such as emotion,
cognition, stress management, and social behavior in addition to physical health [6,12].
The gut microbiota are also correlated with the predisposition of personality and mental
disorders [13,14]. Dysbiosis in the gut microbiota may increase pro-inflammatory commu-
nication, which in turn increases intestinal permeability, which can lead to an inflammatory
response to stress systems of the brain either directly or vagus/visceral afferent [11,12].
Pro-inflammatory communication has been shown to impair negative feedback within the
hypothalamic–pituitary–adrenal (HPA) axis and induce hypercortisolemia [11]. Elevated
cortisol levels and inflammatory markers are reported to be associated with anxiety and
depressive disorders [12]. This bidirectional communication implicates that increased
cortisol delivered to the body can affect immune function, intestinal permeability, and gut
microbiota [12].

In a previous study, we have reported the correlations between the gut microbiome
and personality traits. Highly neurotic individuals were likely to show a high abundance
of Gammaproteobacteria. However, the subscales of neuroticism were not considered in
that study. Recent research has suggested that compositions of the human microbiome
are linked to stress, depression, and broad personality traits [14–17]. Chronic stress can
increase the risk of developing many psychiatric disorders such as anxiety, depression, and
post-traumatic stress disorder [18,19]. Although the mechanisms underlying vulnerability
to stress remain unclear, mounting evidence suggests that increased central inflammatory
processes might be involved [20–22]. Indeed, the gut microbiome contributes to the
depression-like behaviors and inflammatory processes in the ventral hippocampus of
stress vulnerable rats [15]. Although the Revised NEO Personality Inventory (NEO-PI-
R) contains the six facets that are the subscales of neuroticism, there are no reported
studies on the correlation between these neuroticism facets and the gut metagenome.
Neuroticism is hierarchically defined by the specific facets, which can provide a more
in-depth description of the correlation between personality and gut microbiota. Moreover,
as a more circumscribed facet, the trait of neuroticism measures a narrower phenotype,
which can increase the statistical power by reducing phenotyping variability [23].

This study extends our previous study by examining the microbial diversity and
taxonomic composition of gut microbiota in a large population-based sample while utilizing
well-validated and comprehensive measures of personality that captures both a domain
and specific facets of neuroticism.

2. Materials and Methods
2.1. Subjects

In this study, participants were enrolled in the Kangbuk Samsung Study for Korean
men and women who undergo a comprehensive test every year or every two years at the
health examination center at Kangbuk Samsung hospital in South Korea. From June 2014
to September 2014, 1463 adult participants aged 23 to 78 who received comprehensive
health checkups (907 males and 556 females) gave fecal samples, of which 784 participants
also completed a personality questionnaire. All participants who met any of the exclusion
criteria as described were not enrolled in this study (Figure 1). Only those with complete
personality tests were enrolled. Those who used antibiotics within 6 weeks prior to
enrollment or cholesterol-lowering medications or probiotics within 4 weeks prior to
enrollment were excluded. Additionally, participants who were diagnosed with mental
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diseases, such as depression or panic disorders, were excluded. A total of 90 samples
with under 5000 sequences per sample were also excluded. Finally, a total of 784 subjects
(489 males and 295 females) were enrolled in this study.

The research protocol was approved by the Institutional Review Board of Kangbuk
Samsung Hospital (approval number: 2013-01-245-12). After explaining the nature of the
study and the possible consequences, participants provided written informed consent. All
applicable institutional and governmental regulations concerning the ethical use of human
volunteers were followed during this research.
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Figure 1. Enrollment of subjects. Inclusion criteria: 1463 Korean adults aged 23 to 78 years who agreed
to participate in this study and provided stool samples at Kangbuk Samsung Hospital Healthcare
Screening Center out of those who underwent annual or biennial examinations during the study
period between June 2014 and September 2014. Some individuals met several exclusion criteria.

2.2. Fecal Sample Collection and 16S rRNA Gene Compositional Analysis

Fecal samples were immediately frozen at −20 ◦C after defecation. They were stored
at −70 ◦C within 24 h. Within 1 month, DNA was extracted from fecal samples using
a fecal DNA extraction kit (MO BIO Laboratories, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Amplification and sequencing were performed to analyze
bacterial communities, as described previously [13]. Genomic DNA was amplified using
fusion primers targeting the variable V3 and V4 regions of the 16S rRNA gene with indexing
barcodes. Samples were pooled for sequencing on an Illumina MiSeq platform (Illumina,
San Diego, CA, USA) according to the manufacturer’s instructions [24,25].

The DADA2 plugin of the QIIME2 package (version 2019.7, https://qiime2.org
(accessed on 16 February 2021)) [26] was used to perform sequence quality control, such
as filtering low-quality sequences and chimeras, and to construct a feature table of am-
plicon sequence variants (ASVs). ASVs were generated by denoising with DADA2 and
regarded as 100% operational taxonomic units (OTUs). To identify amplicon sequence
variants (ASVs) from non-chimeric sequences, an open-reference ASV picking approach
was performed using representative sequences with pre-assigned taxonomy from SILVA
DB (version 138). This analysis was performed in QIIME2 (version, 2020. 2), with a 99%
similarity threshold [27,28]. Contingency-based filtering was used to filter features from
a table contingent on the number of samples in which they were observed. We filtered
features that were present in only one sample based on the assumption that these features
were not due to real biological diversities but due to polymerase chain reaction (PCR) or
sequencing errors such as PCR chimeras.

https://qiime2.org
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2.3. Personality Assessment

Personality traits were assessed using the Korean version of the Revised NEO Person-
ality Inventory (NEO PI-R), which is a 240-item measure of the five factors of personality
(PSI Consulting Corp., Seoul, Korea) [7]. The Korean version of the NEP PI-R has been used
in the Korean population with good reliability and validity [29]. The NEO PI-R consists of
30 facets, six for each dimension of the five personality traits. These facets of neuroticism
are anxiety (N1), angry hostility (N2), depression (N3), self-consciousness (N4), impulsivity
(N5), and vulnerability (N6). Raw scores of each dimension were combined. For qualitative
analysis, we divided the subjects into two groups according to raw score of the subfacet of
neuroticism. The low group and the high group were defined by 25th quartiles, with the
low group being in the first quartile (≤25th percentile) and the high group in the fourth
quartile (≥75th percentile) based on neuroticism facet raw scores. We categorized these two
groups for the facets of neuroticism separately for men and women because of the basic
differences in the personality scores by gender. As a result of the basic differences between
male and female scores, we separated males and females and set the scores for each. In
a previous study [13], the raw score of each dimension was converted to T-scores, which
were calculated sex-separately with the normative Korean data. In this study, we decided
to use the raw score instead of converted score. To avoid bias caused by sex differences,
males and females were grouped separately.

2.4. Statistical Analysis

All basic statistical analyses were performed with PSPP version 1.4.0. The feature
table was rarefied to 5011 sequences per sample by random sampling in QIIME2 before
diversity analysis. Alpha diversity measures of richness, community diversity, evenness,
and phylogenetic diversity of gut microbial taxa were presented as observed features,
Shannon index, Pielou’s evenness, and Faith’s phylogenetic diversity (PD), respectively.
For measuring beta diversity, Bray–Curtis, Jaccard, and unweighted and weighted UniFrac
values were calculated to determine the dissimilarity between groups [30–32] The p values
were calculated using Kruskal–Wallis test. Differences in beta diversity between the
groups were compared using pairwise permutational multivariate analysis of variance
(PERMANOVA with 999 permutations).

For composition analysis, Analysis of Composition of Microbiome (ANCOM) [14]
was used to compare the log-ratio of different abundances of gut microbial taxa in the neu-
roticism facet groups. ANCOM compares the relative abundance of taxa among multiple
groups by the log-ratio of the abundance of each taxon to the abundance of all the remaining
taxa one at a time. To adjust for confounding variables (age, sex, and BMI), we used the AN-
COM2 code shared by the author from the original ANCOM paper, which could deal with
covariates. Correlation and comparison between the abundance of taxa and the six facets
of neuroticism were calculated using the Multivariate Association with Linear Models
(MaAsLin) using an online protocol package (http://huttenhower.sph.harvard.edu/galaxy
(accessed on 4 Feburary 2021)) [33,34]. Analyses included covariate adjustments for age and
BMI, which could affect both gut microbiome composition and personality. Additionally,
microbial community function was evaluated by predictive metagenome (microbial DNA)
analysis using PICRUST2. PICRIST2 is a developed phylogeny-based computational tool
that can predict the functional capacity of microbial communities by correlating the species
present to reference databases of microbial genomes. We performed PICRUST2 according
to the protocol (https://github.com/picrust/picrust2/wiki/q2-picrust2-Tutorial (accessed
on 15 March 2021)) [35]. DADA2 variants were normalized using the 16S rRNA copy
number, and KEGG values (Kyoto Encyclopedia of Genes and Genomes) were predicted.
Results that aggregated to level three of the KEGG analysis module were further explored
with STAMP [36].

http://huttenhower.sph.harvard.edu/galaxy
https://github.com/picrust/picrust2/wiki/q2-picrust2-Tutorial
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3. Results
3.1. Baseline Characteristics of the Subjects

Descriptive statistics for the study participants are shown in Table 1. A total of
15,055,235 high-quality paired sequences were obtained from the 784 samples (mean age,
43.9 years), with a mean of 23,669 feature counts. Among the 784 subjects, 489 (62.37%)
were men and 295 (37.63%) were women.

Table 1. Baseline characteristics of study participants according to neuroticism score.

Total Low High p-Value 1

Neuroticism

No. of subjects 398 205 193
Age 43.4 (8.2) 44.2 (7.9) 42.6 (8.5) 0.050
BMI 23.8 (3.3) 23.6 (3.3) 24.0 (3.4) 0.314

N score 126.9 (28.0) 102.2 (11.2) 153.1 (12.1)
Total energy intake 1471.6 (650.8) 1401.0 (608.9) 1546.8 (686.6) 0.046 *

Carbohydrate 244.6 (112.3) 234.1 (105.3) 255.9 (118.7) 0.084
Protein 50.8 (25.5) 48.8 (24.3) 52.9 (26.6) 0.151

Fat 30.7 (19.8) 28.5 (17.8) 33.1 (21.5) 0.041 *
Fiber 3.8 (2.2) 3.7 (2.1) 4.0 (2.4) 0.354

N1 Anxiety

No. of subjects 407 218 189
Age 43.5 (8.2) 44.7 (8.3) 42.2 (8.0) 0.002 **
BMI 23.6 (3.2) 23.7 (3.2) 23.5 (3.2) 0.422

N score 22.9 (6.5) 17.3 (2.5) 29.3 (2.7)
Total energy intake 1483.3 (625.1) 1433.2 (581.0) 1537.2 (667.0) 0.134

Carbohydrate 249.3 (108.5) 242.0 (103.3) 257.3 (113.6) 0.204
Protein 50.3 (23.8) 49.0 (21.8) 51.7 (25.7) 0.292

Fat 30.1 (19.0) 28.5 (16.5) 31.7 (21.3) 0.125
Fiber 3.8 (2.2) 3.9 (2.4) 3.8 (2.0) 0.706

N2 Hostility

No. of subjects 382 220 162
Age 43.8 (8.1) 43.9 (8.1) 43.6 (8.2) 0.755
BMI 23.7 (3.3) 23.5 (3.1) 23.9 (3.5) 0.331

N score 19.2 (6.0) 14.5 (2.2) 25.7 (2.5)
Total energy intake 1452.2 (617.8) 1412.9 (587.1) 1509.6 (658.2) 0.186

Carbohydrate 245.0 (109.1) 239.4 (102.3) 253.2 (118.3) 0.291
Protein 49.7 (24.0) 48.4 (23.3) 51.6 (24.9) 0.260

Fat 28.8 (17.8) 27.4 (17.2) 30.8 (18.6) 0.106
Fiber 3.9 (2.4) 3.8 (2.2) 4.1 (2.5) 0.355

N3 Depression

No. of subjects 413 236 177
Age 43.6 (8.2) 43.1 (8.0) 44.3 (8.5) 0.143
BMI 23.9 (3.3) 24.0 (3.3) 23.8 (3.3) 0.595

N score 19.2 (6.5) 14.1 (2.2) 26.0 (3.2)
Total energy intake 1450.3 (598.6) 1440.0 (549.8) 1463.7 (658.9) 0.729

Carbohydrate 242.8 (106.0) 241.9 (96.5) 244.1 (117.6) 0.851
Protein 49.6 (22.6) 49.7 (22.2) 49.6 (23.1) 0.851

Fat 29.6 (17.9) 28.8 (16.7) 30.7 (19.4) 0.353
Fiber 3.8 (2.0) 3.7 (2.0) 3.8 (2.1) 0.667



J. Pers. Med. 2021, 11, 1246 6 of 16

Table 1. Cont.

Total Low High p-Value 1

N4 Self-consciousness

No. of subjects 446 252 194
Age 43.8 (8.4) 43.6 (8.1) 43.9 (8.7) 0.710
BMI 23.7 (3.3) 23.6 (3.2) 23.7 (3.3) 0.866

N score 23.5 (5.3) 19.3 (2.3) 29.0 (1.9)
Total energy intake 1438.2 (602.6) 1396.9 (584.4) 1492.8 (623.7) 0.143

Carbohydrate 239.0 (103.8) 230.1 (96.6) 250.8 (111.8) 0.069
Protein 49.9 (24.3) 49.4 (25.2) 50.6 (23.2) 0.658

Fat 29.8 (19.8) 29.5 (20.1) 30.3 (19.6) 0.693
Fiber 3.7 (2.1) 3.6 (2.0) 3.8 (2.3) 0.369

N5 Impulsiveness

No. of subjects 407 228 179
Age 44.0 (8.2) 45.5 (7.5) 42.1 (8.7) <0.001 **
BMI 23.6 (3.1) 22.9 (2.9) 24.4 (3.3) <0.001 **

N score 20.7 (5.5) 16.2 (1.9) 26.5 (2.3)
Total energy intake 1516.4 (652.1) 1388.1 (538.3) 1689.3 (747.5) <0.001 **

Carbohydrate 254.6 (112.2) 240.3 (97.2) 274.0 (127.5) 0.009 **
Protein 51.6 (25.2) 45.9 (19.6) 59.2 (29.6) <0.001 **

Fat 30.7 (20.6) 25.4 (14.6) 37.9 (25.1) <0.001 **
Fiber 4.0 (2.4) 3.8 (2.1) 4.2 (2.7) 0.150

N6 Vulnerability

No. of subjects 407 235 172
Age 44.0 (8.0) 44.8 (7.5) 43.0 (8.5) 0.025 *
BMI 23.8 (3.2) 23.7 (3.2) 23.9 (3.2) 0.698

N score 19.5 (5.4) 15.4 (2.2) 25.1 (2.8)
Total energy intake 1467.9 (614.8) 1400.4 (569.1) 1561.0 (663.8) 0.024 *

Carbohydrate 245.2 (107.7) 237.0 (101.3) 256.6 (115.4) 0.115
Protein 50.4 (23.1) 48.2 (21.9) 53.5 (24.5) 0.049 *

Fat 30.1 (18.2) 27.3 (15.7) 34.0 (20.6) 0.002 **
Fiber 3.9 (2.3) 3.8 (2.2) 3.9 (2.3) 0.755

1 p-value for difference between low and high groups by t test for continuous variables. * p < 0.05, ** p < 0.01.

The low group and the high group were defined by 25th quartiles, with the low
group being in the first quartile (≤25th percentile) and the high group being in the fourth
quartile (≥75th percentile) of neuroticism facet raw scores. For age, the higher the score
of N1 anxiety, N3 depression, and N5 impulsiveness, the younger the age. In the case of
N5 impulsiveness, there were significant differences between groups not only in age and
BMI but also in nutrient factors. Moreover, the high groups of the N neuroticism domain,
N5 impulsiveness, and N6 vulnerability showed significantly higher total energy intake.

3.2. Comparison of Biodiversity between Low- and High-Scored Groups of Facets of
Neuroticism Facets

The mean depth of sequences was 23,669 per sample and the number of features was
3524 in the 784 subjects. After rarefying the feature tables to 5011 sequences per sample, the
neuroticism domain exhibited different alpha diversity in Faith’s PD between the low and
high groups (Figure 2). The low group of N1 anxiety showed greater diversity in observed
features, Faith’s PD, and Shannon’s diversity. The high group of N6 vulnerability showed
lower alpha diversity in observed features, Faith PD, and Shannon’s diversity.

Beta diversity analysis indicates the extent of similarities and differences among mi-
crobial communities. To quantify beta diversity, both phylogenetic and non-phylogenetic
methods were used with unweighted and weighted UniFrac and Jaccard distances and
Bray–Curtis dissimilarity, respectively (Figure 3). For the neuroticism domain, we con-
firmed significant differences between the low and high groups in unweighted Unifrac



J. Pers. Med. 2021, 11, 1246 7 of 16

distance (p < 0.05, PERMANOVA), similar to the results of our previous study [13]. For
facets of neuroticism, there were significant differences in unweighted distances between
the high and low groups of the N1 anxiety, N4 self-consciousness, N5 impulsiveness, and
N6 vulnerability facets, respectively. For N2 and N3, we could not find statistical differ-
ences in the structure of the gut microbial community between the low and high groups
(Supplementary Table S1).
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Figure 3. Principal Coordinate Analysis (PCoA) plots of beta diversity. Statistical significance between Low and High
groups using distance matrices for beta–diversity Unweighted UniFrac distance. Statistics were calculated using pairwise
PERMANOVA with 999 permutations. * p < 0.05. Ellipses represent 95% confidence interval for each group.

3.3. Correlations of Taxonomic Composition with Six Facets of Neuroticism

To better understand how the microbial taxonomic compositions changed with the six
facets of neuroticism, we compared the relative abundance levels of low and high groups
in each facet of neuroticism. To control for covariates, we controlled for age, sex, and BMI
to determine if there was a significant association between microbial taxa and the facets
of neuroticism. Based on W statistics by ANCOM, we identified 13 taxa associated with
the six facets of neuroticism from phylum to species level after adjusting for age, sex, and
BMI (Table 2).

Table 2. Detection of differentially abundant taxa between the two groups for neuroticism scores and coefficients from the
generalized linear model using MaAsLin on pairwise testing between the two groups.

Taxa
W 1 (Coefficients 2) from the Pairwise Groups

N N1 N2 N3 N4 N5 N6

family p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales; f__Marinifilaceae

76
(−0.905 4)

family p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales; f__Rikenellaceae

71
(−0.896 4)

genus p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales; f__Rikenellaceae; g__Alistipes

204
(−0.844 4)

order p__Firmicutes; c__Clostridia;
o__Christensenellales

41
(−1.251 4)

39
(−0.584)

family p__Firmicutes; c__Clostridia;
o__Christensenellales; f__Christensenellaceae

71
(−1.251 4)

68
(−1.055 4)

genus
p__Firmicutes; c__Clostridia;

o__Christensenellales; f__Christensenellaceae;
g__Christensenellaceae_R.7_group

221
(−1.249 4)

215
(−0.981 4)

order p__Firmicutes; c__Clostridia;
o__Clostridia__UCG.014

44
(−0.803 3)

family
p__Firmicutes; c__Clostridia;

o__Clostridia__UCG.014;
f__Clostridia_UCG.014

73
(−0.803 3)
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Table 2. Cont.

Taxa
W 1 (Coefficients 2) from the Pairwise Groups

N N1 N2 N3 N4 N5 N6

genus p__Firmicutes; c__Clostridia; o__Oscillospirales;
f__Oscillospiraceae; g__UCG.002

216
(−0.736 3)

genus p__Firmicutes; c__Clostridia; o__Oscillospirales;
f__Ruminococcaceae; g__Subdoligranulum

215
(−0.766 4)

order p__Proteobacteria; c__Gammaproteobacteria;
o__Pasteurellales

43
(1.411 4)

43
(1.112 4) 42 (1.062 4)

family p__Proteobacteria; c__Gammaproteobacteria;
o__Pasteurellales; f__Pasteurellaceae

79
(1.411 4)

77
(1.111 4) 77 (1.061 4)

genus
p__Proteobacteria; c__Gammaproteobacteria;

o__Pasteurellales; f__Pasteurellaceae;
g__Haemophilus

231
(1.113 4) 218 (1.061 4)

Adjusted for age, sex, and BMI. N # of order 48, # of family. N1 # of order 49, # of family: 87, # of genera 250. N4 # of family: 86, # of genera
251. N5 # of order 50, # of family: 89, # of genera 254. N6 # of order 48, # of family: 85, # of genera 245. 1 W = X for taxon k, then H0k
is rejected X times. The W statistic for the significantly different taxa relative to more than 70% other taxa in each taxa level is shown in
bold. p_ = phlyum; c_ = class; o_ = order; f_ = family; g_ = genus. 2 The coefficients from the generalized linear model using MaAsLin on
pairwise testing between the two groups. 3 p < 0.05. 4 p < 0.01.

Pairwise comparisons were undertaken to identify the significant differences between
the two groups (Figure 4). Beta diversity results were verified by pairwise ANCOM
analysis. Indicated specific taxa were significantly different between the low and high
groups. The neuroticism domain was positively associated with the family Pasteurellaceae
(W = 79) as well as its upper taxa Pasteurellales (W = 43). The “W = 79” of Pasteurellaceae
in the neuroticism domain indicated that this family was significantly different relative
to 79 other families between the two groups. For N1 anxiety, the genus Haemophilus
(W =2 31), including its family Pasteurellaceae (W = 77) and order Pasteurellales (W = 43),
also showed positive associations with the neuroticism domain, while genus Christensenel-
laceae R.7 group (W = 221), including its family Christensenellaceae (W = 79) and order
Christensenellales (W = 41), showed negative associations between the two groups. Genus
Alistipes (W = 204) and its family Rikenellaceae (W = 71) and genus Sudoligranulum
(W = 215) showed significantly lower abundance levels in the high N4 self-consciousness
group. N5 impulsiveness was correlated with the order Christensenellales (W = 39) of
Firmicutes, the family Marinifilaceae of Bacteroidota (W = 76), genus UCG.002 (W = 216),
and Clostridia UCG.014 (W = 73), including its order Clostridia UCG.014 (W = 44). The
high group of N6 vulnerability was negatively correlated with genus Christensenellaceae
R.7 group (W = 215) and its family Christensenellaceae (W = 68) and positively correlated
with the genus Haemophilus (W = 218), its family Pasteurellaceae (W = 77), and its order
Pasteurellales (W = 42) compared to the low group. However, results of N2 hostility and
N3 depression did not show significantly different taxa between the low and high groups.

We also used linear discriminant analysis (LDA) of effect size (LEfSe) to determine
the taxa that most likely explained the differences between the low and high groups.
When performing the LEfSe analysis, we compared taxa not only on the basis of statistical
significance but also based on the biological consistency of results and effect relevance.
Figure 5 shows LEfSe results (LDA score > 3, p < 0.05) from the phylum level to genus
level, which confirmed that the genus Haemophilus, family Pasteurellaceae, and order
Pasurellales were significantly enriched in the group with a high neuroticism domain and
its facets, except N2 hostility, in the high group compared with the low group (LDA > 3,
p < 0.05).
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using the Kruskal–Wallis test. LDA score (effect size) indicates significant differences in bacterial taxa (LDA score > 3.0); 
alpha value p < 0.05. 
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Figure 5. Differentially abundant bacterial taxa in fecal samples from the low and high groups of neuroticism scores. A
forest plot showing taxa that were significantly differentially abundant between low (green) and high (pink) as determined
using the Kruskal–Wallis test. LDA score (effect size) indicates significant differences in bacterial taxa (LDA score > 3.0);
alpha value p < 0.05.

3.4. Predicted Functional Metagenome in Personality Groups

Based on functional predictions using PICRUSt and STAMP, we tried to detect differ-
ences in the KEGG Ortholog composition between the low and high groups for the five
personality traits, but no significant differences were found (data not shown).

4. Discussion

In this large longitudinal study, we investigated the association between the gut
microbiome and facets of neuroticism. Phylogenetic and non-phylogenetic measures of
alpha diversity for gut microbiota were lower in the high group of neuroticism facets.
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There were significant differences in the compositions of gut microbiota between the two
groups in this study.

Previous studies have reported the relationship of gut microbiota with personality.
The majority of these studies showed a decrease in the overall bacterial diversity in the
highly neurotic personality group [13,14,16]. We observed that individuals with high
N1 anxiety or N6 vulnerability personality types had significantly reduced gut microbial
diversity and showed differences in microbial composition compared to the subjects with
low neuroticism personality.

These data are in line with the growing body of evidence for a bidirectional relation-
ship between the gut microbiome and mental health [37]. Similarly, human studies have
concluded that the microbiome is involved in psychopathology behavior, such as in autism,
depression, anxiety, obesity, and anorexia nervosa, through the gut–brain axis [38–40].
Bidirectional interactions between the central nervous system and gut microbiota are di-
rectly maintained by the limbic system, the hypothalamic–pituitary–adrenal axis [41], and
the sympathetic nervous system [42], or via indirect mechanisms, such as neurotransmit-
ters and immune and metabolic pathways [43–46]. Recent studies have suggested that
anxiety states are associated with stool consistency and that anxiety status might be asso-
ciated with differences in the compositions of the gut microbiome through the induction
of dysbiosis [14,47–50]. In addition, animal studies have previously shown that stress
can alter the abundances of various microbial taxa and reduce the diversity of the gut
microbiota [15,48,51–54].

Recent cohort studies of major depressive disorder (MDD) and anxiety disorders
have reported lower bacterial alpha diversities in these patient groups relative to controls,
as well as a higher relative abundance of the proteobacteria [47]. Existing research has
indicated that anxiety and depression shared gut microbiota alterations, including lower
alpha diversity, and a higher abundance of proteobacteria and toxin-releasing genera
relative to controls [47,55]. The autonomic and circulatory systems carry distress signals
to the gut. Then, immune cells as messengers convey psychological stress to the gut via
the bone marrow-mediated pathway [56]. The increased inflammation that frequently
accompanies stress and depression can cause blooms of pathogenic bacteria that encourage
dysbiosis [57]. Animal studies have demonstrated that stress could affect the diversity of
gut bacteria [58,59].

Our previous study [13] showed that the genus Haemophilus was associated with
high neuroticism. In this facet study, Haemophilus and its upper-class taxa Pasteurellaceae
and Pasteurellales showed positive correlations with high neuroticism, especially for the
facets N1 anxiety and N6 vulnerability, as well as the neuroticism domain. We showed
that several taxa were associated with the N1 anxiety index. Christensenellaceae, belong-
ing to Firmicutes Clostridia, was negatively associated with N1 anxiety. In accordance
with these results, previous studies in children have reported a reduction in Oscillospira
of Firmicutes. Rumminococcaceae has a positive association with good health. It has
been reported that lower levels of Oscillospira are linked to inflammatory disease [39,60].
Similarly, fecal microbiota of patients suffering from generalized anxiety disorder show
a much lower prevalence of Lachnospira, which belongs to Firmicutes Clostridia [47].
These genera could be relevant to mental health due to their documented production of
short-chain fatty acid compounds [61]. Reduced short-chain fatty acid (SCFA) production
in GAD patients with intestinal barrier dysfunction could compromise proper immune
responses and ultimately contribute to brain dysfunction [62]. We found that the char-
acteristic gut microbiota identified here were slightly different from those identified in
previous studies. These distinctions might have arisen from differences in the sample size,
demographic, and clinical characteristics of participants, individual differences, and the
statistical approach applied to identify gut microbiota. A model of social disruption among
adult mice has demonstrated that exposure to stress can result in substantial changes in
gut microbiota composition [63]. Bailey et al. showed decreases in Bacteroides spp. and
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increases in Clostridium spp. abundance in stress-induced mice [64], while we found a
lower abundance of Clostridia of Firmicutes and Bacterioidales in this study.

There was a significant difference in age between the two groups in the N1 anxiety,
N5 impulsiveness, and N6 vulnerability facets. Although it was found that the group with
higher anxiety, impulsiveness, and vulnerability to stress scores was significantly younger,
the analysis was not stratified by age, but it was analyzed with age as a covariate. In
addition, in the case of the N5 impulsiveness facet, we found that BMI and the intake of
nutrient factor were significantly different between the two groups. Further studies on the
association between dietary intake and impulsiveness are needed. Consistent with these
previous studies, we found differences in gut microbiota according to facets of neuroticism
index in adults. The 16S approach is well suited for the analysis of many samples. However,
it offers limited taxonomical and functional resolution. Additional experiments are needed
to understand the biochemical and functional consequences of these predictions.

5. Conclusions

This study was a follow-up study that revealed the relationship between personality
and the metagenome, and we analyzed the sub-facets of neuroticism among the personality
traits. Our findings demonstrated that gut microbiota dysbiosis has a close relationship
with gastrointestinal and behavioral manifestations of neuroticism. This study will con-
tribute to elucidating potential links between the gut microbiota and neurotic personality,
yielding promising potential for developing and testing personality- and microbiota-based
interventions for promoting mental health.

Supplementary Materials: The following is available online at http://www.mdpi.com/xxx/s1,
Table S1: Statistical significance between the low and high groups using distance matrices for
beta–diversity.
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