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Modeling studies using 3D-QSAR and molecular docking methods were performed on a set of 34 hybrids of 4-aminoquinoline
derivatives previously studied as effective antimalarial agents of wild type and quadruple mutant Plasmodium falciparum
dihydrofolate reductase (DHFR). So, the famousmathematical methodmultiple linear regression (MLR) was explored to build the
QSARmodel.*eDFT-B3LYPmethod with the basis set 6-31Gwas used to calculate the quantum chemical descriptors, chosen to
represent the electronic descriptors of molecular structures. On the contrary, the MM2 method was used to calculate lipophilic,
geometrical, physicochemical, and steric descriptors.*e QSARmodel tested with artificial neural network (ANN) method shows
high performance towards its predictability. *e predicted model was confirmed by three validation methods: leave-one-out
(LOO) cross validation, Y-randomization, and validation external.*emolecular docking study of three compounds 9, 11, and 26
on both wild and quadruple mutant types of pf-DHFR-TS as the protein target helps to understand more and then predict the
binding modes with the binding sites.

1. Introduction

Malaria is one of the world’s greatest global public health
challenges. It is most prevalent in sub-African, Asian, and
South American countries, and it mostly affects children
under the age of five and pregnant women [1, 2]. According
to a world health organization (WHO) report 2015, esti-
mated 3.2 billion people were at risk of malaria, approxi-
mately 212 million cases of malaria worldwide, and 429.000
deaths occurred worldwide in 2015. Of these estimated
deaths, 90% occurred in sub-Saharan Africa [1]. Malaria is
an infectious and contagious disease caused by the protozoa
of the genus Plasmodium [3]. *ere are five species that
infect humans (P. falciparum, P. vivax, P. malariae, P. ovale,

and P. knowlesi) [4]. However, amongst these five species,
Plasmodium falciparum is the most severe and lethal species
[5]. Many efforts are made in attempts to find out efficient
inhibitors for this protein by testing several molecular
structures. *e quinoline moiety has attracted a great
consideration of the medicinal chemists, as it is one of the
crucial pharmacophores accountable for imparting anti-
malarial action [6, 7]. On the contrary, the 1,3,5-triazine
derivatives cycloguanil, chlorcycloguanil, clociguanil, and
WR99210 are already approved as effective dihydrofolate
reductase (DHFR), specific inhibitor of P. falciparum do-
main, and they selectively inhibit biochemical processes that
are vital for parasite growth [8]. Nowadays, to overcome
drug resistance problems the concept of hybrid molecules
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has been introduced, in which two or more pharmacophores
are linked together (as quinoline-triazine and qunoline-
oxalamide), and it is believed that these compounds act
by inhibiting simultaneously two conventional targets
[9]. In this study, we worked on these two pharmacophores,
as two types of hybrids: 4-aminoquinoline-triazine and
4-aminoquinoline-oxalamide [10].

*e discovery of new antimalarial drugs is very chal-
lenging; the aim of developing a QSAR model is to construct
a relationship (using statistical methods) between structural
properties and activities using a training set which is capable
of predicting the activity of compounds which are not used to
build the model by multiple linear regression (MLR) and
artificial neural network (ANN) calculations. *e QSAR
model has been validated by using an internal and external
validation as well as Y-randomization. To develop the binding
modes of this set of hybrids in the active sites, we have to
perform the docking of three compounds: on the one hand,
the highest active compound 26 belonging to the triazine
series and the highest active compound 9 from the oxalamide
series and on the other hand, the lowest active of the entire
series compound 11, with Plasmodium falciparum dihy-
drofolate reductase–thymidylate synthase (pf-DHFR-TS) in
its two forms: the wild type and the quadruple mutant [11].
*is study allows the developing of models that not only
provide details of the binding modes and key molecular
interactions but also allow the prediction of relative inhibition
and binding affinities that could be reproduced in silico.

2. Materials and Methods

2.1. ExperimentalData. In this work, a data set of 34 hybrids
of 4-aminoquinoline [10] constituting two groups is ex-
plored. *e first group (4-aminoquinoline-oxalamides) ac-
counts for 16 molecules numerated from 1 to 16, and the
second group (4-aminoquinoline-triazines) contains 18
compounds numerated from 17 to 34 (Figure 1). *e
chemical structures of these hybrid derivatives with their
antimalarial activities (IC50) are presented in Tables 1 and 2.
*e observations are converted into logarithm scale log IC50.

2.2. Molecular Descriptors Calculation. In order to accurately
model and predict inhibitors activities, 16 descriptors listed in
Table 3 were introduced. Eleven descriptors which are lipo-
philic, geometrical, physicochemical, and steric descriptors were
calculated with the MM2 method with the aid of the ACD/
ChemSketch program [12] and the ChemBioOffice software
[13]. On the contrary, 5 electronic descriptors were calculated
with the DFTmethod [14], using the Gaussian03 quantum
chemistry package [15]. *e optimization of compounds was
performed with the DFTmethod using Becke’s three-parameter
hybrid function (B3LYP) [16], with a 6-31G basis set in the case
of electronic descriptors calculation and with the MM2 method
for the remaining descriptors. *e totality of descriptors used in
this work is represented in Table 3.

2.3.AnalysisMethods. Multiple linear regression (MLR) [17]
analysis with the descendent selection method was used
to select the most appropriate descriptors. It is a mathe-
matical technique to study the relation between one de-
pendent variable and several independent variables. *e
regression method is based on three criteria: correlation of
determination (R2), the Fisher ratio value (F), and the root
mean square error (RMSE). *e MLR model was generated
using the software XLSTAT version 2013 [18]. Note that the
MRL has been served to select the used descriptors as the
input parameters in the artificial neural network (ANN).

*e ANN analysis is performed using the SAS JMP
package (v8.0, SAS Institute Inc., Cary, NC, USA). *e
neurons networks are arranged in three layers:*e input layer
contains six neurons representing the relevant descriptors
obtained with the MLR technique, the output layer contains
one neuron representing the calculated activities values
log IC50, and the hidden layer is composed of 3 neurons de-
termined by ρ� (number of weight)/(number of connection).
In this work, we used the ρ value interval 1< ρ< 3 [19, 20].

*e high correlation coefficient indicates the quality of the
equation that fit the data, in order to explore the stability of this
equation; the cross-validation method with “leave-one-out” was
carried out using the ANN method. Based on this technique,
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Figure 1: *e general structure of 4-aminoquinoline-oxalamides (a) and 4-aminoquinoline-triazines (b).
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Table 1: Chemical structures and activities of 4-aminoquinoline oxalamide and derivatives.
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a number of modified data sets are created by deleting in each
case one individual [21], and thereafter, the corresponding
models serve to predict the activity of the removed compound.

*e LOO cross-validation coefficient R2 was calculated
as follows [22]:

Rcv2 � 1−


n
i�1 Yexp −Ypred 

2


n
i�1 Yexp −Y 

2 , (1)

where Yexp and Ypred are the observed and predicted values
for the dependent variables, respectively, and Y is the av-
erage observed value.

In order to ensure the reliability of the QSAR model, the
Y-randomization test has been used. *is approach consists
to randomlymixmany properties/experimental activities for
the learning series using the same descriptors; the newQSAR
model is constructed to exclude the possibility of random
correlation in the obtained model [23].

Furthermore, external validation is necessary as the
validation method is used to ensure the ability of the QSAR
model. However, the data set in this work has been randomly
divided into a training set with 28 compounds for the model
developed through MLR, and a predicted set with 6 com-
pounds has been reserved to external validation.

Table 1: Continued.

Compounds Structure of compound Log IC50 (observed)
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Table 2: Chemical structures and activities of the 4-aminoquinoline-triazine and derivatives.

Compounds Structure of compound Log IC50 (observed)
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Table 2: Continued.

Compounds Structure of compound Log IC50 (observed)
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Table 2: Continued.

Compounds Structure of compound Log IC50 (observed)
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Table 2: Continued.

Compounds Structure of compound Log IC50 (observed)

30

Cl

N

N
H

N
H

N

N

O

N

N

HN

N

O

1.717

31

Cl

N
N
H

N
H

N
H

N

N

O

N NN 1.605

32

Cl

N

N
H

N
H

N

N

N

N

HN

N

O

2.215

33

Cl

N

N
H

N
H

N

N

N

N

NN

O

1.603

34

Cl

N

N
H

N
H

N N

N

NN

HN

O

O

1.252

8 Biochemistry Research International



*e ability of the built model based on the external
prediction set was evaluated by R2

ext, which could be cal-
culated as follows [22]:

R
2
ext � 1−

 Ypred(test) −Y(test) 
2

 Ytest −Ytr( 
2 , (2)

where Ypred(test) and Y(test) are the predicted and experi-
mental values of the samples for the prediction set, re-
spectively. Ytr is the average value for the dependent variable
for the training set.

*e value of R2
ext ≥ 0.5 is considered as an indicator of the

reliability of the model. However, Golbraikh and Tropsha
showed that R2

ext is not a good parameter to estimate the
reliability of the QSAR model. Indeed, an external validation
based on the Golbraikh and Tropsha criteria is necessary [22].

In order to gain insight into the key structural require-
ments of the antimalarial activity, molecular docking studies
are carried out using the AutoDock4.2 program [24]. X-ray
crystallography structures of Plasmodium falciparum of the
wild type (coded as 1J3I.pdb) and quadruple mutant (coded
as 1J3K.pdb) pf-DHFR-TS were obtained from the Protein
Data Bank [25]. *e minimized protein structures were
defined as receptors, and the first step in the preparation of
the receptor was the removal of the ligands and the water
molecules. In order to simplify the docking analysis, in this
docking, the 3D grid was created by the AUTOGRID al-
gorithm [26] to evaluate the interacting energy between
protein ligands. *e grid maps were constructed using
60, 60, and 60, pointing in x, y, and z directions, with grid
point spacing of 0.375 Å. *e center grid box is of 29.39 Å,
5.56 Å, and 52.49 Å, by the ligand location in the complex.

Table 3: List of descriptors constituting the database.

Category of
descriptors Electronic Lipophilic Geometrical Physicochemical Steric

Name of the
descriptors

HOMO energy (EHOMO)
LogP (octanol-water
partition coefficient) Torsion (T) Critical pressure (CP) Density (D)

LUMO energy (ELUMO)

VDW energy
(EVDW)

Stretch-bend
(SB)

Critical
temperature (CT) D � MW/MV

Dipole moment (Dp)
Critical

volume (CV)

Wiener index (W)
Total energy (E) Molar volume (MV)

Repulsion energy (Er) Number of H-bonding
substituents (Hs)

Table 4: Values of the selected descriptors and the observed/predicted log IC50 values.

N EHOMO E Er T SB CT Log IC50 MLR ANN CV (LOO)
1 5.496 −46195.5 66,323.4 −1.509 0.463 1170.7 1.958 1.730 1.993 1.901
2 5.447 −47264.9 68,848 −1.354 0.485 1179.5 1.496 1.763 1.547 1.638
3 5.848 −40538.9 52,297.9 −5.165 0.098 1107.9 2.367 2.393 2.343 2.363
4 5.531 −44182.8 63,712.2 −0.391 0.397 1134.3 1.701 1.777 1.575 1.815
6 5.459 −47265 69,290.9 −1.482 0.484 1179.5 1.915 1.744 1.849 1.730
7 5.41 −48334.4 71,918.9 −1.405 0.505 1189.3 1.405 1.754 1.408 1.434
8 5.764 −41608.5 55,210.6 −4.728 0.12 1115.3 2.368 2.358 2.381 2.328
10 5.709 −43113.3 58,873.4 −1.405 0.505 1189.3 1.422 1.268 1.421 1.452
11 5.385 −51945.2 86,354.4 1.319 0.73 1176.1 2.418 1.842 2.308 1.915
12 5.347 −53014.6 88,771.4 1.425 0.753 1188.6 1.611 1.877 1.704 1.824
13 5.426 −49932.6 83,218.3 2.558 0.664 1143.3 1.902 1.940 1.961 1.947
14 5.574 −47793.5 74,926.6 −1.955 0.53 1119.3 1.927 1.985 1.942 2.093
16 5.465 −46288.2 74,260.7 9.347 0.874 1098.8 1.623 1.708 1.591 1.632
17 5.391 −55513.4 103,363.9 −4.042 0.744 1153.3 1.817 1.399 1.743 1.554
18 5.394 −52431.4 97,285.7 −4.294 0.685 1107.7 1.167 1.003 1.148 1.088
19 5.483 −50292.4 88,485.6 −7.332 0.519 1079.5 1.201 1.291 1.260 1.246
21 5.351 −56489.4 105,348.6 −2.732 0.826 1157.2 1.346 1.448 1.253 1.517
22 5.475 −53407.4 97,851.6 −2.68 0.753 1111.5 1.473 1.563 1.516 1.606
23 5.547 −51268.4 88,785.8 −6.024 0.603 1083.3 1.595 1.727 1.723 1.780
24 5.675 −52305 94,806.5 −6.472 0.736 1103 1.001 1.386 0.984 0.970
25 5.363 −55420 102,004.1 −2.701 0.801 1142.4 1.683 1.460 1.661 1.506
26 5.28 −56582.9 108,704.5 −4.016 0.768 1169.1 0.719 0.989 0.737 0.847
28 5.461 −51361.9 92,126.6 −7.315 0.544 1093.1 1.194 1.246 1.194 1.199
29 5.574 −52398.5 97,419.4 −7.874 0.675 1111.5 0.96 0.921 1.027 1.146
30 5.425 −57558.9 107,184.7 −2.663 0.849 1173 1.717 1.786 1.669 1.630
31 5.438 −54476.9 101,111 −2.977 0.787 1127.1 1.605 1.419 1.593 1.525
32 5.538 −52337.9 92,059.3 −6.003 0.626 1096.9 2.215 1.751 2.098 1.777
34 5.371 −56489.5 105,092 −2.767 0.822 1157.2 1.252 1.528 1.429 1.600

Biochemistry Research International 9



Discovery Studio software was used for the 2D and 3D
visualizations of the established interactions [27].

3. Results and Discussion

In this study, we used two random distributions of com-
pounds into the training and test sets. *e first training set
included 28 compounds, and the corresponding test set
included 6 compounds. *e selected descriptors values, and
predicted activities values using the training set obtained by
MLR, ANN, and CV methods, are summarized in Table 4.

3.1. Multiple Linear Regression. *e QSAR model of the
training set built using the MLR method is represented by
the following equation:

log IC50 � −17.79 + 2.54∗EHOMO− , 3E
−4 ∗E− 0.8E

−4 ∗Er

+ 0.146∗T− 3.47∗ SB− 6.34E
−3 ∗CT,

N � 28, R � 0.83, R
2

� 0.69, F � 57.86, RMSE � 0.27,

(3)

where N is the number of compounds, R is the correlation
coefficient, R2 is the determination coefficient, RMSE is the
root mean square error, and F is the Fisher test. *e relevant
descriptors involved in the MLR model are HOMO energy,
total energy, repulsion energy, torsion, critical tempera-
ture, and stretch-bend. *e corresponding normalized
coefficients are presented in Figure 2, and the correlation
of the observed activities with the MLR calculated ones is
illustrated in Figure 3.

As indicated by the statistical coefficient values of the
correlation between the observed and calculated activities
based on this model using the training set are quite sig-
nificant, and the low RMSE indicates that the model is
reliable to a better prediction precision.

3.2. Artificial Neural Networks. In order to increase the
probability of good characterization of studied compounds,
artificial neural networks (ANN) are used as the nonlinear

method to generate predictive nonlinear model between ob-
served antimalarial activities values and the set of molecular
descriptors obtained by MLR with that of the architecture
network (6-3-1).*e correlation of the observed activities with
the ANN predicted ones is illustrated graphically in Figure 4.

As it is shown in Figure 4, a good correlation between
observed antimalarial activities values and predicted activ-
ities by ANN is obtained, in fact the correlation coefficient
R� 0.98, the determination coefficient R2 � 0.97, and the
standard error of estimate RMSE� 0.09. Such results show
that the selected descriptors by MLR are pertinent, the ANN
model possesses a significantly statistical quality, and the
model proposed to predict antimalarial activity is relevant.

3.3. Cross Validation. *e QSAR model proposed to predict
the activity of new compounds should be tested. To validate
our results, we used the LOO procedure, which involves
removing a single molecule from the set containing 28
molecules and making a prediction for antimalarial activity.
*is procedure is repeated 28 times in order to estimate the
predictive ability of such models. *e correlation of the
observed activities with the calculated cross-validation ones
is shown graphically in Figure 5.

*e obtained correlation (R� 0.90, R2 � 0.81, and
RMSE� 0.16) shows a high predictive power of the MLR
model. *is result shows that our QSAR model is not
sensitive to this operation of putting a molecule aside and
putting it back into the learning series. *is is a first in-
dication of the stability of the selected QSAR model.

3.4. Y-Randomization. *e Y-randomization test was per-
formed to make sure that there is no random correlation. In
this way, we could test the validity of the established QSAR
model and check that the selected descriptors are not
random, and consequently, the result model should have low
statistical quality. *e results of the Y-randomization
method are given in Table 5 and Figure 6.

*e new QSAR model built using the Y-randomization
method is represented by the following equation:
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log IC50 � −13.6 + 2.32∗EHOMO− , 4.5E
−4 ∗E− 0.9E

−4 ∗Er

+ 0.141∗T− 2.43∗ SB− 9.33E
−3 ∗CT,

N � 28, R � 0.825, R
2

� 0.682, F � 7.51, RMSE � 0.29.

(4)

*e correlation coefficient value of the mixture samples
is close to that obtained by applying the model by the
training set. *is result provides the absence of dependence
between descriptors included in the QSAR model.

3.5. External Validation. In a study on efficient methods of
validation for QSARmodels, Golbraikh and Tropsha showed
that LOO methods are necessary but not sufficient, claiming
that external validation is inevitable and proposed some
criteria which would help to validate a QSAR model. *is
validation is done in two steps: validation of the model MLR
have calculated new compounds which are not used in the
model development of the training set (Table 6) and veri-
fication of the Tropsha criteria (Table 7).

*e results show that Golbraikh and Tropsha criteria are
successfully validated. All validations indicate that the built
QSARmodel is robust and satisfactory.*emodel established
in this study meets all of the principles for QSAR validation
and can be used to predict the antimalarial activity.

3.6. Docking Studies. In a pioneering study on the binding
modes and the localization of the principal active sites in
wild and mutant protein performed with a potent inhibitor

Table 5: Comparison between observed and predicted activities obtained using Y-randomization method.

N 3 11 19 26 29 31 33 2 7 9 18 20 22 24
Log IC50 2.367 2.418 1.201 0.719 0.96 1.605 1.603 1.496 1.405 1.193 1.167 0.897 1.473 1.001
Pred log IC50 2.124 1.813 1.294 0.834 0.882 1.439 1.458 1.637 1.604 1.706 1.009 0.843 1.612 1.442
N 30 27 34 8 14 15 4 1 12 5 13 23 25 17
Log IC50 1.717 0.953 1.252 2.368 1.927 2.13 1.701 1.958 1.611 1.5 1.902 1.595 1.683 1.817
Pred log IC50 1.706 1.125 1.489 2.084 1.982 2.259 1.686 1.614 1.828 1.646 1.932 1.800 1.470 1.300
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Figure 6: Correlation between observed/predicted by the
Y-randomization test.

Table 6: Comparison between experimental and predicted log IC50
values of the external test set for the MLR model based on de-
scriptors of (3).

N Log IC50 Pred log IC50 Residuals
5 1.500 1.565 −0.0400
9 1.193 1.589 0.4674
15 2.130 2.888 0.2912
20 0.897 0.517 −0.1386
27 0.953 0.842 0.0982
33 1.603 1.089 −0.6781
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Table 7: Calculation of Golbraikh and Tropsha criteria.

Parameter Formula *reshold Modelscore
R2
ext R2

ext � 1− ( ( ( Ypred (test) −Y(test)
2
/( ( Ytest −Ytr

2
 R2

ext > 0.6>0.6 0.75
r2 Coefficient of determination for the plot of predicted versus observed for the test set r2 > 0.6 0.77
r20 r2 at zero intercept 0.71
r
′2
0 r2 for the plot of observed versus predicted activity for the test set at zero intercept 0.59

|r20 − r
′2
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1,3,5-triazine derivative which is a preclinical molecule
called WR99210, it is found that the important sites are
located in Ile14, Ala16, Met55, Asp54, Ser108, Ile164, and
Tyr170 in the case of the wild type and Ala16, Cys50, Asn51,
Cys59, Asn108, Leu164, and Tyr170 in the case of mutant
protein [28]. In a tentative to give insight into the interaction
modes and to find out the interaction types established with
this protein (pf-DHFR-TS) in its two forms, wild and
mutant, the molecular docking study performed in this
work is applied on three compounds 9 (IC50 �15.58),
11 (IC50 � 261.84), and 26 (IC50 � 5.23) with the binding sites
of both wild type and quadruple mutant.*e docking results
and docked conformations of ligands in the active sites are
represented in Figure 7.

In the case of the wild type, compound 26 performs
hydrogen bonding with the carboxylate oxygen atoms of
ILE164, SER108, and SER111 by the involvement of the two
NH groups bounded to the triazine group and one of the
triazine nitrogen, with, respectively, the distances 2.49Ǻ,
2.77Ǻ, and 2.93Ǻ, and a nonbonded p-sigma interaction
between phenyl of quinoline with MET55 at a distance of
3.52Ǻ. However, in the case of the quadruple mutant, three
hydrogen bonds with ASN108, SER111, and ALA16 were
observed by the involvement of two NH groups linked to
1,3,5-triazine and the oxygen of the morpholino group with
a distance of 2.85Ǻ, 1.84Ǻ, and 2.91Ǻ, respectively. For the
compound 9, two hydrogen bonds are formed between an
oxygen and an azote of the oxalamide group with ILE164 and
TYR170 with, respectively, the distances 2.24Ǻ and 2.73Ǻ in
the case of the wild type. But in the case of the quadruple
mutant, it forms two hydrogen bonds with ALA16 and
LEU164 through the involvement of two azotes (the first is
linked to the oxalamide group, and the second belongs to the
diethylamine group), with distances of 2.77Ǻ and 2.80Ǻ,

respectively. However, compound 11 showed only one hy-
drogen bonding interaction with LEU40 in both cases.

In the analysis of these results, we have at first observed
that the residues with which the compounds 26 and 9 have
formed their interactions are mentioned as the most im-
portant binding sites for antimalarial activity [28], which is
not the case for compound 11. Secondly, we observed that
the number of hydrogen bonds differs from the most active
compound which belongs to the triazine family, to the less
active compound which belongs to the oxalamide family. So,
this could explain the potent antimalarial activity for
compound 26 and the importance of the triazine group to
enhance the antimalarial activity compared to the oxalamide
group.

4. Conclusion

*e present study on a series of 4-aminoquinoline-triazines
and 4-aminoquinoline-oxalamides was carried out using
3D-QSAR and docking techniques in the aim to predict the
antimalarial activity. *e group contribution method (for
both training and test sets) was used to develop a reliable
QSAR model for predicting antimalarial activity. *e result
of MLR and ANN methods using the training set clearly
shows a strong relationship between the structural prop-
erties and the activity. *us, the correlation coefficient for
both methods shows good predictive ability of the model.
*e model is validated by internal and external validation
methods including (leave-one-out) cross validation and
Y-randomization.*e obtainedmodel shows good quality of
the robustness to predicting the antimalarial activity. *e
observed activity was further corroborated via a molecular
docking study which gave explanation to the differences
observed among activities of compounds especially between
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FIGURE 7: 2D and 3D docking poses showing interactions of compounds 9, 26, and 11 in the binding sites of wild type and quadruple mutant
of pf-DHFR-TS. (a) Compound 26: wild type of pf-DHFR (binding energy −8.9 kcal/mol). (b) Compound 26: quadruple mutant of pf-
DHFR-TS (binding energy −8.3 kcal/mol). (c) Compound 9: wild type of pf-DHFR (binding energy −7.42 kcal/mol). (d) Compound 9:
quadruple mutant of pf-DHFR-TS (binding energy −7.96 kcal/mol). (e) Compound 11: wild type of pf-DHFR (binding energy −8.58
kcal/mol). (f) Compound 11: quadruple mutant of pf-DHFR-TS (binding energy −9.2 kcal/mol)
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the triazine family and oxalamide one. Results of these
studies provided details of the predicted binding modes and
the key molecular interactions. *ese will provide oppor-
tunities for medicinal chemists to develop new antimalarial
drugs, by using new hybrid molecules.
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