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Abstract

This study describes a novel approach to reducing the challenges of highly nonlinear multi-

class gene expression values for cancer diagnosis. To build a fruitful system for cancer diag-

nosis, in this study, we introduced two levels of gene selection such as filtering and

embedding for selection of potential genes and the most relevant genes associated with can-

cer, respectively. The filter procedure was implemented by developing a fuzzy rough set

(FR)-based method for redefining the criterion function of f-information (FI) to identify the

potential genes without discretizing the continuous gene expression values. The embedded

procedure is implemented by means of a water swirl algorithm (WSA), which attempts to

optimize the rule set and membership function required to classify samples using a fuzzy-

rule-based multiclassification system (FRBMS). Two novel update equations are proposed

in WSA, which have better exploration and exploitation abilities while designing a self-learn-

ing FRBMS. The efficiency of our new approach was evaluated on 13 multicategory and 9

binary datasets of cancer gene expression. Additionally, the performance of the proposed

FRFI-WSA method in designing an FRBMS was compared with existing methods for gene

selection and optimization such as genetic algorithm (GA), particle swarm optimization

(PSO), and artificial bee colony algorithm (ABC) on all the datasets. In the global cancer map

with repeated measurements (GCM_RM) dataset, the FRFI-WSA showed the smallest num-

ber of 16 most relevant genes associated with cancer using a minimal number of 26 compact

rules with the highest classification accuracy (96.45%). In addition, the statistical validation

used in this study revealed that the biological relevance of the most relevant genes associ-

ated with cancer and their linguistics detected by the proposed FRFI-WSA approach are bet-

ter than those in the other methods. The simple interpretable rules with most relevant genes

and effectively classified samples suggest that the proposed FRFI-WSA approach is reliable

for classification of an individual’s cancer gene expression data with high precision and

therefore it could be helpful for clinicians as a clinical decision support system.
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Introduction

Multiclass classification of gene expression data with a reduced number of genes remain chal-

lenging problems in cancer diagnosis. Microarrays and next-generation sequencing [1, 2] are

the chief tools of cancer research for quantification of gene expression, DNA copy number,

and microRNA activity of each individual. Hence, analyzing such data could give researchers

useful information not only about the mechanism and cause of cancer but also a way to predict

and prevent cancer and to find possible novel treatments. However, classification of multiclass

data is more complex than binary data and further the classification accuracy may decline as

the number of classes increased [3]. The implementation of artificial intelligence using data-

mining tasks such as classification and clustering techniques has been applied to analyze gene

expression values for cancer diagnosis [4–7]. However these techniques suffered by a greater

computational cost and training time.

Rule-based approaches produced knowledge out of gene expression data with acceptable

classification accuracy for diagnosing cancer. [8–11]. In addition some of the other approaches

such as a decision tree [12] and ensemble classification tree [13, 14] have been used for identi-

fication of cancer-causing genes in gene expression data. Nonetheless, these approaches failed

to consider the overlapping behavior of gene expression levels in uncertain situations. Data-

driven approaches [15, 16] have been applied for extracting knowledge from the gene expres-

sion data without a human expert, but they were found to be weak in terms of the self-learning

process. In general, these approaches are problematic for subtyping of cancer with identical

expression levels in multiclass cancer data [17, 18].

In several studies the concept of fuzzy logic has been used to develop a rule-based system

with the help of a learning algorithm to address multiclass issues among cancer genes as well as

for suitable generation of if-then rules and a membership function (MF) for classification of a

disease [19–25]. The genetic algorithm [20] and particle swarm optimization (PSO) techniques

[21] can generate rules through simultaneous tuning of the MF, but it becomes too lengthy with

more linguistic terms and was found to be incomprehensible for making diagnostic decisions.

The ant bee algorithm [22] was recommended to produce compact if-then rules with better

readability, but it results in consumption of more computation time because of the more com-

plicated operations and more tunable control parameters. Fuzzy ontology [23] can extract the

knowledge quickly, but its performance degrades with the scarce data distribution found in the

multiclass gene expression data. The framework described in reference [24] transforms crisp

rules into fuzzy rules using a stochastic global optimization procedure; however, the generation

of the crisp rule using experts for multicategories of cancers is again a difficult task. Majority

voting and fuzzy aggregation [25] are used in a multi-classification system, and it was reported

that the combination of results from the individual classifiers for the final decision yields poor

performance with more skewedness for the multiclass data on cancer gene expression.

Recently, fuzzy-rule-based multiclassification systems (FRBMS) [26] using combinations of

methods were proposed, to take advantage of the crucial benefit of interpretability offered by

the fuzzy system. Nevertheless, the presence of numerous genomic variables versus a relatively

small number of patients poses challenges in understanding the data. Attempts have been

made to use a genetic algorithm (GA) [27] in an FRBMS to perform classifier fusion and selec-

tion; this approach does not fulfill the skewness of the gene expression data. Furthermore,

underfitting should be avoided during multiclassification because it results in a non-optimally

robust system due to inadequate experimentation. To build a beneficial system for cancer diag-

nosis to overcome many shortcomings [28, 29] such as scarceness and highly nonlinear multi-

category values, it is necessary to design an ideal method with precise principles of data

analysis.
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The abundance of genes expressed in microarray experiments requires a long computa-

tion time and results in complex output for an FRBMS. To implement an FRBMS for a gene

expression-based cancer diagnosis problem, identification of most relevant genes associated

with cancer from the large set of genes is mandatory [4, 15]. The purpose of this newly pro-

posed combined fuzzy-rough-set-based f-information & water swirl algorithm (FRFI-WSA)

approach was to design an FRBMS for analyzing gene expression data for cancer diagnosis.

For an effective cancer diagnostic system, two levels of gene selection (by filtering and

embedding procedures using 22 cancer gene expression datasets collected from various

sources) were introduced. Next, we conducted a comparison of the performance of the pro-

posed FRFI-WSA with GA, PSO, and artificial bee colony algorithm (ABC) for cancer gene

expression datasets.

Materials and Methods

Cancer gene expression datasets

This study includes 22 gene expression datasets including name, number of genes (#Genes),

samples (#Sam), and categories (#Cat) along with the source of collection and its type

(Table 1). The performance of the proposed algorithm for classifying datasets irrespective of

the number of output classes was evaluated with 13 multiclass and 9 binary datasets. All the

datasets were generated using oligonucleotide-based technology where RNA was hybridized

Table 1. Characteristics of gene expression datasets used for analysis.

Dataset #Genes #Sam #Cat Source

Multiclass

Acute Lymphoblastic Leukemia (ALL) 2526 248 6 Yeoh et al., 2002 [30]

Gastric Cancer (GC) 4522 30 3 Hippo et al., 2002[31]

National Cancer Institute NCI60 (NCI) 5244 61 8 Dudoit et al., 2002 [5]

Novartis (Nov) 1000 103 4 Su et al., 2002 [32]

Brain_Tumor (BT) 7129 42 5 Pomeroy et al., 2002 [33]

Glioblastoma(GB) 12625 50 4 Nutt et al., 2002 [11]

Leukemia (Leu) 5327 72 3 Armstrong et al., 2002 [34]

Endometrial Cancer (EC) 1771 42 4 Risinger et al., 2003 [35]

Childhood (Ch) 8280 60 4 Li et al., 2003 [36]

Bladder Carcinoma (BC) 1203 40 3 Dyrskjot et al., 2003 [37]

Global Cancer Map with repeated measurements (GCM_RM) 7129 123 11 Yeung et al., 2003 [38]

Binary

Lung Cancer1 (Lun1) 10541 34 3 Dehan et al., 2007 [39]

Lung Cancer2 (Lun2) 12600 181 2 Gordon et al., 2002 [40]

Prostate Cancer (Pro) 12600 136 2 Singh et al., 2002 [41]

Ovary Cancer (Ova) 15154 253 2 Petricoin et al., 2002 [42]

Diffuse Large B-Cell Lymphoma (DLB) 5469 77 2 Shipp et al., 2002 [43]

Hypopharyngeal Cancer (Hypo) 9021 38 2 Cromer et al., 2004 [44]

Breast Cancer (Bre) 12625 24 2 Chang et al., 2005[45]

Breast / Colon Cancer (BCC) 182 104 2 Chowdary et al., 2006 [46]

Colorectal Carcinoma (CC) 2202 37 2 Laiho et al., 2007 [47]

Pancreatic Cancer (Pan) 54614 52 2 NCBI, 2009 [48]

Kidney Carcinoma (KC) 7457 36 2 NCBI, 2009 [48]

#Genes: number of genes, #Sam: samples, #Cat: categories

doi:10.1371/journal.pone.0167504.t001
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using Affymetrix arrays HG-U95/Hu6800/HuGeneFL/Hu35K. The gene expression values

of all the datasets were computed using the Affymetrix GENECHIP MAS 4.0 analysis soft-

ware. The data on small round blue cell tumors (SRBCTs), NCI60 (National Cancer Insti-

tute), and Lymphoma were acquired using a two-color cDNA platform with successive

image analysis by means of the DeArray Software. To summarize, 22 datasets included in

our experiments each have 2–11 distinct diagnostic categories, 24–253 samples (patients),

and 182–54614 genes collected from different tissues under different experimental condi-

tions. The number of samples per class is highly sparse and imbalanced (varies from 6 to

579).

Proposed architecture for analyzing cancer gene expression data

A clinical challenge concerning the limited number of patients (scarcity) that is skewed in

favor of one group (disparity) with a huge number of genes (dimensionality) across many

categories of cancer (multiclass) are the problems faced by clinicians during analysis of gene

expression data for prediction of cancer [30–33]. To overcome these drawback, problem-

specific computational techniques for multiclass cancer diagnosis was developed here. As

shown in Fig 1, the implementation procedure of the proposed combinatorial approach can

be viewed in seven phases. The first phase reads the input data into the FRFI method. It helps

to find the candidate genes in the huge number of genes using well-narrated steps as pre-

sented in Fig 1. The candidate genes are then fed into FRBMS in the second phase to find the

initial points for the membership function (MF) and rule set (RS). In the third phase, these

initial MF points and RS are read into the WSA to generate a population of points as a water

particle’s position. The generated points are submitted to the inference procedure of FRBS in

the fourth phase to compute the correctly classified samples (Cs), the selected number of

rules (Rs), and selected number of informative genes (Gs). The parameters Cs, Rs, and Gs

calculated in the FRBMS are then input to the WSA in the fifth phase for evaluating the

objective function, which determines optimality of the generated water particle’s position as

a knowledge base. If the optimality criteria are not met, then the water particle’s strength

and position are updated accordingly to generate a useful knowledge base which results in

improved classification of samples. The fifth and sixth phases are repeatedly executed until

the desired convergence criterion is achieved. In the final phase, acceptable classification

accuracy with interpretable knowledge is generated in the form of if-then conditional state-

ments that help to identify the cancer-causing genes. The details of subcomponents of the

proposed architecture are given below.

Fig 1. Architecture of the proposed FRFI-WSA approach for cancer gene expression data.

doi:10.1371/journal.pone.0167504.g001
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FRFI

Regardless of the dimensionality issue, the fuzzy rough set (FR) [49] effectively calculates the

redundancy (severance) as well as relevance (significance) using f-information (FI) without

discretizing the continuous gene expression values. The detailed concepts of the fuzzy set,

rough set, fuzzy rough set and f-information is presented in S1 Appendix. Even though the FR

offers a regimented means for FI-based gene selection, it becomes inadequate for the noisiness

and poor dispersal of multiclass samples. Hence, it was upgraded with a fuzzy lower approxi-

mation [50] to compute FI extrinsically to filter a gene subset. Given an n × m matrix of gene

expression data with “m” gene vectors, the goal of gene filtering is to produce an n × f gene

expression data matrix with “f” filtered gene vectors, where f < m. The steps involved in com-

puting FI using the FR are as follows.

1. Read the gene expression dataset Gi×j where I = 1, 2, . . . m; c and j = 1, 2, . . . n; m is the

number of genes, c is a class label, and n is the number of samples.

2. Calculate the mean value μ = {μ1, μ2,. . .μm, μc} for each gene of all the samples and class

labels.

3. Generate two gene groups (High H, Low L) by comparing each gene value with respective

mean values, so that, H = {Genes with a value greater than its mean} and L = {Genes with a

value lower than its mean}

4. Calculate the mean value of two gene groups for each gene, mL ¼ fmL1
; mL2;

; . . .mLcg and

mH ¼ fmH1
; mH2;

; . . .mHcg

5. The mean value calculated at step (iii) is considered the medium mean value,

mM ¼ mM1
; mM2;

; . . .mMc

6. Calculate the standard deviation for each mean value {μL, μM, μH}: sL ¼ fsL1
; sL2

; . . .sLcg,

sH ¼ fsH1
; sH2

; . . .sHcg and sM ¼ fsM1
; sM2

; . . .sMcg.

7. Calculate the membership value in lower fuzzy approximation spaces for each gene Gi×j,

pLðGi�j; mLi
; sLi
Þ ¼

2ð1 � jjGi�j � mLi
jjÞ

2
;
sLi

2
� jjGi�j � mLi

jj � sLi

2ð1 � jjGi�j � mLi
jjÞ

2
; 0 � jjGi�j � mLi

jj � sLi

0; otherwise

8
>>><

>>>:

8. Calculate the positional values ðPGi�jL ;PGi�jM ;PGi�jH Þ for each gene:

PGi�jL ¼
pLi�j

pLi�j
þ pMi�j

þ pHi�j

9. Construct the fuzzy equivalence partition matrix (FEPM) FPi =

PLGi�j

PMGi�j

PHGi�j

2

6
4

3

7
5 for each gene
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10. Suppose Gi×j represents a gene and Gc represents a class label. Then the Gene-Group sig-

nificance value is calculated as

1
n

Xn

j¼1

ðPL
Gi�j \ PL

Gc�jÞ � 1
n2

Xn

j¼1

PL
Gi�j
Xn

J¼1

PL
Gc�j

�
�
�
�
�

�
�
�
�
�
þ

FsigðGi�j;GcÞ ¼
1
n

Xn

j¼1

ðPH
Gi�j \ PH

Gc�jÞ � 1
n2

Xn

j¼1

PH
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�
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�
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11. Now, Gene-Gene Severance between Fsig and the remaining genes Grem is calculated as

FsevðFsigx�j; Gremx�j
Þ ¼ 1

n

Xn

j¼1

ðPL
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n2

Xn

j¼1

PL

lrelx�j

Xn

j¼1

PL
lremx�j

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

þ

1
n

Xn

j¼1

ðPH
lrelx�j \ PH

lremx�j Þ � 1
n2

Xn

j¼1

PH

lrelx�j

Xn

j¼1

PH
lremx�j

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

þ

1
n

Xn

j¼1

ðPM
lrelx�j \ PM

lremx�j Þ � 1
n2

Xn

j¼1

PM

lrelx�j

Xn

j¼1

PM
lremx�j

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

12. Calculate the FI value for each gene Gi×j using the formula FI = min|Fsig−Fsev| and sort

them in descending order of FI values for filtering.

It is expected that the proposed method of fuzzifying the criterion function of FI with a

rough set can filter genes extrinsically in a way similar to human intervention into gene

identification.

FRBMS

The filtered candidate genes from the FRFI method are partitioned into linguistics to generate

the MF and RS points. As shown in Fig 2, this study includes three partitions such as low (“L”),

medium (“M”), and high (“H”), and thus nine membership points (P1, P2, P3, P4, P5, P6, P7, P8,

and P9) are required to encode each candidate gene. P1 and P9 are permanent to designate the

limits of the gene expression value. The optimal values for other points are selected between

the limits [P1, P9] for P2, [P2, P9] for P3, [P2, P3] for P4, [P4, P9] for P5, [P5, P9] for P6, [P5, P6]

for P7, and [P7, P9] for P8. These points take floating-point numbers in which triplets P1, P2, P3

and P7, P8, P9 draw a trapezoidal MF and the triplet P4, P5, P6 draws a triangular MF.

The representation of typical MF points and RS for FRBMS is shown in Fig 3. A rule choses

integer numbers in three sections viz., Rule selection, Antecedent, and Consequent. “R”

denotes a rule selection that can be either 0 or 1 to select or deselect the rule. G1, G2, G3 . . . Gf

in the antecedent part represents filtered genes, denoting a random integer value among 0, 1, 2,
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and 3 to perform linguistic as well as gene selection. The consequent Cl takes any value among

0, 1, 2 . . . n to assign the category of cancer. These single MF and RS points are fed to WSA to

initialize more MF and RS points randomly as a position for the initial water particle. Based on

the procedural evaluation of WSA, a knowledge base is constructed that contains the optimal

data base (MF points) and rule base (RS points). This knowledge base extracted by WSA is

used in a Mamdani inference procedure to perform classification of samples.

WSA

This is a new optimization algorithm [51, 52] inspired by the way water finds a drain in a sink.

The learning principle of WSA is used to make the FRBMS as self-learning system by provid-

ing the knowledge base in the form of optimal MF and RS points. The WSA starts by initializ-

ing the control parameters like the number of water particles, boundary conditions, and

iteration followed by random initialization of the position for water particles using the initial

MF and RS points received from the FRBMS. Then, for each water particle position, WSA gen-

erates water particle’s strength and a reference position randomly. After that, each water parti-

cle’s position (i.e., MF and RS points) are evaluated using the objective function given in this

equation:

MinimizeObj ¼ ðTs � CsÞ þ ðk1 � RsÞ þ ðk2 � GsÞ ð1Þ

where Ts is the total number of samples, Cs is the number of correctly classified samples, Rs is

the selected rules from the maximum rules Rm, and Gs is the selected number of genes from

the filtered genes. k1 and k2 are constants used to amplify Rs and Gs. The component (Ts−Cs)

Fig 2. Partitioning of input genes in fuzzy space.

doi:10.1371/journal.pone.0167504.g002

Fig 3. Representation of typical membership function (MF) points and rule set (RS) for FRBMS.

doi:10.1371/journal.pone.0167504.g003
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calculates error. The WSA approach used in this study attempts to minimize the error compo-

nent and to improve accuracy of the system. Similarly, the component (k1 × Rs) tries to pro-

duce a RS whose interpretability is addressed suitably by WSA. The component (k2 × Gs)
attempts to find out the minimal number of potential genes on the basis of the linguistic

selection.

The optimality of the generated MF and RS points is checked during every iteration to yield

the result. If the optimal points are not obtained, then the MF and RS points are updated itera-

tively using the strength and position update eqs (2) and (3):

anew ¼ aold þ aq;ref � ðxprevBest � xq;ref Þ þ aq;ref � ðxgBest � xp;oldÞ ð2Þ

xp;new ¼ anew þ aq;ref � ðxp;old � xq;ref Þ ð3Þ

where α, xp, and xq,ref are all randomly generated using the range given for the solution vari-

able; αq,ref is a random number generated between 0 and 1; αold and αnew are the strength vec-

tors of water particles during ith and (i + 1)th iterations. Similarly, xp,old and xp,new are the

positions of water particles during ith and (i + 1)th iterations; xq,ref, xprevBest, and xgBest denote

the reference position, previous best position, and global best position of the water particle,

respectively.

Results

FRFI-WSA for the global cancer map with repeated measurements

(GCM_RM) dataset

The steps of the proposed FRFI-WSA are demonstrated for tumor data categories of the

GCM_RM dataset, which contains 123 samples. Out of 123 samples, 96 and 27 are used for

training and testing, respectively. Furthermore, this dataset has 11 categories of tumors with

7129 genes. The 96 training samples include all categories of tumors. Nonetheless, the set of 27

test samples does not include samples of breast, melanoma, and pancreatic tumors. Hence, in

this simulation, both the training and testing samples are mixed to have a reasonable sample

for each category. Similar consideration is given to other kinds of datasets. The distributions of

classes among the training (#Tr) and the testing (#Te) samples of GCM_RM are given in

Table 2.

At the first level of gene filtering, all the 123 samples are considered for the GRM dataset

and other datasets as well. Initially, a fuzzy equivalence class (FEC) was calculated for an indi-

vidual gene via the steps (i) through (viii) of FRFI. The FEC calculated for the individual gene

is then used to produce an FEPM using step (ix) of FRFI. The FEC and FEPM calculated for

the gene of GCM_RM whose accession id is AB002380_at are given in Table 3. Then Gene-

Group significance is analyzed using step (x). Based on the Gene-Group significance value,

genes are rated, and the gene with the highest significance value is designated as the first gene.

Gene AB002380_at of GCM_RM has the highest significance value of 0.6489 and it is nomi-

nated as the top-rated significant gene. After significance calculation, Gene-Gene severance

(redundancy) is analyzed among gene “AB002380_at” and the residual genes of the GCM_RM

using step (xi) of FRFI as specified in Table 4.

From the significance and severance values, an FI value for each gene is calculated using

step (xii) of FRFI so that it maximizes the significance and minimizes severity. The FI values of

first 100 genes are shown in Fig 4. There are variations among the FI values computed for each

gene. The genes are arranged in descending order of FI values to filter out the top 50 genes

from 7129 genes to achieve a good trade-off between significance and severance for further
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evaluation. Identification of the most significant gene among the initially filtered 50 genes is

carried out using WSA, which aims to generate minimum rules with less informative genes to

classify more samples by means of the FRBMS during classification.

Each rule is found to take 52 varying integer numbers (1 for R, 50 for “G1, G2, G3 . . . Gf,” 1

for Cl) as per the representation strategy given in Fig 3. The maximal number Rm of initial

rules in the RS is determined heuristically by multiplying the number of classes (#Cat) in the

dataset by 3 with the goal of obtaining at least a single rule for each category of cancer. For the

GCM_RM dataset, 33 rules (11 × 3) are randomly initialized in the RS. Hence, the RS of

GCM_RM contains 1716 integer numbers (33 × 52). Seven points are required to figure out

the linguistic variables of every gene, and hence 350 floating-point numbers (7 × 50) are

needed. The count of an integer variable differs from dataset to dataset depending on the num-

ber of cancer categories, whereas the count of a floating-point number is common for all the

datasets.

The size of the initial solution space is considered within 20 to 50. Each position of the

water particle is evaluated using the objective function (1) by changing the iterations from 10

Table 2. Distribution of the training and testing tumor data categories in the GCM_RM dataset.

Tumor Category Total No. of Samples Actual Considered

#Tr #Te #Tr #Te

Breast 7 7 0 4 3

Lung 6 4 2 4 2

Colorectal 10 7 3 7 3

Lymphoma 19 14 5 14 5

Melanoma 5 5 0 3 2

Uterus 9 7 2 7 2

Leukemia 29 23 6 23 6

Renal 8 5 3 5 3

Pancreas 7 7 0 4 3

Mesothelioma 11 8 3 8 3

CNS 12 9 3 9 3

Overall Total 123 96 27 88 35

#Tr: training data, #Te: testing data

doi:10.1371/journal.pone.0167504.t002

Table 3. FEC and FEPM values for gene AB002380_at of the GCM_RM dataset.

Fuzzy Equivalence Class for gene AB002380_at

FEC S1 S2 . . . S122 S123

Low 0.1578 0.2536 . . . 0.1925 0.4265

Medium 0.5269 0.6321 . . . 0.5262 0.5241

High 0.9417 0.9259 . . . 0.4534 0.9321

Fuzzy Equivalence Partition Matrix for gene AB002380_at

FEPM S1 S2 . . . S122 S123

Low 0.1427 0.1426 . . . 0.1324 0.1758

Medium 0.7242 0.6321 . . . 0.5815 0.6519

High 0.9838 0.9162 . . . 0.9647 0.9235

S1. . ... . .S123: samples

doi:10.1371/journal.pone.0167504.t003
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to 100. The value for constants k1 and k2 in eq (1) is varied from two to five depending on the

Rs and Gs obtained during a particular iteration. A maximum of 40 independent trials of

experiments have been conducted by varying the water space as well as the iteration. The

resulting performance of every particle inside water is examined. The finest results for

GCM_RM datasets for 30 water spaces between 80 to 100 iterations were observed. A similar

experiment was conducted for all other datasets used in this study. The selection of the most

significant 16 genes in the RS along with their descriptions for identification of tumor catego-

ries among the 50 filtered genes are presented in S1 Table. The rule set gleaned for the

GCM_RM dataset is presented in Table 5. Twenty-six rules were generated to achieve classifi-

cation accuracy of 96.45%.

In Table 6, the accession ID of the most significant genes is presented along with the

selected linguistic label and tumor category, which help to identify the genes causing the

tumor. Furthermore, the GCM_RM dataset was examined with a different number of initial

rules such as four, five, and six. It ultimately resulted in 44, 55, and 66 rules in the RS. The

selected optimum genes involved in a different RS are not distributed reasonably among com-

mon genes. Hence, it is understandable that the various subsets of genes are selected for cate-

gorizing the classes of patients. Nevertheless, the genes selected beyond 20 to 100 in the RS

Table 4. Gene group significance and gene-gene severance values of the GCM_RM dataset.

Gene No. Gene ID Gsig Gsev

G1 A28102_at 0.193452 0.234561

G2 AB000114_at 0.152567 0.343587

G3 AB000115_at 0.124561 0.561924

. . . . . . . . . . . .

G7128 Z97054_xpt2_at 0.156722 0.145623

G7129 Z97074_at 0.112345 0.532419

Gsig: Gene significance, Gsev: Gene severance

doi:10.1371/journal.pone.0167504.t004

Fig 4. The F-information (FI) values of first hundred genes for GCM_RM dataset.

doi:10.1371/journal.pone.0167504.g004
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yielded a minor improvement (roughly 0.6%) in the classification. Hence, it could be said that

the proposed approach shows robust performance with 26 generated rules because it utilizes

16 selected genes to classify 119 out of 123 samples in the GCM_RM dataset.

Empirical results

Performance comparison and evaluation metrics. The performance of the proposed

WSA approach was compared with the competing methods such as GA [20], PSO [21], and

ABC [22] on all the datasets. A comparison in convergence between the proposed WSA for the

GCM_RM dataset and other approaches is shown in Fig 5. It is noteworthy that the conver-

gence of other approaches is worse than that of the proposed WSA approach. Although the

other approaches based on GA, PSO, and ABC are relatively good at tuning the MF, they con-

sume more generations to converge. It is clear in the figure that both ABC and WSA show an

abrupt rise in the fitness value whereas the GA and PSO approaches showed only a steady

increase in the fitness value. The reason could be the more tunable parameters.

In Table 7, a comparison is presented between the proposed WSA and the other methods

for all datasets. For each dataset (DS), the table shows the classification accuracy (CA%), num-

ber of genes (#Gs), and central processing unit (CPU) time (CT). All methods are credibly

good in their performance, but it appears that PSO is a little faster than the others except WSA

because of PSO’s simplified operations. Nonetheless, PSO did not produce an optimal solution

Table 5. The rule set generated for the GCM_RM dataset by the FRFI-WSA method.

Rule No. Rule Set

R1 If (PDCD1 & OGDH) are low and MG81 is medium, then it is Breast cancer.

R2 If (PRMT1 & LGALS9) are medium and (X03453 & RAD51) are high, then it is Breast cancer.

R3 If (GLO1 & SLC25A13) are high and PRKAR1A is low, then it is Breast cancer.

R4 If J04423 is high, and GLO1 is low, and NCOR2 is high, then it is Lung cancer.

R5 If (RYR1 & SLC25A13) are low and (RAD51 & PRKAR1A) are medium, then it is Lung cancer.

R6 If NOP14-AS1 is high and (J04423 & NCOR2) are medium, then it is Colorectal cancer.

R7 If (PDCD1 & OGDH) are medium and MG81 is low, then it is Colorectal cancer.

R8 If J04423 is low and RBM42 is high, then it is Lymphoma.

R9 If PRMT1 is high and, (X03453 & LGALS9) are low, then it is Lymphoma.

R10 If (RYR1 & RBM42) are medium and PDCD1 is high, then it is Melanoma.

R11 If (GLO1 & PRKAR1A) are medium and PDCD1 is low, then it is Melanoma.

R12 If NOP14-AS1 is low and (J04423 & M24537B) are high, then it is Uterine cancer.

R13 If (PRMT1 & LGALS9) are high and (X03453 & RAD51) are medium, then it is Uterine cancer.

R14 If J04423 is medium and GLO1 is high and MG81 is low, then it is Uterine cancer.

R15 If NOP14-AS1 is high and M24537B is medium, then it is Leukemia.

R16 If (PDCD1 & OGDH) are medium and NCOR2 is low, then it is Leukemia.

R17 If PRMT1 is medium and (X03453 & LGALS9) are low, then it is Renal cancer.

R18 If J04423 is high, and RBM42 is medium and OGDH is low, then it is Renal cancer.

R19 If (RYR1 & SLC25A13) are medium and (RAD51 & PRKAR1A) are high, then it is Renal cancer.

R20 If (PRMT1 & NCOR2) are low and NOP14-AS1 is medium, then it is Pancreatic cancer.

R21 If X03453 is medium and (RBM42 & M24537B) are low, then it is Pancreatic cancer.

R22 If RYR1 is low and (MG81 & PDCD1) are high, then it is Pancreatic cancer.

R23 If PRMT1 is low and X03453 is high, and LGALS9 is medium, then it is Mesothelioma.

R24 If PRMT1 is low and (X03453 & LGALS9) are high, then it is Mesothelioma.

R25 If (PRKAR1A & SLC25A13) are high and (NOP14-AS1 & RAD51) are low, then it is CNS cancer.

R26 If (J04423 & M24537B) are low and (RYR1 & OGDH) are high, then it is CNS cancer.

doi:10.1371/journal.pone.0167504.t005
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better than ABC did. Even though ABC is relatively good at producing interpretable rules, it

consumes more CPU time due to the different phases of bee operations in generating simple

rules. In contrast, the proposed WSA acquired a quick desired fitness value with a minimum

number of most significant genes for all the binary and multiclass datasets used in this study. It

is indicated that the properly tuned regularization parameters by optimization using WSA can

be possible to extend the proposed approach to classify binary and multiclass samples for can-

cer gene expression datasets.

Table 6. Identification of the most significant genes and their linguistic label in the rule set for the classification of tumor categories for the

GCM_RM dataset by FRFI-WSA.

Gene Name Linguistic Label

Low Medium High

RBM42 Pancreas Melanoma/Renal Lymphoma

SLC25A13 Lung Renal Breast/CNS

J04423 CNS Colorectal Uterus

X03453 Lymphoma/Renal Uterus/Pancreas Breast/Mesothelioma

NOP14-AS1 CNS/Uterus Pancreas Colorectal/Leukemia

M24537B CNS/Pancreas Leukemia Uterus

OGDH Breast/ Renal Colorectal/Leukemia CNS

GLO1 Lung Melanoma Breast/Uterus

RAD51 CNS Lung/Uterus Breast/Renal

NCOR2 Pancreas/Leukemia Colorectal Lung

PDCD1 Breast/Melanoma Colorectal/Leukemia Melanoma/Pancreas

PRMT1 Mesothelioma/Pancreas Breast/Renal Lymphoma/Uterus

LGALS9 Lymphoma/ Renal Breast/Mesothelioma Uterus/ Mesothelioma

PRKAR1A Breast Lung/Melanoma Renal/CNS

RYR1 Lung/Pancreas Melanoma/Renal CNS

MG81 Colorectal/Uterus Breast Pancreas

doi:10.1371/journal.pone.0167504.t006

Fig 5. Convergence comparison of WSA with other methods for GCM_RM dataset.

doi:10.1371/journal.pone.0167504.g005
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The Monte-Carlo cross-validation (MCCV) method. The performance of the proposed

approach in terms of generalization was assessed using MCCV [53, 54] method. The mean

value of the error calculated for the GCM_RM dataset using MCCV is presented in Fig 6. One

can see that the error rate diminishes as the number of genes rises at every trial. Nevertheless,

beyond 16 genes, the error rate surges to some extent. Hence, it is clear that a reasonably lim-

ited set of genes is sufficient to categorize the diverse cancer classes competently. Thus, the

proposed FRFI-WSA approach can identify meaningful genes that cause cancer effectively

with great precision for the classification of 11 tumor categories in GCM_RM datasets. Similar

generalization performance was observed in all other datasets used in this study.

Wilcoxon’s signed-rank test. To evaluate noteworthy dissimilarities in outcomes between

the competing methods and the proposed approach, Wilcoxon’s signed-rank test [21] was

used. Table 8 presents the effects of the proposed approach are compared with those of the

other methods for gene selection and knowledge acquisition. In this table, “r+” denotes the

number of times the first method is superior to the second, and “r-“means the grades for dis-

agreeing with the result. The null hypothesis “h” related to the Wilcoxon’s test is rejected (rej)

because ρ< α = 0.01 in all comparisons favor WSA owing to variance in r+ and r- values. The

results indicate that the fuzzy lower approximation space for computing significance and sev-

erance values of genes can deliver improvements in all metrics better than the existing meth-

ods can.

The receiver operating characteristics (ROC) curve. The ROC curve was drawn to

understand the strength of the proposed FRFI-WSA using the true positive rate (TPR) against

Table 7. Comparison of the performance of the water swirl algorithm with existing methods on all datasets.

DS #Gs CA% CTs

GA PSO ABC WSA GA PSO ABC WSA GA PSO ABC WSA

ALL 41 38 35 23 84.23 88.42 92.78 95.12 321.45 298.43 194.65 173.42

GC 38 34 33 26 86.87 92.41 94.76 95.23 312.45 284.87 223.45 165.98

NCI 40 39 29 22 84.69 87.45 91.28 96.89 292.43 290.14 264.52 187.56

Nov 42 37 32 24 85.89 87.43 91.67 95.64 296.31 278.23 250.42 176.43

BT 34 34 28 19 87.25 90.45 89.45 95.12 218.46 188.35 158.25 121.49

GB 36 33 36 26 83.96 87.45 91.23 96.42 267.35 243.76 186.12 156.81

Leu 32 29 27 24 84.56 87.56 90.58 96.79 291.43 258.43 192.23 157.56

EC 39 37 36 24 84.12 86.49 92.56 96.12 246.71 217.38 183.46 162.53

Ch 38 37 30 23 86.45 82.45 92.47 95.12 245.83 221.64 193.46 153.29

BC 42 38 33 27 90.15 89.61 92.49 94.19 257.14 243.87 225.32 196.78

GCM_RM 32 29 26 18 84.59 85.67 90.56 96.45 294.12 256.45 198.25 165.54

Lun1 45 42 34 29 91.32 93.23 90.46 94.71 258.98 247.32 194.85 153.59

Lun2 38 36 35 32 83.48 85.29 90.59 96.87 238.14 195.42 168.12 148.12

Pro 25 22 19 12 84.52 86.47 90.32 95.73 262.14 205.46 171.31 124.12

Ova 26 21 18 12 87.29 94.36 95.54 98.56 258.69 201.13 187.89 143.65

DLB 21 19 17 14 84.78 92.57 94.87 97.45 294.78 268.59 237.56 165.87

Hypo 39 35 31 27 85.43 81.26 91.49 98.23 295.67 287.45 163.67 151.25

Bre 38 35 29 23 83.25 88.49 93.21 96.46 284.35 256.45 218.34 187.19

BCC 27 29 24 21 84.58 88.19 93.45 98.76 275.34 263.46 246.12 223.14

CC 25 21 17 14 86.43 89.12 93.14 96.34 275.87 251.23 231.98 201.49

Pan 15 12 10 7 89.49 94.26 95.12 98.29 247.36 203.62 168.23 114.29

KC 28 24 19 16 85.48 91.26 95.45 96.82 283.28 271.54 236.42 178.56

DS: dataset, #GS: number of genes, CA: classification accuracy, CT: central processing unit time

doi:10.1371/journal.pone.0167504.t007
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the false positive rate (FPR) in diverse cut points (Fig 7) [21, 55]. The proposed approach

shows the ROC curve nearer to the higher left corner for all the data sets (for clear visualiza-

tion, ROC curves are shown only for selected datasets). Our proposed approach has shown the

highest sensitivity and specificity for all the datasets except for SRB and Car. Even though the

proposed approach yields a lower value of the area under the curve (AUC) for SRB and Car

datasets, this shortcoming does not disqualify the proposed approach as a screening test for

cancer diagnosis because the effect of this shortcoming on performance is negligible.

Interpretability and gene ontology analysis. Readability and comprehensibility [56] are

the two key valuation metrics to assess the interpretability of rules. The former deals with the

model description that is quantified using the indices like coverage of the rules (Rcov), accuracy

of the rules (Racc), goodness of the rules (Rgud), average rule length (Arl), average fired rules

(Afr), and average confidence firing degree of the rules (Acfd). Values of those indices for every

generated rule/RS can be obtained using eqs (4 to 9).

Rcov ¼
Ncon

#S
ð4Þ

Racc ¼
Npro

Ncon
ð5Þ

Fig 6. Generalization ability of WSA for GCM_RM dataset.

doi:10.1371/journal.pone.0167504.g006

Table 8. Comparison of the performance of the water swirl algorithm with existing methods by Wilcoxon’s signed rank test on all datasets.

Comparison GA Vs WSA PSO Vs WSA ABC Vs WSA

r+ r- ρ h r+ r- ρ h r+ r- ρ h

No. of Rules 5 86 0.53 rej 6 61 0.62 rej 3 62 0.31 rej

No. of Genes 6 78 0.45 rej 7 86 0.53 rej 5 65 0.51 rej

Accuracy 2 51 0.56 rej 4 48 0.82 rej 6 67 0.75 rej

Interpretability 6 75 0.91 rej 12 56 0.63 rej 11 69 0.79 rej

CPU Time 8 71 0.56 rej 18 38 0.51 rej 13 56 0.76 rej

doi:10.1371/journal.pone.0167504.t008
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Rgud ¼
PCSfd � NCSfd

TCSfd
ð6Þ

Arl ¼
Trl
#R

ð7Þ

Afr ¼
Tfr
#R

ð8Þ

Acfd ¼
Afd

#S
ð9Þ

where Ncon is the count of samples concealed by rule R in the total number of samples #S, and

Npro is the count of samples properly classified by R in Ncon. PCSfd, NCSfd, and TCSfd are the fir-

ing degrees of positive, negative, and total covered samples, respectively. Trl is the total rule

length, i.e., the count of linguistic variables, Tfr is the total number fired rules, Afd is the average

firing degree of a rule, and #R is the total number of rules. The values of the indices for all the

datasets are reported in Table 9. Throughout the execution, the proposed WSA tunes the MF

points of each gene so that there is a reasonable overlap among the curves of linguistics. WSA

also tries to ignore the MF points that attempt to go out of range. Likewise, the semantic label

gained for each gene results in a reasonable length for each rule to use it compactly. The lin-

guistic values (low, medium, and high) associated with each gene can help a physician to iden-

tify the patient’s distinct genomic contour to produce a verdict. The confidence about the

average firing degree shows that the rules produced by WSA are fired more recurrently and

have a tendency to be cofired with other rules. To avoid redundancy and to improve the com-

pactness and interpretability without losing the classification accuracy, the rules with the low-

est firing degrees are not included in this study.

Fig 7. Receiver operating characteristics curve analysis for selected datasets by FRFI-WSA.

doi:10.1371/journal.pone.0167504.g007
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Comprehensibility of the rules (which deals with explanation of the system concerning the

inference complexity of rules) is analyzed using the information on cofiring of rules. For each

rule R, the number of instances fired individually (IF) and simultaneously (SF) with every

neighboring rule are recorded to compute a cofiring measure, CF, using the following equa-

tion:

CFij ¼

SFij
ffiffiffiffiffiffiffiffi
IFi :
p

IFj
; if i 6¼ j

0 ; if i ¼ j

8
><

>:
ð10Þ

Then the number of premises P in each rule is counted for computing the comprehensibil-

ity index (CI) using this equation:

CI ¼
Xr

i¼1

Xr

j¼1

½ðPi þ PjÞ :CFij� ð11Þ

Where r is the total number of rules. Based on a heuristic threshold (T) between 0 and 1, the

cofiring comprehensibility index (CFCI) is computed using eq (12) to understand the implied

Table 9. Reliability analysis of the rule set generated by FRFI-WSA in all datasets.

DS #R Rcov Racc Rgud Arl Afr Acfd

ALL 22 15.87 85.46 0.182 5.31 10.19 0.432

GC 31 14.98 87.43 0.453 9.76 7.46 0.652

NCI 19 12.40 82.37 0.517 7.22 9.37 0.598

Nov 18 13.69 82.34 0.431 7.23 10.15 0.532

BT 11 11.02 84.75 0.795 5.91 8.34 0.567

GB 15 11.78 84.19 0.639 8.41 9.57 0.591

Leu 8 14.49 82.09 0.765 6.98 8.35 0.687

EC 9 15.76 86.34 0.653 9.54 9.16 0.639

Ch 9 14.67 86.71 0.652 8.56 10.21 0.546

BC 11 11.78 89.32 0.693 9.21 9.45 0.586

GCM_RM 26 12.69 83.39 0.823 6.92 9.95 0.535

Lun1 23 15.87 84.99 0.754 8.46 8.42 0.462

Lun2 7 10.40 80.68 0.546 7.70 8.49 0.536

Pro 5 11.76 82.09 0.576 7.20 9.46 0.621

Ova 9 16.82 84.62 0.679 5.23 9.20 0.503

DLB 8 18.47 84.16 0.959 5.60 8.06 0.530

Hypo 11 16.45 85.12 0.643 7.34 9.12 0.513

Bre 12 16.18 83.23 0.798 6.45 9.82 0.653

BCC 9 16.23 86.54 0.475 8.67 10.23 0.543

CC 10 18.41 88.45 0.467 6.813 9.14 0.614

Pan 9 10.48 83.67 0.562 5.05 9.48 0.634

KC 7 11.44 84.37 0.498 7.64 8.45 0.597

DS: datasets, #R: rules, Rcov: coverage of the rules, Racc: accuracy of the rules, Rgud: goodness of the rules, Arl: average rule length, Afr: average fired rules,

Acfd: average confidence firing degree of the rules

doi:10.1371/journal.pone.0167504.t009
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and clear semantics set in the fuzzy partitions and reasoning as well.

CFCI ¼
1 �

ffiffiffiffiffi
CI
T

r

if CI � T

0; otherwise

8
><

>:
ð12Þ

The details of such analysis are illustrated in Fig 8 for the rules of the GCM_RM dataset. All

the rules generated by WSA without any rule selection were used for examining its compre-

hensibility. Rule R16 has the largest CFCI value, while rule R13 has the smallest value. We found

that the majority of the samples are fired between regions R1 and R9. Because R16 and R32

cover many problem instances, they overlap with the rules among R1 and R9. Linguistic simpli-

fication is carried out by combining rules R26 and R27 showing a similar CFCI value. As antici-

pated, it is easy to see that the evidence related to the new fused rules varies for FRBMS with

the complete RS. Likewise, elimination of certain rules is done to fine-tune the system perfor-

mance. We found that the accuracy of the system is improved after elimination of rules R13,

R20, R22, R23, and R25. The interpretability analysis confirmed that the rules produced by the

proposed WSA for all the datasets are transparent and comprehensible as well meet the

requirements for understanding cancer gene expression data.

During gene expression-based cancer diagnosis, in addition to finding the subset of poten-

tial genes causing the cancer, the researcher is expected to trace out the physiognomies of the

causative genes in terms of their part in multiple cancer classes [57]. The GO Sim package in

the R platform [22] was used to compute the similarity value for the genes identified in the

GCM_RM dataset using the GO terms. It is noteworthy that the genes are related to DNA

metabolism and are enriched only in categories repair, positive regulation, reduction, cell size,

development, and assembly. The nitrogen compound metabolic process of gene AFFX-CreX-

3_st has an “is a” relation with GO:0006328 and is involved in a DNA metabolic process.

The primary metabolic process of AB000464_at has an “is a” relation with GO:004891, and

the cellular process of AFFX-PheX-3_at has an “is a” relation with GO:006813. The process of

cellular nitrogen compound metabolism relevant to Z49107_s_at has a “part of” relation with

Fig 8. Comprehensibility of the generated rules by WSA for GCM_RM dataset.

doi:10.1371/journal.pone.0167504.g008
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GO:000524 and GO:004271. The process of nucleobase-containing compound metabolism rel-

evant to M33336_at has a “part of” relation with GO:013608 and GO:0044167. It was con-

firmed that the genes selected are involved in a DNA metabolic process, encode proteins

associated with critical substances implicated in cancer. Such substances promote angiogene-

sis; help to elude apoptosis; increase differences from normal tissues; and enhance indepen-

dent progression signs that lead to perfect prediction of cancer. Furthermore, the biological

processes are consistent with the molecular activities that occur in active and proliferating cells

of a cancer. The inequitable control of genes produced by the proposed procedure defines the

extracellular environments that are important to understand the communications between the

cells. Because most of the cancer genes restrained by the latest technology do not have entries

in the GO database, it is not feasible to construct similarity relations between cancer genes for

all the datasets used in this study. Overall, the refinement power of the nominated genes and

their linguistics in the proposed model are sufficient to detect samples of a certain type of can-

cer and then to quickly rule out healthy samples.

Discussion

In this study, we propose a new combined FRFI-WSA approach for designing an FRBMS to

analyze gene expression data for cancer diagnosis. The WSA method showed the highest clas-

sification accuracy for detection of cancer genes in comparison with the GA, PSO, and ABC

algorithms (Fig 5). Furthermore, the proposed approach showed the highest diagnostic sensi-

tivity and specificity in the ROC analysis for estimation of classification performance. The

superior performance of FRFI-WSA is obvious because the implementation of gene filtering in

this study maximizes the gene-class relevance, minimizes the gene-gene redundancy, and

arranges genes in an increasing order of the FI values without dependence on the classifier

model. In addition, the most relevant genes associated with cancer were identified by the

WSA, which attempts to optimize the RS and MF required for classification of samples using

an FRBMS.

The combined FRFI-WSA approach quickly attained a desired fitness value using shorter

computing time and a minimal number of rules for identification of the most significant can-

cer genes in comparison with the GA [20] and PSO [21] techniques (Table 7). This is probably

because WSA is based on the novel strength and position update eqs (2) and (3), respectively,

and simplifies operations with fewer or no parameters, thus rapidly extracting the RS and

MFs. The fuzzy model integrated into GA reported in reference [19] deals only with binary

data using a wide range of genes for classification of cancer genes. Moreover, it was also dem-

onstrated that finding an optimal number of genes for multiclass problems is more beneficial

for diagnosis of cancer. The ensemble combinatorial search is integrated into GA [14] as a sin-

gle objective GA for optimization of the ensemble technique to classify class-imbalanced

datasets. Nonetheless, a single objective GA attempts to locate solutions closer to the local opti-

mum and hence the average error is much greater than in the proposed approach, which finds

global optimal solutions for the classification. Hence, the proposed FRFI-WSA approach can

effectively identify the most relevant genes associated with cancer (16 genes) with great preci-

sion (96.5%) and to generate understandable compact rules with fewer parameters for the clas-

sification of multiclass cancer categories. The classification performance of the FRFI-WSA

according to cross-validation also proved that the two levels of gene selection implemented in

this approach can eliminate or do not include some of the noisy genes that worsen classifica-

tion performance.

The optimization using WSA in the present study effectively extracts comprehensible RS

(26) and understandable linguistics for an MF for classifying the multiclass cancer samples.
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These data are also supported by another study [14], where the repeated tuning of an MF and

RS was carried out by the optimization method could achieve the dimensionality challenges

and multiple-class imbalanced data for optimal classifications. The lack of previous studies

with the application of WSA for gene selection and RS based on multiclass gene expression

datasets, making it difficult to compare our results directly is also one of the limitations in this

study. Although the proposed model is better at identifying genes that are strongly responsible

in order to classify different types of cancer, it consumes time, particularly in generating fuzzy

equivalence class. In the future, the complexity of generating a fuzzy equivalence class by the

FRFI method can be reduced by evaluating the Cartesian product using a fuzzy lower approxi-

mation for more rapid selection of a smaller subset of genes without any skewedness to multi-

category data. However the proposed classifier model based on gene expression datasets

extracted the most relevant genes associated with cancer by WSA method. Furthermore, the

employment of other global optimization techniques such as genetic swarm and ant bee algo-

rithms could be combined along with WSA method to generalize the interpretable rules with

most relevant genes for cancer. In addition, further study also needed to verify the perfor-

mance of the proposed approach to investigate the similarities of the gene expression data gen-

erated from other platforms such as Illumina, Agilent, etc. Our study revealed that the FR

implemented here computes the FI without losing the biological meaning of the gene expres-

sion and should be helpful for identification of potential genes. Next, the WSA method will

produce highly interpretable rules and will classify the maximal number of samples using an

FRBMS better than the existing methods reported in the literature [14, 19–21]. Thus, the two

levels of gene selection implemented in this study result in an efficient diagnostic system with

lower complexity. Furthermore, the proposed approach reduces the computational cost and

thus improves the classification accuracy of an FRBMS. In addition, the highest sensitivity and

specificity in the selected multiclass datasets strongly indicate that the new FRFI-WSA

approach is practically useful for construction of an effective system for making diagnostic

decisions about cancer.
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