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A B S T R A C T   

Purpose: In this study we aimed to leverage deep learning to develop a computer aided diagnosis (CAD) system 
toward helping radiologists in the diagnosis of SARS-CoV-2 virus syndrome on Lung ultrasonography (LUS). 
Method: A CAD system is developed based on a transfer learning of a residual network (ResNet) to extract features 
on LUS and help radiologists to distinguish SARS-CoV-2 virus syndrome from healthy and non-SARS-CoV-2 
pneumonia. A publicly available LUS dataset for SARS-CoV-2 virus syndrome consisting of 3909 images has 
been employed. Six radiologists with different experiences participated in the experiment. A comprehensive LUS 
data set was constructed and employed to train and verify the proposed method. Several metrics such as ac-
curacy, recall, precision, and F1-score, are used to evaluate the performance of the proposed CAD approach. The 
performances of the radiologists with and without the help of CAD are also evaluated quantitively. The p-values 
of the t-test shows that with the help of the CAD system, both junior and senior radiologists significantly improve 
their diagnosis performance on both balanced and unbalanced datasets. 
Results: Experimental results indicate the proposed CAD approach and the machine features from it can signif-
icantly improve the radiologists’ performance in the SARS-CoV-2 virus syndrome diagnosis. With the help of the 
proposed CAD system, the junior and senior radiologists achieved F1-score values of 91.33% and 95.79% on 
balanced dataset and 94.20% and 96.43% on unbalanced dataset. The proposed approach is verified on an in-
dependent test dataset and reports promising performance. 
Conclusions: The proposed CAD system reports promising performance in facilitating radiologists’ diagnosis 
SARS-CoV-2 virus syndrome and might assist the development of a fast, accessible screening method for pul-
monary diseases.   

1. Introduction 

SARS-CoV-2 virus syndrome pandemic has struck about 255 million 
people and is responsible for more than five million deaths [1]. It has led 
to unprecedented pressure on global healthcare services. A rapid and 
reliable diagnostic method for SARS-CoV-2 virus syndrome is a pre-
requisite for infectious disease control including isolation and 
treatment. 

In the early stage of SARS-CoV-2 virus syndrome, reverse transcrip-
tase polymerase chain reaction (RT-PCR) probably shows negative 

results. The false-negative rate decreases from 100% on day 1 to 20% on 
day 8 since exposure and symptom onset [2]. Imaging is an important 
supplementary method to indicate further RT-PCR testing among sus-
pected SARS-CoV-2 virus syndrome patients. It may be particularly 
useful in Emergency Department for advanced patients triage and faster 
decision making while waiting for the RT-PCR results. 

High-resolution computed tomography (HR-CT) in thoracic imaging 
was accepted as the gold standard imaging method of SARS-CoV-2 virus 
syndrome evaluation, on account of its high reliability [3]. However, for 
those critical patients in intensive care units (ICU) who are difficult to be 
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transported, or for patients in low- and middle-income countries where a 
CT exam is unavailable, an alternative imaging technique is required. 
Furthermore, the high-dose radiation exposure of CT is also an impor-
tant consideration for patients who need imaging follow-up repeatedly, 
children and pregnant women. Chest X-ray can be obtained easily with 
minimal dose radiation exposure. However, studies showed that the 
chest X-ray exam has a relatively low sensitivity and a considerable 
proportion of the SARS-CoV-2 virus syndrome patients have been mis-
diagnosed by chest X-ray [4,5]. HR-CT and chest X-ray have limitations 
for SARS-CoV-2 virus syndrome evaluation, and supplementary method 
is a pressing demand in clinical practice. 

Lung ultrasonography (LUS) has been used in different lung disease 
diagnoses for decades, such as interstitial lung disease, subpleural con-
solidations, and acute respiratory distress syndrome. A meta-analysis 
reported that the sensitivity and specificity for pneumonia diagnosis 
using LUS were as high as 94% (95% CI, 92–96%) and 96% (94–97%) 
[6]. During the progression of SARS-CoV-2 virus syndrome, the distal 
regions of the lung tended to be more frequently involved where can be 
detected easily and accurately by LUS [7]. The sonographic appearances 
were characterized with the pleural line irregularities and thickening, 
increment of B-line artifacts with severity and less frequently pleural 
effusion, and subpleural consolidations [8,9]. 

Numerous studies investigated the diagnostic value of LUS in SARS- 
CoV-2 virus syndrome. Researchers have found a strong correlation 
between CT and LUS in detecting lung lesions of SARS-CoV-2 virus 
syndrome [10,11]. In those studies, LUS adequately detected lung le-
sions in patients with SARS-CoV-2 virus syndrome. Compared with the 
chest X-ray, LUS provided a higher sensitivity in the diagnosis of SARS- 
CoV-2 virus syndrome (88.9% vs. 51.9%) [5]. A recent systematic re-
view of 51 studies with 10,155 patients with SARS-CoV-2 infection 
evaluated the diagnostic value of thoracic CT, chest X-ray and ultra-
sound. The pooled sensitivities of thoracic CT, chest X-ray and LUS were 
87.9%,80.6% and 86.4%, while the pooled specificities were 
80.0%,71.5% and 54.6%, respectively. These findings demonstrate that 
chest CT, chest X-ray and ultrasound all have moderate sensitivity in 
diagnosing SARS-CoV-2 infection, with lower specificity for lung ultra-
sound and lower sensitivity for chest X-ray [12]. 

Since the ACR did not recommend the routine use of evaluating 
patients with suspected SARS-CoV-2 infection by CT [13], LUS is a 
promising supplementary method for SARS-CoV-2 virus syndrome 
evaluation with a lot of advantages: portable, nonradiative, ability on 
beside examination, minimizing the risk of occupational exposure and 
cross infection. It is particularly useful in ICU and Emergency Depart-
ment for monitoring and triage of SARS-CoV-2 infection. Nevertheless, 
ultrasound quality is operator-dependent, and limited experience may 
lead to difficulties in utilizing this technique. Due to the massive in-
crease in the patient population, healthcare professionals are thrown 
into a very high workload. Many physicians from different specialities 
are redeployed to treat patients with suspected or confirmed SARS-CoV- 
2 infection. Identifying and diagnosing SARS-CoV-2 infection with ul-
trasound data are challenging and time-consuming for novice utilizers. 
Computer aided diagnosis (CAD) system based on artificial intelligence 
(AI) provides an efficient way to assist physicians in disease diagnosis. 
CAD system is a promising tool to assist physicians in clinical decisions 
with higher accuracy, less complexity, and less time consumption. 

Our study on CAD of SARS-CoV-2 virus syndrome is different from 
previous works. We not only simply propose a CAD system for LUS 
images and justify its performance on different datasets, but also verifies 
its efficiency on facilitating and improving the performance of physi-
cians with different level of experiences. The new contribution of this 
study includes two folders: (1) a novel CAD system for SARS-CoV-2 virus 
syndrome diagnosis is proposed using a transfer learning on a deep re-
sidual convolutional neural network (CNN); (2) clinical experiments are 
studied to justify the performance improvement of radiologists with 
CAD’s help. 

2. Materials and methods 

2.1. Materials 

Images are from a public dataset whose detailed information can be 
found at https://github.com/jannisborn/covid19_ultrasound/blob/ma 
ster/data/README.md. There are 262 patients include 92 SARS-CoV- 
2 virus syndrome, 79 non-SARS-CoV-2 pneumonia and 90 healthy 
cases. All ultrasound videos are split into images at a frame rate of 3 Hz. 
A total of 3909 images were obtained from GitHub and the public 
dataset [14]. All samples have been categorized into three classes using 
the final diagnosis results, including 1664 SARS-CoV-2 virus syndrome 
images, 876 non-SARS-CoV-2 pneumonia images, and 1369 health im-
ages. The final diagnosis results were confirmed by nasopharyngeal RT- 
PCR for SARS-Cov2. 

2.2. Proposed methods 

In our study, a transfer learning based residual network was devel-
oped to extract features on LUS and help radiologists with SARS-CoV-2 
virus syndrome diagnosis. The proposed methods are introduced as 
follows. 

2.2.1. Proposed transfer learning network 
Transfer learning is able to reduce the time in training and improves 

the network’s generalization ability. In this stage, rather than building a 
model from scratch, a pre-trained ResNet50 network, which was trained 
using ImageNet, is selected as a backbone to extract the features from 
LUS images. Inside it, a fully connected layer is modified to match the 
output numbers of classified categories, and a binary cross-entropy 
function is used as the loss function which computes the binary cross- 
entropy (BCE) between predictions and targets [15]. Compared with 
the mean square error (MSE) loss function, BCE can slow down the 
gradient dispersion and speed up the training process. The architecture 
of the pre-trained ResNet is modified by adding a fully connected layer 
for feature extraction and adding a global average pooling to interpret 
these features in the classification task. The idea is to generate one 
feature map for each corresponding category of the classification task in 
the last convolutional layer. The global average pooling is more native to 
the convolution structure by enforcing correspondences between feature 
maps and categories. Thus, the feature maps can be easily interpreted as 
categories confidence maps. Also, there is no parameter to optimize in 
the global average pooling thus overfitting is avoided. 

2.2.2. Gradient-weighted class activation mapping 
The proposed CAD system aims to provide both the classification 

results and the salient features on LUS images to help radiologists. The 
gradient-weighted class activation mapping (Grad-CAM) method creates 
an activation map that highlights the crucial areas [16]. In the Grad- 
CAM method, the gradients of the layers flowing into the final con-
volutional layer produce a rough localization map in which the impor-
tant areas are highlighted. Grad-CAM uses the gradient information 
flowing into the last convolutional layer to assign significance values to 
each neuron which respondents to class-specific information in the 
image. 

In the proposed CAD system, the Grad-CAM approach was employed 
to enhance the visuality by focusing attention on the critical lesion re-
gions on US images. These regions where the CNN model was activated 
were colored from the lowest activation to the highest activation. The 
top three high activations are marked using three circles. The red circle 
represents the highest activation and the pink one is the second highest 
activation. 

2.3. Platform settings 

The modified ResNet50 is trained on a server with a 2 × Six-Core 
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Intel Xeon processor and 128 GB of memory. The server is equipped with 
an NVIDIA Tesla K40 GPU with 12 GB of memory. 

To verify the efficiency to help radiologists, a web-based graphic user 
interface (WGUI) is designed to provide a platform for radiologists to 
perform diagnoses on LUS images. This WGUI randomly selects images 
from the dataset, displays them in front of radiologists, and provides 
diagnosis options for radiologists to select. It also helps radiologists by 
providing the diagnosis results of CAD, displaying color Grad-CAM 
maps, and marking salient feature reference regions. An example is 
shown in Fig. 1 in demonstrating the diagnosis procedure with the 
WGUI. 

2.4. Image dataset settings 

In the LUS dataset, to evaluate the classification performance on 
ratios of different categories, images have been selected twice to 
construct a balanced dataset and an unbalanced dataset, respectively. 

In the balanced dataset where each category was represented by the 
same number of images, 2628 images were selected randomly from the 
whole dataset. In the unbalanced dataset, all 3909 images were selected 
from the original dataset. The dataset was split into the training, vali-
dation, and testing sets (Table 1). 

Fig. 1. An example of the diagnosis procedure with the WGUI. (a) Diagnosis interface with the diagnosis results from the CAD. (b) Diagnosis interface with Gad- 
CAM map. 
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2.5. Evaluation metrics 

To verify the performance of the transfer learning model, two 
commonly used machine learning algorithms have been employed to 
compare with the proposed model on the same dataset. In machine 
learning, the support vector machine (SVMs) [17] is one of the most 
robust supervised learning models for classification and regression 

analysis. An SVM maps training examples to points in space to maximize 
the width of the gap between the two categories. New examples are then 
mapped into that same space and predicted to belong to a category based 
on which side of the gap they fall. The K-nearest neighbors (KNN) al-
gorithm is a type of instance-based classification method where an un-
known object is classified by a plurality vote of its neighbors, with the 
object being assigned to the class most common among its K nearest 
neighbors. In the parameters of KNN, 5 neighbors are selected, 
Euclidean distance is the distance metric, and all features are stan-
dardized in the range of [0, 1]. 

A confusion matrix is a table used to evaluate classification perfor-
mance. Each row of the confusion matrix represents the instances of an 
actual class and each column represents the instances of a predicted 
class. In the figures of the confusion matrix, the rows correspond to the 
predicted class (Output Class) and the columns correspond to the true 
class (Target Class). The diagonal elements correspond to correctly 
classified observations, and the off-diagonal cells correspond to 

Table 1 
Data-split table.  

Group Balanced dataset Unbalanced dataset 

Categories S NS H S NS H  
876 876 876 1664 876 1369 

Training 1840 2736 
Validation 263 391 
Testing 525 782 
Total 2628 3909  

Table 2 
Comparison of confusion matrices between different machine learning methods and radiologists on the balanced dataset.  

Abbreviations: S: SARS-CoV-2 virus syndrome, NS: Non-SARS-CoV-2 pneumonia, H: Healthy, JR: Junior radiologists, SR: Senior radiologists. 
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incorrectly classified observations. The numbers at the rightest column 
are the percentages of all the examples predicted to belong to each class 
that is correctly and incorrectly classified. The number at the bottom 
row are the percentages of all the examples belonging to each class that 
is correctly and incorrectly classified. Four parameters namely accuracy, 
precision, recall and F1-score were calculated and compared. 

In addition, a statistic testing, a pair t-test is used to evaluate the 
difference between radiologists’ performances without CAD help and 
with CAD help. The p-values of the t-test show if there are significant 
improvements on diagnosis performances. 

3. Results 

We employed two groups of radiologists with different levels of 
experience to perform diagnoses with and without the help of the pro-
posed CAD system on the platform. Among them, three junior radiolo-
gists had an average age of 26 years with less than three years’ 
experience in LUS diagnosis and three senior radiologists had an average 
age of 35 years with more than eight years’ experience in LUS diagnosis. 

3.1. Evaluation results on the balanced dataset 

In the balanced dataset where each category was represented by the 
same number of images, 2628 images were selected randomly from the 
whole dataset. In the balanced dataset, 70% of the patch images were 
used for training, 10% for validation, and 20% for testing. 1840 images 
were in the training set, 263 in the validation set, and 525 in the testing 
set. 

Table 2 and Fig. 2 show the confusion matrices on the proposed CAD 
approach, SVM, and KNN methods. In the confusion matrix figures, the 
grey scales in each cell visualize the values in the cells. The higher, the 
larger the percentage values are. In the classification results of the 
proposed CAD, all samples are classified correctly and more accurately 
than other methods. The values of Accuracy, Recall, Precision, and F1- 
score are compared in Table 2. These results also indicate improve-
ment of our proposed model over the SVM and KNN models in the 
evaluation metrics. 

The evaluation results of the radiologists’ performance on balanced 
dataset are summarized in Table 2 and Fig. 3.Without the help of our 
proposal CAD system, only 79.0% and 86.3% SARS-CoV-2 virus syn-
drome were identified correctly by junior and senior radiologists, and 
this proportion increased to 93.3% and 95.2%, respectively with the 
help of our proposal CAD system. After using our proposal CAD system, 
both junior and senior radiologists achieved higher accuracy, precision, 
recall and F1-scores values. 

The details about the evaluation results of different models and ra-
diologists on balanced dataset are listed in Table E1, E2 (supplementary 
material). The proposed CAD system achieves precision, recall, and F1- 
score values of all 100% for diagnosing SARS-CoV-2 virus syndrome, 
97.14%, 100%, and 98.55% for non-SARS-CoV-2 pneumonia, and 
100%, 97.22%, and 98.59% for healthy cases. With the assistance of the 
proposed CAD system, the precision, recall and F1 scores were higher for 
diagnosing SARS-CoV-2 virus syndrome, non-SARS-CoV-2 pneumonia, 
and healthy cases in both junior and senior radiologists’ groups. Line 
chart for different models and radiologist in diagnosing with LUS on 
balanced dataset is presented in Fig. 6 a. Our CAD system outperforms 
other classifiers and increases the performance of both junior and 
radiologists. 

3.2. Evaluation with the unbalanced dataset 

In the unbalanced dataset, all 3909 images were selected from the 
original dataset. The same ratio (70%, 10%, 20%) was used to split the 
dataset into the training, validation, and testing sets. These splits were 
applied to each category. From the 3909 images, 2736 were selected for 
training, 391 for validation, and 782 for testing. 

Fig. 2. Confusion matrix of different algorithms on balanced data set. (a) CAD. 
(b) SVM. (c) KNN. Abbreviations:S:SARS-CoV-2 virus syndrome, NS:Non-SARS- 
CoV-2 pneumonia, H:Healthy. 
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Table 3 and Fig. 4 show the confusion matrices and results of the 
evaluation metrics between our proposed model and the SVM and KNN 
methods on the unbalanced dataset. Our model and other classifiers all 
achieve high performance metrics. 

Table 3 and Fig. 5 show the confusion matrix and results of different 
radiologists’ performance with and without the help of the proposed 
CAD system on unbalanced data. The details about the evaluation results 
of different models and radiologists on unbalanced dataset are listed in 
Table E3 and E4 (supplementary material). The proposed CAD system 
achieves precision, recall, and F1-score values of 98.20%,99.70% and 
98.94 for diagnosing SARS-CoV-2 virus syndrome, 100%, 96.15%, and 
98.04% for non-SARS-CoV-2 pneumonia, and 98.54%, 99.26%, and 
98.90% for healthy cases. Again, the CAD system improved radiologists’ 
performance on unbalanced dataset. Line chart for different models and 
radiologist in diagnosing with LUS on unbalanced dataset is presented in 
Fig. 6 b. Both groups of radiologists achieved higher precision, recall, 
and F1-score values with the help of the CAD system. 

Statistical testing experiments were taken to evaluate the perfor-
mance differences of radiologists with and without the help of the CAD 
system and test if there are significant improvements between them. 
Four comparisons were taken on junior and senior radiologists on 
different datasets. The p-values of the t-test in Table 4 are all less than 
0.05 and show that with the help of the CAD system, both junior and 
senior radiologists significantly improve their diagnosis performance on 
both balanced and unbalanced datasets. 

4. Discussion 

Compared to the exploded deep learning studies of SARS-CoV-2 virus 
syndrome with thoracic CT or chest X-ray, relatively few researchers of 
the LUS CAD system can be found in the literature. Some work has been 
done on exploiting LUS image analysis and deep learning to detect and 
quantify B-line, extract pleural line, and subpleural lesions [18–20]. 
Born et al. trained a deep convolutional neural network on a lung ul-
trasound dataset consisted of 1103 images for SARS-CoV-2 virus syn-
drome detection, with a sensitivity of 0.96, a specificity of 0.79, and an 
F1-score of 0.92[21]. Roy et al. used a deep learning model to detect LUS 
imaging patterns associated with SARS-CoV-2 virus syndrome where the 
disease severity score was predicted, and the pathological artifacts of 
SARS-CoV-2 virus syndrome were located [22]. 

Our proposed CAD system using the transfer learning of ResNet is 
employed to identify SARS-CoV-2 virus syndrome on LUS images. The 
results demonstrate that the proposed system accomplished high clas-
sification precisions on both balanced and unbalanced dataset. The 
evaluation metrics results also justify the better performance of the 
proposed method than the existing classifiers. The experimental results 
on the ability to assist radiologists demonstrate that the CAD system can 
significantly improve the radiologists’ performance on the SARS-CoV-2 
virus syndrome diagnosis. 

Six radiologists participated in this study and were divided into ju-
nior and senior groups according to their experience on LUS diagnosis. 
Radiologists inside each group have similar prior knowledge levels, 
which can prevent bias due to knowledge inequalities. The performance 

Fig. 3. Confusion matrix of different radiologists on balanced data set. (a) Junior radiologists. (b) Junior radiologists with CAD. (c) Senior radiologists. (b) Senior 
radiologists with CAD. Abbreviations:S:SARS-CoV-2 virus syndrome, NS:Non-SARS-CoV-2 pneumonia, H:Healthy. 
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in the identification of lung lesions of senior radiologists was better than 
junior ones, however, the accuracy of both groups was not high. With 
the assistance of the proposed CAD system, junior radiologists achieved 
an accuracy similar to seniors, and both accuracies are higher than 90%. 
This finding provides evidence to help more physicians without much 
experience in LUS, especially those from the emergency room and ICU to 
efficiently utilize LUS for SARS-CoV-2 virus syndrome evaluation and 
follow-up. During the pandemic of SARS-CoV-2 virus syndrome, this 
finding has much practical significance. 

In our experiment, it was interesting that the performance of radi-
ologists with the assistance of the CAD system on the diagnosis of SARS- 
CoV-2 virus syndrome was still inferior to the proposed CAD system, 
which was contrary to the experiment designer’s assumption. It might be 
due to the radiologists’ lack of clinical experience in the new disease, 
and less confidence in CAD. In some cases, it was difficult for radiologists 
to distinguish mild lesions in SARS-CoV-2 virus syndrome and healthy 
lungs. Our CAD system can detect the subtle differences between them. 

With the assistance of our proposed CAD system, physicians are released 
from complicated training and repetitive image reading tasks, and spare 
time for clinical decision making and treatment implementation. 

Buonsenso et al. [23] introduced a specific LUS evaluation procedure 
for children with suspected SARS-CoV-2 virus syndrome. The clinical 
examination and lung imaging can be performed concomitantly by just 
two operators: one pediatrician and another assistant. It minimized the 
use of healthcare staff and medical image equipment, which reduce the 
risk of exposure of both clinicians and patients. Although further studies 
are required, we believe that with the help of our proposed CAD system, 
clinicians will make better use of LUS for SARS-CoV-2 virus syndrome 
evaluation and the novice clinicians on LUS will obtain high accuracy in 
identifying SARS-CoV-2 virus syndrome patients from healthy people. 

A large quantity of research work on AI for SARS-CoV-2 virus syn-
drome has been published. Conversely, few of those systems were sub-
sequently applied to the clinic. It is insufficient for clinical decision- 
making with the computer alone. Humans are the main subject of 

Table 3 
Comparison of confusion matrices between different machine learning methods and radiologists on the unbalanced dataset.  

Abbreviations: S: SARS-CoV-2 virus syndrome, NS: Non-SARS-CoV-2 pneumonia, H: Healthy, JR: Junior radiologists, SR: Senior radiologists. 
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medical practice. Explanatory techniques were used in our proposed 
CAD system to facilitate the utilization of it. The output of our CAD 
system was presented as diagnosing results with probability, highlighted 
critical lesion regions, and Grad-CAM maps. Clinicians can enter the 
field easily and give their verdicts according to the visualized diagnostic 
basis by the CAD system as well as their own experience. In our study, 
images have been selected twice to construct a balanced dataset and an 
unbalanced dataset to evaluate the classification performance on ratios 
of different categories. The training, validation and testing dataset were 
disjoint. Radiologists who participated in the tests were with different 
experience on LUS diagnosis, and there were weeks between two tests to 
washout radiologists’ memory. The proposed system accomplished high 
classification precisions on both balanced and unbalanced dataset, and 
improved the performance of both senior and junior radiologists on 
different dataset. It demonstrates that our proposed CAD system has 
good reproducibility and generalization. 

Another point worth considering is whether the CAD system is too 
sensitive for SARS-CoV-2 virus syndrome detection. Since most of the 
patients infected showed mild symptoms and can be monitored at home 
[24], it seems unnecessary to detect every minor lesion in SARS-CoV-2 
virus syndrome. However, we still recommend the use of the CAD sys-
tem. Firstly, because of the infectious nature of SARS-CoV-2 virus syn-
drome, it is very important to identify and isolate the infected patients. 
Moreover, some of the patients with moderate symptoms also have the 
possibility of progression to the severe situation. A fast and accurate 
method is essential for disease evaluation. 

Our study has some limitations. Firstly, it was technically impossible 
to blind the radiologists to the method because they had to know 
whether to make a diagnosis with or without the CAD system. The level 
of trust in the CAD system may influence the diagnosis. Even so, the 
performance of all the radiologists were significantly improved after 
using the CAD system. In this study, the images obtained from GitHub 
and the public dataset are inevitably heterogeneous. The ultrasound 
devices, gain, and imaging depths were diverse. Clinical information 
such as age, gender, and symptoms is unknown. Ultrasonography is 
operator-dependent, placing a barrier for the objective analysis. Because 
our CAD system demonstrated its accuracy in evaluating LUS data of 
SARS-CoV-2 virus syndrome with both balanced and unbalanced data-
sets, it’s reasonable to presume that it is easily generalized to analyze 
other LUS datasets, and eventually provides clinicians actionable clues 
for therapy strategy. 

Our proposed CAD system on LUS images improved the SARS-CoV-2 
virus syndrome diagnosis by using the transfer learning of ResNet and 
help improving radiologists’ performance. In the future, we plan to 
apply our proposed method to a large dataset with a greater diversity of 
classes and a more varied imaging environment. With the high gener-
alization ability of our method, we expect that it can be easily extended 
to similar applications in different diseases with few adaptations. 
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