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Inherited defects in MyD88 and IRAK4, two regulators in Toll-like receptor (TLR) signaling,
are clinically highly relevant, but still incompletely understood. MyD88- and IRAK4-
deficient patients are exceedingly susceptible to a narrow spectrum of pathogens, with
∼50% lethality in the first years of life. To better understand the underlying molecular and
cellular characteristics that determine disease progression, we aimed at modeling the
cellular response to pathogens in vitro. To this end, we determined the immunophenotype
of monocytes and macrophages derived from MyD88- and IRAK4-deficient patients. We
recognized that macrophages derived from both patients were particularly poorly
activated by streptococci, indicating that both signaling intermediates are essential for
the immune response to facultative pathogens. To characterize this defect in more detail,
we generated induced pluripotent stem cells (iPSCs) of fibroblasts derived from an
MyD88-deficient patient. The underlying genetic defect was corrected using Sleeping
Beauty transposon vectors encoding either the long (L) or the short (S) MYD88 isoform,
respectively. Macrophages derived from these iPSC lines (iMacs) expressed typical
macrophage markers, stably produced either MyD88 isoform, and showed robust
phagocytic activity. Notably, iMacs expressing MyD88-L, but not MyD88-S, exhibited
similar responses to external stimuli, including cytokine release patterns, as compared to
genetically normal iMacs. Thus, the two MyD88 isoforms assume distinct functions in
signaling. In conclusion, iPSC technology, in combination with efficient myeloid
differentiation protocols, provides a valuable and inexhaustible source of macrophages,
which can be used for disease modeling. Moreover, iPSC-derived macrophages may
eventually aid in stabilizing MyD88-deficient patients during pyogenic infections.
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INTRODUCTION

Autosomal recessive mutations in the kinase IRAK4 (interleukin
receptor-associated kinase 4) and the adaptor protein MyD88
(myeloid differentiation primary response 88) greatly impair
Toll-like receptor (TLR) signaling. The resulting primary
immunodeficiency is characterized by a substantial risk for life-
threating pyogenic bacterial infections. MyD88 and IRAK4
deficiencies share clinically relevant characteristics that are
biologically not well understood. First, the spectrum of
pathogens to which MyD88- and IRAK4-deficient patients
are susceptible is surprisingly narrow, with Streptococcus
pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa
accounting for >85% of invasive infections. To the contrary, mice
lacking MyD88 show enhanced susceptibility to more than 20
bacterial species, several parasites and viruses (1). These
differences between mouse and human remain largely elusive, yet
they suggest redundancies in thehuman innate immunesystemthat
are not found in mice. Second, whereas most patients experience
life-threatening infections in the first years of life (∼50% lethality),
infection susceptibility ceases thereafter. This is illustrated by the
fact that invasive bacterial infections have not been reported in
patients above 14 years of age (2). Aberrations in mononuclear
phagocytes are widely viewed to underlie infection susceptibility.
However, the response ofMyD88-deficientmonocytes to signature
pathogens is variable, and the monocyte response per se does not
correlate well with the individual risk for infection at the time of
testing. Moreover, whole blood transcriptomic studies of MyD88-
and IRAK4-deficient patients showed a residual inflammatory
response of patient cells to whole bacteria, while the response to
purified TLR agonists was fully abrogated (3). All in all, these data
emphasize our incomplete understanding of TLR signaling in
human myeloid cells, which is hampered by the rarity of MyD88
and IRAK4patients. Thus, a patient-specificmyeloidmodel system
of these deficiencies would be of substantial value not only for
understanding the cellular basis of the deficiency but also for
MyD88-mediated signaling more generally.

Following binding of their respective ligand, TLR dimerization
allows for their respective intracellular Toll/IL-R1 (TIR) domains to
interact. This in turn enables the binding of downstream TIR-
possessing proteins, such as MyD88 (4). MyD88 is an essential
adapter protein inTLR-signaling, since all TLRs - except for TLR3 -
use MyD88 at least partially for signal transduction. The
interactions between TIR domains are believed to be weak.
Hence, the binding of multiple TIR-containing proteins, likely in
positive cooperative binding or allostery, is required to activate a
switch-like signal transduction process (4). Further, MyD88
contains a death domain (DD), which allows for the binding of
other DD containing proteins, including members of the IRAK
family. At least three different IRAK proteins bind to MyD88,
namely IRAK 1, 2, and 4. Together, they form a higher-order
structure called the Myddosome, in which up to eight MyD88
molecules form a complex with four IRAK 4 molecules. This
structure is essential for proper signal transduction, ultimately
activating nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB). There are two functionally distinct MyD88
isoforms. Full-length MyD88 (hereafter referred to as MyD88-L)
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mediates NF-kB activation. In contrast, a shorter splice variant
lacking the intermediate domain (MyD88-S) is unable to activate
NF-kB, but has been argued to function in a dominant negative
manner (5–7).However, most experiments to evaluate the function
of MyD88 or its two isoforms used transient expression in
immortalized non-immune cells lines, such as HEK293 cells. In
this context, itwas shown that forcedMyD88 expression causesNF-
kB activation even in the absence of a ligand (8). These studies
highlight the importance of controllingMyD88expression levels, as
the stoichiometry of MyD88 signaling is critically important when
assessing physiological activation of NF-kB (4, 8).

While patient-derived primary immune cells are well suited to
study the underlying cellular pathophysiology of disorders of the
immune system, the patients are rare and the cells usually very
limited in number. Induced pluripotent stem cells (iPSCs), on the
other hand, have been shown to be valuable for bothmodeling and
studying disease phenotypes in vitro and as a starting material to
manufacture cell therapies (9–11). In the context of primary
immunodeficiencies, iPSCs represent an unlimited source of
patient-derived cells that can be differentiated into many immune
cell types of the body (12), including B cells (13), T lymphocytes
(14–17), NK cells (16, 18), and monocytes/macrophages (19–21).
Because iPSCs can be transfected and subcloned, they are also well
suited for genetic engineering, including stable gene transfer with
the Sleeping Beauty (SB) transposon platform (22, 23). Unlikemost
viral gene transfer platforms, SB vectors integrate in a
pseudorandom manner (‘TA’ sequences). Moreover, titration of
the vector components allows for insertion of transgenes in copy
numbers that enable transgene expression at physiological
levels (24).

As MyD88 acts as an integrator of information, we aimed at
establishing physiologically relevant cellular disease models in
order to study the role of MyD88 on differentiation and
inflammatory function of myeloid cells in general, and the
function of the MyD88-L and MyD88-S isoforms in particular.
We demonstrate with patient-derived cells that the inflammatory
response to bacteria depends on both a functional MyD88 and
the differentiation status of myeloid cells. Moreover,
macrophages derived from iPSCs harboring MyD88-L—but
not MyD88-S—exhibited comparable cellular response to
external stimuli, including cytokine release patterns, as normal
macrophages. This suggests that the two MyD88 isoforms
assume distinct functions in signaling. In conclusion, patient-
derived monocytes and iPSC technology combined with myeloid
differentiation protocols represents a valuable source for in vitro
disease modeling to study MyD88 deficiency. Furthermore, the
genetically corrected derivatives of patient-derived iPSCs
represent an unlimited source of autologous monocytes and
macrophages that may be used as a future therapeutic option
for stabilizing patients with acute bacterial infections.
MATERIALS AND METHODS

Sleeping Beauty Transposon Vectors
The SB transposon vectors were generated using standard
molecular cloning. The amino acid sequences of MyD88-S and
December 2020 | Volume 11 | Article 608802
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MyD88-L MyD88 correspond to NP_001166039.1 and
AAC50954.1, respectively. The SB100X transposase was
previously described (23).

Cell Culture
For all experiments, cell numbers and viabilities were determined
by NucleoCounter NC-250 (ChemoMetec). HEK293T cells were
cultured in DMEM high glucose GlutaMax medium (Thermo
Fisher Scientific) supplemented with 10% FCS (PAA) and 1%
penicillin/streptomycin (Sigma-Aldrich). HEK293T cells were
transfected using polyethyleninine (PEI, Polysciences) as
previously described (25).

Induced Pluripotent Stem Cells
For generation of induced pluripotent stem cells (iPSCs), 50,000
fibroblasts of a MyD88-deficient patient were reprogrammed
using Cytotune iPS 2.0 Sendai Reprogramming kit (Thermo
Fisher Scientific) according to the manufacturer’s instruction.
Emerging iPSC colonies were expanded in DMEM F/12 medium
supplemented with 20% Knockout Serum Replacement (Thermo
Fisher Scientific), 1% non-essential amino acids (Thermo Fisher
Scientific), 1% L-glutamine (Biochrom), 1% penicillin/
streptomycin (Sigma-Aldrich), 100 µM b-mercaptoethanol
(Sigma-Aldrich), and 40 ng/ml of bFGF (Immunotools), on
irradiated mouse embryonic fibroblasts (GlobalStem) as feeder
cells. Alternatively, iPSCs were cultured under feeder-free
conditions in mTeSR Basal Medium (Stem Cell Technologies)
plus 1% penicillin/streptomycin on Matrigel-coated plates
(Corning). For karyotyping and array-CGH (comparative
genome hybridization; Agilent SurePrint G3 Human CGH
Microarray 4x180K), iPSCs were grown under feeder-free
conditions before being processed for karyotyping or genomic
DNA extracted for array CGH using standard protocols.

Generation of Transgenic iPSC Lines and
Derivation of iMacs
Two million iPSCs in 100 µl of nucleofection mix (Mouse ES kit,
Lonza)weremixedwith plasmidDNA(3,75 µgof transposonDNA
plus 1,25 µg of SB100X transposase expression vector) and
nucleofected using Nucleofector 1D (program A023, Lonza).
Seven days after nucleofection, puromycin selection was started.
Transgene expression positive iPSC clones were identified using
RT-PCR. Fully characterized iPSCs were differentiated to iMacs
using previously established protocols (21). Briefly, iPSC colonies
were harvested using dispase II (Roche) and concentrated by
gravity. Embryonic body (EB) formation was induced by transfer
of the iPSC colonies to EB-formation medium [DMEM/F-12 +
Glutamax (LifeTechnologies), 20% KnockOut serum replacement
(Gibco), 1% non-essential amino acids (LifeTechnologies),
1% penicillin/streptomycin (Sigma-Aldrich), 50 µM ß-
mercaptoethanol (Sigma-Aldrich), 10 ng/ml of bFGF
(Immunotools), and Rock inhibitor (Wako)] and placed in six-
well suspension plates on an orbital shaker (100 rpm).
Approximately 30 EBs were picked based on their large, dark, and
relatively symmetric morphologies and plated onto gelatin-coated
six-well adherent plates usingmacrophagedifferentiationmediumI
[X-vivo15 (Lonza), 1% penicillin/streptomycin, 1% glutamine,
Frontiers in Immunology | www.frontiersin.org 3
50 ng/ml of hM-CSF (Immunotools), and 25 ng/ml of hIL-3
(Immunotools)]. Harvesting of iMacs started after ~3 weeks by
collecting non-attached cells. The iMacs containing supernatant
were passed through a 70-µm filter and centrifuged at 1000 rpm
for 5 min, and cells were plated onto an adherent plate
with macrophage differentiation medium II (macrophage
differentiation medium I without hIL-3).

MyD88 Expression Analyses
For RNA expression analysis, RNA was isolated from HEK293T
cells or iPSCs using RNeasy Mini kit (Qiagen), and cDNA
generated using QuantiTect Reverse Transcription kit (Qiagen)
using primers #2606 5’-aactcatcgagaagaggtgtaggcg and #2607
5’-ccttgtccaaaaccatgatttggtgc. MyD88 amplicons were amplified
by PCR using Phire Hot Start II polymerase (Thermo Fisher
Scientific). For protein analysis, immunoblotting was performed
as previously described (26) using an anti-MyD88 antibody
(Santa Cruz). For loading control, a rabbit anti-b-actin (Cell
Signaling Technology) was used.

NF-kB Reporter Assay
80,000 HEK293T cells/well were plated in 24-well plates and co-
transfected with the SBMyD88 expression vectors (600 ng) and a
NF-kB reporter plasmid (600 ng) containing four copies of an
NF-kB transcriptional response element (5’-GGGAATTTCC), a
minimal CMV promoter, and a tdTomato reporter gene. On day
2 after transfection, cells were analyzed by flow cytometry on an
Accuri C6 flow cytometer (BD Bioscience) to determine the
percentage of tdTomato-expressing cells.

Characterization of Myeloid Cells by Flow
Cytometry
Monocyte subsets were analyzed by gating for CD14 (PacificBlue;
BD Biosciences) and CD16 (PerCPCy5.5; BD Biosciences) in order
to distinguish the three subsets of classical/inflammatory (HLA-
DR+CD16-CD14+), intermediate (HLA-DR+CD16+CD14+) and
nonclassical (HLA-DR+CD16++CD14-) monocytes, as described
earlier (27). The gating strategy is depicted in Figure S1F.
Sorting of monocyte subsets was performed on a MoFlo Astrios
EQ (Beckman Coulter) cell sorter. To characterize iMacs, cells
were stained for CD206 (APC, eBioscience), CD45 (PE
Beckman-Coulter), CD33 (PerCP5.5, Biolegend), CD14 (FITC,
Beckman-Coulter), CD11b (PE BD), or with the corresponding
isotype controls and analyzed on an Accuri C6 flow cytometer
(BD Bioscience).

Phagocytosis Assays
50,000 iMacs were incubated with 1 million 2-µm red-labeled
beads (Sigma-Aldrich). Cytochalasine b (10 µg/ml, Sigma-
Aldrich) was added 6 h prior to addition of beads, where
indicated. After 4 h, cells were analyzed on an Accuri C6 flow
cytometer (BD Biosciences). Analysis of phagocytosis of human
neutrophils was performed as described previously (28). Briefly,
heat-killed S. aureus bacteria (Newman strain) were labeled with
Alexa Flour 488 and co-incubated with neutrophil granulocytes
isolated through Ficoll density gradient centrifugation. S. aureus
were added for 1 or 15 min and fixed with 4% paraformaldehyde.
December 2020 | Volume 11 | Article 608802
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Extracellular fluorescence was quenched with trypan blue to exclude
fluorescence emitted from incompletely phagocytosed bacteria.

Cytokine Release Assay
105 PBMCs, isolated from EDTA blood using Ficoll density
centrifugation, were stimulated with lipopolysaccharide (LPS at 10
or 100 ng/µl), flagellin (2.5 µg/ml) or heat-fixed bacteria (S. aureus or
Streptococcus agalactiae, 107/ml) for 20 h. IL-6 concentration in the
supernatant was determined by amplified luminescent proximity
homogeneous assay (AlphaLISA) according to manufacturer’s
instructions (PerkinElmer). Intracellular staining for TNF was
performed as described recently by flow cytometry (TNF-PE, BD)
(27). To analyze monocyte-derived macrophages, PBMCs were
differentiated for 7 d with 50 ng/ml of hMCSF (Immunotools). To
measure TNF expression, sorted monocyte subsets were seeded into
48-well-plates. After 1 h of settling, cells were stimulatedwith 100ng/
ml of LPS or 5 × 107 CFU/ml of heat-fixed S. agalactiae for 2 h. RNA
was extracted with the RNeasy Microkit (Qiagen), followed by RT-
PCR with the SuperScript™ IV VILO cDNA synthesis kit
(Invivogen), both according to manufacturer`s instructions. qRT-
PCRwas performed usingAbsolute SYBRGreen (ThermoScientific)
and a Realplex Masterycler (Eppendorf). Expression levels of TNF
(pr imers 5 ’-CTCCCAGGTCCTCTTCAAGG and 5 ’-
ATAGTCGGGCCGATTGATCT) were normalized to GAPDH
(pr imers 5 ’ -ACACCCACTCCTCCACCTTT and 5 ’ -
TACTCCTTGGAGGCCATGTG). Otherwise, 50,000 iMacs were
stimulated with 5 million heat-inactivated S. aureus (Thermo Fisher
Scientific). Supernatants were removed at specified time points and
evaluatedbyCytokineBeadArray (BDBiosciences) on aBDCanto II
according to the manufacture’s instruction. The mean fluorescent
intensity (MFI) was used for comparative data analysis.

Statistical Analysis
For cytokine release assay, at least 1,000 beads per cytokine for
each experimental sample were dissected in triplicate. As the
same beads are used in each experiment, the MFI was suitable for
comparing samples. An unpaired two-tailed Student’s t test
(GraphPad Prism 8, La Jolla, California) was applied for
testing significant differences between samples (p < 0.05):
Horizontal bar indicates average with standard deviation, and
all other bar graphs show mean and standard deviation.

Ethics
This study was approved by the ethics committee of the
University of Freiburg.
RESULTS

Disease Modeling With Patient-Derived
Monocytes/Macrophages
To better understand the underlying molecular characteristics
that determine disease progression, we first analyzed the basic
immunophenotype of monocytes derived from MyD88 and
IRAK4-deficient patients with distinct courses of disease. The
index patient of a MyD88-deficient kindred (Figure S1A) II.2
suffered from multiple pyogenic infections in infancy, ultimately
Frontiers in Immunology | www.frontiersin.org 4
leading to genetic workup of a suspected TLR signaling defect.
Sequencing of the MyD88 gene revealed a known pathogenic
homozygous mutation (p.Glu53del, Figure S1B) (29). Despite
antibiotic prophylaxis (immunoglobulin substitution therapy
was refused by the parents), the patient experienced overall
three streptococcal bloodstream infections and multiple soft
tissue infections in the first 5 years of life. Yet, the patient fully
recovered from all events, displayed normal psychomotor
development, and has not experienced further invasive
bacterial infections since the age of 9 years (Figure S1C).
When II.3, a younger sibling of II.2, was born, antibiotic
prophylaxis was started after the diagnosis of MyD88
deficiency at the age of 5 weeks. The patient received timely
vaccinations, including three doses of 13-valent pneumococcal
conjugate vaccine. Despite a high alert for infections, the infant
died from fulminant pneumococcal sepsis (non-vaccine-type
23B) and meningitis at the age of 8 months due to cardiac
arrest 12 h after the onset of fever (Figure S1D). Although
abundant pneumococci were present in the cerebrospinal fluid,
pleocytosis was only marginal (Figure S1E), most likely due to
the failure of leukocyte recruitment to the central nervous
system. TLR-4 and TLR-5 ligands, lipopolysaccharide (LPS)
and flagellin, respectively, failed to induce cytokine expression
in MyD88-deficient peripheral blood mononuclear cells
(PBMCs; Figure 1A), whereas the response to whole bacteria
was partially preserved (Figure 1B). Monocyte subsets were
previously found to differ in the recognition of glycolipids and
nucleic acids (30, 31), which are essential cytokine-inducing
effectors of Gram-positive bacteria (32). Thus, we wondered
whether the cytokine response to bacteria in MyD88/IRAK4-
deficiency resulted from alterations in monocyte subsets.
Accordingly, we determined which monocyte subsets mediated
theTNF response to streptococci in healthy subjects (27).We found
that sorted CD14+ classical and CD14+/CD16+ intermediate
monocytes, but not CD14dim monocytes, responded to
streptococci with substantial TNF formation (Figure 1C).
Notably, monocyte subsets were qualitatively normally
distributed in both MyD88- and IRAK4-deficient patients. Thus,
MyD88 and IRAK4-dependent signal transduction appears not to
be required for the development of human monocyte subsets
(Figure 1D and Figure S1F). We next addressed whether
differentiated macrophages mount a MyD88-independent
response. Whereas over 50% of IRAK4 and MyD88-deficient
CD14+ monocytes synthesized TNF after stimulation with
streptococci (Figure 1E), macrophages derived from these
monocytes were largely devoid of this response (Figure 1F).
These results imply that mature macrophages, reflective of those
residing in barrier tissues, but not their putative progenitors,
critically rely on TLR/MyD88 signaling for sensing streptococci.
For this reason, we chose to focus on macrophages for rest of
the study.

Assessment of MyD88-L and MyD88-S
Expression Vectors
In order to correct the genetic defect, codon-optimized MyD88-L
and MyD88-S splice variants were synthesized and cloned into a
SB vector, either under control of an elongation factor 1a (EF1a)
December 2020 | Volume 11 | Article 608802
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or the ubiquitin C (UBC) promoter, respectively (Figure 2A). To
evaluate expression of MyD88-L or MyD88-S, HEK293T cells
were transfected with the respective SB vectors. Reverse
transcription on extracted RNA from these cells confirmed
transcription of either MyD88 construct, with somewhat
higher RNA expression levels from the EF1a driven constructs
(Figure 2B). Protein expression from the transgene was detected
by immunoblotting of cell lysates of the transfected HEK293T
cells. MyD88-L, but not MyD88-S, was detected, suggesting that
the used MyD88 antibody recognizes an epitope in the
intermediate domain, which is missing in MyD88-S (Figure
2C). Western blot analysis further confirmed higher expression
from the EF1a promoter. Overexpression of MyD88 is known to
constitutively activate NF-kB even in the absence of IL-1R or
TLR signaling (8). To assess functionality of the cloned MyD88
constructs, a reporter assay was conducted. HEK293T cells were
co-transfected with the SB MyD88 expression vector and an NF-
kB reporter plasmid harboring a tdTomato marker gene.
Overexpression of MyD88-L, but not MyD88-S, activated the
Frontiers in Immunology | www.frontiersin.org 5
NF-kB reporter in HEK293T cells, suggesting that the
intermediate domain is essential for activation of the NF-kB
pathway (Figure 2D). In conclusion, the data confirmed
expression of functional MyD88 from our SB constructs,
confirming, as previously shown, that the MyD88 intermediate
domain is necessary for activating NF-kB. Furthermore, the results
underscore the importance of fine-tuning the expression levels of
MyD88 in order to prevent signal transduction in the absence of
TLR ligands.

Generation of Patient-Derived Induced
Pluripotent Stem Cells
Fibroblasts of the afore-mentioned MyD88 patient (II.2) were
isolated and reprogrammed to iPSCs using a Sendai virus-based
system (Figure 3A and Figure S2A). Quality controls performed
on iPSC clones (here shown for the clone used in further
experiments) confirmed expression of pluripotency markers
(Figure S2B), the presence of the underlying genetic mutation
(DGAG, E53del; Figure S2C), an intact karyotype (Figure S2D),
A B

D E F

C

FIGURE 1 | MyD88-dependent and MyD88-independent signaling in MyD88 deficiency. (A) IL-6 secretion. Peripheral blood mononuclear cells (PBMCs) of a
MyD88E53del patient were stimulated with lipopolysaccharide (LPS) or flagellin, and IL-6 concentration determined in supernatant. (B) TNF expression. Monocytes of
a MyD88E53del patient were stimulated with LPS or streptococci, and intracellular TNF expression determined by flow cytometry. (C) TNF expression in monocyte
subsets. TNF expression was determined in sorted monocyte subsets of a healthy donor upon stimulation with streptococci. (D) Monocyte subsets in MyD88/IRAK-
4 deficiency. Shown is the proportional subset distribution. (E, F) TNF expression in patient-derived monocytes (E) and macrophages (F). Presented is the fraction of
TNF-positive cells of healthy donors (control) or MyD88E53del/IRAK44Q293X patients upon stimulation with LPS or streptococci.
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and the absence of gross genetic deletions/duplications (Figure
S2E). This iPSC clone (E53del) was nucleofected with the EF1a
driven MyD88-L and MyD88-S SB vectors and a SB transposase
expression plasmid to stably integrate the SB vectors into the
genome of the patient-derived iPSCs (Figure S2A). Puromycin
was used to select for stably transfected iPSC clones, and post-
nucleofection/post-selection clones were cultured for up to five
months. A second round of quality controls on the generated
Frontiers in Immunology | www.frontiersin.org 6
iPSC clones employing karyotype analysis and array-
comparative genome hybridization (array-CGH) detected no
genetic aberrations following nucleofection, selection, and
expansion of the MyD88-L and MyD88-S clones (data not
shown). Two MyD88-L clones (L1 and L2) and one MyD88-S
iPSC clone, along with the uncorrected MyD88E53del (-/-) clone
and an iPSC clone derived from a healthy donor (HD), were used
for further experiments (Figure S2A). Using digital droplet PCR
A

B

C

FIGURE 3 | Generation of iPSCs derived from MyD88-deficient patient. (A) Schematic of iPSC generation and genetic correction with SB vectors. (B) SB copy
number. Copy number of MyD88-L (L) and MyD88-S (S) transgene cassettes in iPSC clones was determined by digital droplet PCR. (C) MyD88 expression. RT-PCR
was applied to assess MyD88 mRNA expression from SB vectors in MyD88-L and MyD88-S iPSC clones. SB, Sleeping Beauty vector; HD, healthy donor; E53del,
non-corrected iPSC clone. Used primers amplified an amplicon that differentiates between MyD88-L and MyD88-S.
A

B

D

C

FIGURE 2 | Sleeping Beauty vectors for genome correction. (A) Schematic of the Sleeping Beauty (SB) transposon system containing either the MyD88-L or
MyD88-S transgene. Transposition leads to stable integration of the MyD88 transgene into the genome. (B) Expression of MyD88 RNA. RT-PCR was performed to
detect MyD88 mRNA expression from SB vectors in transfected HEK293T cells. Used primers amplified an amplicon in exon 3, which is present in both MyD88-L
and MyD88-S. (C) Expression of MyD88 protein. Western blot was performed to evaluate transgene expression from SB vectors in transfected HEK293T cells.
(D) MyD88-dependent activation of NF-kB. HEK293T cells were co-transfected with a NF-kB reporter construct and SB MyD88 expression vectors. Activation of
NF-kB was assayed by measuring the faction of tdTomato-positive cells. IR/DR, indirect/direct repeats; GAPDH, glycerinaldehyd-3-phosphat-dehydrogenase; UBC,
ubiquitin C promoter; EF1a, elongation factor 1a promoter.
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(ddPCR), the number of SB vector integration events was
determined and revealed roughly three vector copies [MyD88-
L, 2.9; MyD88-S, 2.8; MyD88E53del (-/-), 0] in either of the iPSC
clones (Figure 3B). Furthermore, RT-PCR analysis employing
MyD88 transgene specific primers confirmed stable expression
from the integrated SB vectors in the MyD88-L and MyD88-S
iPSC clones (Figure 3C).

Disease Modeling With Induced
Pluripotent Stem Cells-Derived
Macrophages
TovalidateMyD88-deficiencyas theunderlyingmoleculardefect in
sensing bacteria and in order to assess the ability of MyD88-L or
MyD88-S isoforms to compensate for the genetic defect, iPSC
clones MyD88-L, MyD88-S, the uncorrected MyD88E53del (-/-)
clone, along with iPSCs from an immunologically healthy donor
(HD) were differentiated into macrophages (iMacs). SB-harboring
iMacs looked morphologically like macrophages, displayed typical
macrophagemarkers (Figures4A) and stably expressed theMyD88
transgene upon myeloid differentiation (Figure 4B). To validate
functionality of these iMacs, a phagocytosis assay with red
Frontiers in Immunology | www.frontiersin.org 7
fluorescent-labeled beads war performed. Flow cytometric
analysis confirmed robust phagocytic activity for iMacs derived
from all iPSC clones (33), which could be prevented by the actin
filament polymerization inhibitor cytochalasin B (Figure 4C).

Because MyD88-deficient patients are highly susceptible to S.
aureus (2, 34), we decided to evaluate the response of iMacs to this
bacterial species. We hypothesized that cytokine production
following exposure to heat-inactivated S. aureus (hiSA) would be
highly dependent on MyD88-mediated signaling (34). iMacs
derived from the MyD88-L iPSC clone secreted proinflammatory
cytokines (TNF, IL-1ß, and IL-10) to a similar extent as iMacs
derived fromnormal iPSC. In contrast,MyD88-S expressing iMacs
and uncorrected MyD88-deficient (MyD88E53del) iMacs did not
respond to the stimuli (Figure 4D). In contrast, IFNa was not
secreted by iMacs following stimulation with S. aureus in general.
Due to the pseudorandom nature of SB integration, we validated
these results with a second MyD88-L clone. The results obtained
with clone MyD88-L1 basically mirror the data presented for iPSC
clone MyD88-L2 (Figures S3B–G). Unexpectedly, however, IL-8
secretion was significantly higher in MyD88-S expressing and
MyD88 uncorrected iMacs as compared to macrophages derived
A B

D

C

FIGURE 4 | Functional correction of patient-derived iPSCs. (A) Surface marker analysis. Patient-derived iMacs were assessed by flow cytometry for expression of
macrophage markers CD206, CD45, CD33, CD14, CD11b from the following clones: (HD), MyD88-L (L), MyD88-S (S), and MyD88E53del (-/-) iPSC lines. In blue,
isotype control. (B) MyD88 expression. RT-PCR was applied to assess MyD88 mRNA expression in differentiated iMacs derived from MyD88-L (L), MyD88-S (S), or
healthy donor (HD) iPSC clones. Used primers amplified an amplicon that do not differentiate between MyD88-L and MyD88-S. (C) Phagocytosis activity. Flow
cytometric analysis to verify uptake of red-fluorescent beads in the absence or presence of cytochalasin B. Displayed is the percentage of red-fluorescent iMacs.
(D) Cytokine secretion. iMacs were exposed to heat-inactivated S. aureus (hiSA). The concentrations of secreted cytokines in the supernatant were determined by
cytometric bead array. All data points in triplicate. p-values (unpaired two-tailed Student’s t test): *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. MFI, mean
fluorescent intensity.
December 2020 | Volume 11 | Article 608802

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Craig-Mueller et al. Modeling MyD88 Deficiency
from iPSC clones MyD88-L1 and MyD88-L2 (Figure S3G and
S4); these data also show that MyD88-S and MyD88E53del iMacs
are still capable of cytokine production following stimulation
with heat-inactivated S. aureus in an MyD88-independent
manner. Interestingly, we did not detect any differences
between uncorrected and MyD88-S expressing clones, suggesting
that the short MyD88 splice variant does not act in a dominant-
negative fashion in our model. In summary, patient-derived
iPSCs could be genetically corrected by stable integration of a
MyD88-L expression cassette. Macrophages derived from these
corrected iPSCs revealed were comparable cellular immune
response to normal iMacs, which supports that our model may
serve as a valid and physiologically relevant paradigm to study
MyD88 deficiency in particular, and TLR signaling defects
in general.
DISCUSSION

In our study we compared TLR signaling outputs of monocytes
and monocyte-derived macrophages derived from a MyD88-
and an IRAK4-deficient patient in response to purified TLR
ligands and whole bacteria. We found that the NF-kB response
was fully abrogated in both monocytes and macrophages lacking
MyD88/IRAK4 when exposed to purified TLP ligands, such as
LPS. On the other hand, the relevant residual inflammatory
response of monocytes when exposed to whole bacteria suggests
a MyD88- and IRAK4-independent but NF-kB-dependent
inflammatory response. In contrast, we found MyD88/IRAK4-
deficient macrophages to almost fully depend on an intact TLR–
MyD88/IRAK4–NF-kB axis for their response to whole bacteria.
A similar phenotype has been observed in transcriptomic
analyses of whole blood samples from MyD88 and IRAK4
deficient subjects stimulated with TLR ligands and whole
bacteria, where the immune cell specific response was not
resolved (3).

Following up on the results from primary patient-derived
monocytes/macrophages, a disease model based on iPSC-derived
macrophages was established. First, we corrected the genetic
lesion in the MyD88 patient-derived iPSCs using the SB
transposon system. MyD88 transgene expression remained
stable over several months of iPSC culture, consistent with
very low levels of transcriptional silencing of SB vector
insertions in human cell lines (35) and in transgenic animals
(36). Importantly, differentiation to iMacs did not induce
transgene silencing either, a problem that has been described
for other iPSC differentiation protocols [e.g. (37)]. Our in vitro
disease model of MyD88 deficiency revealed a dramatic decrease
in the ability of uncorrected iMacs to secrete proinflammatory
cytokines following stimulation with heat-inactivated S. aureus.
On the other hand, and in accordance with the analysis of
patient-derived primary cells, MyD88 was not essential for
differentiation into iMacs. The defect in cytokine production
was rescued by the transfer of a canonical full-length MyD88
transgene cassette, but not with a shorter MyD88-S splice
variant. Unexpectedly however, we observed an increase in IL-
Frontiers in Immunology | www.frontiersin.org 8
8 secretion of uncorrected and MyD88-S expressing iMacs
following stimulation. This implies that MyD88 deficiency does
not simply lead to a general decrease in cytokine production but
perhaps alters the cytokine profile. Other groups have shown that
there are MyD88-independent mechanisms for activating IL-8
secretion (38). On the other hand, we find the short MyD88
splice variant not to act, at least in our model, in a dominant-
negative fashion, as has been concluded previously using
transient overexpression of MyD88-S in other models (7).
MyD88 signaling seems very sensitive to the concentration of
signaling molecules. Thus, plasmid-based overexpression may
result in protein concentrations orders of magnitude greater than
the physiological level (39). In conclusion, the iMac model
system may allow for a more physiological dissection of
MyD88-related immune defects.

It is tempting to speculate that invasive bacterial disease
episodes of MyD88/IRAK4-deficient patients, which are
believed to often arise endogenously through epithelial or
mucosal surfaces, originate from the severe signaling defect in
tissue macrophages, as they are unable to contain bacteria at
epithelial or mucosal surfaces. In contrast, monocytes circulating
in the blood seem to mount a residual inflammatory response.
From a clinical perspective, the fulminant fatal pneumococcal
sepsis of the described MyD88-deficient infant illustrates the
limited therapeutic options, once a bloodstream infection in the
context of a TLR signaling defect occurs. Given the strongly
improved prognosis of MyD88/IRAK4 deficiency after
adolescence, hematopoietic stem cell transplantation is
currently not considered as a first-line treatment for these
patients (2). Our data suggest that the SB transposon system
can be used to genetically modify iPSCs with subsequent
differentiation into iMacs without gene silencing. As the
genetically corrected iMacs behaved similar to those derived
from a healthy donor, autologous gene-corrected macrophages,
or their precursors may represent a viable cell therapeutic option
to stabilize MyD88-deficient patients in emergency situations.

In summary, a combination of data from primary patient-
derived myeloid cells and iPSC-derived iMacs shows that
MyD88-deficiency in humans does neither affect cell
differentiation nor their non-TLR signaling related functions.
MyD88-deficiency does, however, dramatically affect the
cytokine response following stimulation with the clinically
relevant staphylococci and streptococci. Moreover, small
differences in the stoichiometry of signaling molecules can
substantially impact on downstream signaling. Our iPSC-based
cellular disease model might therefore allow for the detection of
subtle and physiologically relevant differences, when studying
MyD88 deficiency in particular, and TLR signaling defects
in general.
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