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Abstract: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Although
zinc (Zn) was reported to have antioxidant, anti-inflammatory and protective properties in CVDs,
its association with coronary artery disease (CAD) is still unclear. As methods commonly used to
assess Zn levels in blood and urine do not show the full picture of the microelement supply, in this
study, the nutritional status of Zn in patients with angiographically confirmed CAD was assessed
using inductively coupled plasma optical emission spectrometry. We found no association between
Zn and the severity of CAD evaluated with the Coronary Artery Surgery Study Score (p = 0.67).
There were no statistically significant differences in Zn levels between patients with acute coronary
syndrome and those with stable CAD (p = 0.937). A statically significant negative correlation was
observed between Zn content and serum triglyceride concentration (p < 0.05). Patients with type 2
diabetes mellitus were found to have a significantly lower hair Zn content compared to non-diabetic
individuals (p < 0.01). The role of Zn in the pathogenesis of CAD and its complications need further
well-designed research as the moderation and supplementation of Zn dietary intake could be a simple
intervention to reduce the CVDs risk.

Keywords: zinc; coronary artery disease; myocardial infarction; acute coronary syndrome

1. Introduction

Despite great efforts to advance prophylaxis and treatment, cardiovascular diseases
(CVDs) are still the leading cause of death in the world. In 2019, CVDs were responsible
for 17.9 million deaths worldwide, which is 85% of deaths from myocardial infarctions or
strokes. These numbers are growing, as experts predict that in 2030 CVDs-related deaths
could rise to 24 million annually [1]. Despite Zinc (Zn) being one of the key microelements
of the human body [2], its role in CVDs pathogenesis has not yet been firmly established.
The available data generally show unfavourable levels of this metal in cardiology patients
as low concentrations were found particularly in patients with CAD [3], heart failure [4–6]
and atrial fibrillation [7]. Moreover, patients with left ventricular hypertrophy and atrial
fibrillation had an inverse correlation of Zn concentration with heart muscle thickness [8].
However, data on the relationship between Zn concentration and coronary artery disease
(CAD) are limited [9–14] and are mainly based on serum Zn concentration. Analytical
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methods commonly used to assess Zn levels in blood and urine do not show the full picture
of microelement supply, as Zn content in serum is easily influenced by the time of the day,
the type of meal eaten before obtaining the sample, the serum protein concentration, as
well as the natural homeostasis mechanisms controlling the Zn concentration utilizing
tissue storage [15]. Hair sample analysis has several advantages over serum samples.
The concentration of Zn in a hair sample is about 100 times higher than in serum, and
it is not as labile as serum concentration, which makes it perfect for long-term nutrition
assessment [16]. In addition, the hair sample better reflects the recent excessive exposure to
metals, as cations are quickly transferred from blood to tissue storage [17,18]. Hair samples
are considered a good retrospective marker of microelement nutrition in the previous
6–8 weeks. As the concentration of Zn in hair is reported to reflect its content in other
tissues [19–21], we decided to explore this approach.

This research aims to determine whether the Zn content in hair samples measured
by inductively coupled plasma optical emission spectrometry (ICP-OES) correlates with
the progression of CAD and acute coronary syndrome (ACS). In ICP-OES, elements are
excited using heat from an argon plasma. During de-excitation, the atoms emit light with a
spectrum consisting of lines specific to a particular element, allowing for the determination
of the elemental composition of the sample [22]. This method has found an application
in physiological samples due to its remarkable sensitivity and versatility. As obtaining a
hair sample is simpler and less invasive than phlebotomy, this method could become an
appropriate screening tool for patients at risk of CAD.

2. Materials and Methods
2.1. Study Population

This study is based on data obtained from 133 patients (37 women and 96 men) who
underwent coronary angiography to assess the extent of CAD between 2013 and 2017
in the Department of Cardiology of Bielanski Hospital, Warsaw, Poland and agreed to
participate in the study in writing. The analysis included patients whose hair was not dyed
or permanently waved in segments of at least 3 cm, measuring from the scalp. Patients
with an active neoplastic disease, significantly increased inflammatory markers, chronic
kidney disease above stage III, taking medications or dietary supplements containing
zinc, or using shampoos with an increased content of the bio-element were excluded
from the study. Patients with a history of previous MI who were treated with coronary
angioplasty were included in this study; however, those with thrombosis or restenosis
were excluded. All patients lived in Warsaw and they had no history of occupational
exposure to chemical elements. The study was carried out according to the principles of
the Declaration of Helsinki and was approved by the bioethics committee of the Medical
University of Warsaw.

2.2. Coronary Angiography

Coronary angiography is the default method for assessing stenosis in CAD [23]. The
examination was performed by radial or femoral artery access. The severity of CAD was
classified by three independent cardiologists using the Coronary Artery Surgery Study
Score (CASSS). This scale reflects the stenosis of one, two or three arteries through a
sum of points (0–3), which were assigned as follows: 1 point for stenosis of the main
coronary artery (right coronary artery, circumflex branch, or anterior descending branch)
exceeding 70% and 2 points for stenosis of the left main coronary artery greater than 50%.
Inconclusive findings between moderate or severe stenosis were decided using fractional
flow reserve measurement. The diagnosis of acute coronary syndrome (ACS) was based
on criteria from the European Society of Cardiology guidelines, including the increased
concentration of markers of myocardial injury with the coexistence of at least one of the
following: symptoms of stenocardia, changes in the ECG suggestive of ischemia, results
of imaging tests showing myocardial necrosis or coronary artery thrombus identified in
coronary angiography [24].
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2.3. Laboratory Tests

Non-permed and non-dyed hair samples, weighing between 0.2 and 0.3 g, were
obtained from a few separate scalp sites at the back of the head, close to the skin. In prepa-
ration for inductively coupled plasma optical emission spectrometry (ICP-OES) the samples
were washed using non-ionic detergent (Triton X-100, Sigma Aldrich Sp. z.o.o., Poznań,
Poland) water solution (1:100) in an ultrasonic bath for 5 min, then rinsed sequentially with
high-purity water, acetone and water and then dried to constant mass. The dry samples of
hair, 0.15 g each, were dissolved in 4 mL of 65% nitric acid (Merck, Darmastadt, Germany)
and 1 mL of 30% hydrogen peroxide (Merck) in a closed polypropylene tube (8 mL), then
incubated in 80 ◦C for 30 min in a microwave station. After cooling to room temperature,
the samples were diluted to a final volume of 10 mL with Milli-Q water and then analysed
using an ICP-OES spectrometer (iCAP7400, Thermo Scientific, Waltham, MA, USA). The
concentration of zinc in the solution, and then the total content in the hair samples, were
calculated according to the previously determined standard curve.

2.4. Statistical Analysis

The Shapiro–Wilk test was used to assess the distribution of data. The chi-square
statistic was used to identify associations between dichotomous and categorical data. The
Mann–Whitney test was used to compare the values between two groups of patients.
Kruskal–Wallis analysis by rank was used to determine the dependence between more
than two groups. The R Spearman correlation test was used to evaluate the relationship
between the variables. A two-sided p-value < 0.05 was regarded as statistically significant.
Statistical analysis and figures were performed and created with Statistica 13 (StatSoft Inc.,
Tulsa, OK, USA). GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, USA, 2005)
was used to create figures.

3. Results
3.1. Population Characteristics

The median age of the study population was 65 years (range: 37–95). The median BMI
value was 27.7 kg/m2 (range: 16.9–54.1). A total of 39 (29.3%) participants had a normal
body weight, 53 (39.9%) were overweight and 41 (30.8%) patients were classified as obese. A
history of type 2 diabetes mellitus (t2DM) or diagnosis during the current hospitalization was
found in 42 (31.6%) patients and pre-diabetes in 7 (5.3%) patients. On the basis of the lipid
profile (total cholesterol—TC, LDL and HDL cholesterol, triglycerides—TG), hyperlipidaemia
was assessed in 123 patients and diagnosed in over half of them despite statin treatment, i.e.,
in 55 (41.4%). Hypertension was present in 114 (85.7%) patients. Acute coronary syndrome
(ACS) as the cause of hospitalization was diagnosed in 67 (50.4%) patients, while stable CAD
was the cause in 66 (49.6%) patients. A history of myocardial infarction (MI) was noticed in
40 (30.1%) patients. Active smoking during the study was declared by 40 (30.1%) patients,
and 17 (12.8%) patients had smoked in the past. Insignificant changes in the coronary arteries
(CASSS 0) were found in only 22 (16.5%) patients. One-vessel coronary disease (CASSS
1) was found in 34 (25.6%) patients, two-vessel (CASSS 2) in 46 (34.6%) and three-vessel
(CASSS 3) in 31 (23.3%) patients. The median Zn concentration was 166 parts per million
(ppm) (range: 25–495).

3.2. Association between Zn Level and Severity of CAD

Table 1 presents results of measurements for the study group according to CASSS
level. A significant difference in sex distribution was observed between CASSS groups.
There was also a significant difference in distribution of patients with history of previous
MI and cause of hospitalization.
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Table 1. Association between selected parameters, including Zn level and CAD stages.

CASSS 0 CASSS 1 CASSS 2 CASSS 3 p-Value

N 22 34 46 31 -
Sex (♀/♂) 10/12 12/22 6/40 9/22 0.025

Age (years) 66 (54–85) 66 (48–89) 63 (37–84) 68 (52–95) 0.455
BMI (kg/m2) 28.5 (21.1–46.3) 27.7 (16.9–40.9) 27.9 (22.3–54.1) 26.8 (18.7–45.3) 0.476

Cause of hospitalization
(ACS/stable CAD) 5/17 22/12 22/24 18/13 0.016

t2DM (no/yes/pre-diabetes) ** 17/4/1 21/13/0 29/13/4 17/12/2 —
t2DM (no/yes) 17/4 21/13 29/13 17/12 0.355

Hyperlipidaemia (no/yes) * 10/8 17/16 24/20 17/11 0.911
HDL (mg/dL) * 46.6 (28.6–66.5) 47.3 (25.7–97.4) 47.1 (21.3–77.5) 44.5 (18.6–81.3) 0.292
LDL (mg/dL) * 106.9 (26.6–171.7) 100.4 (26.2–175.3) 88.7 (26.9–244.3) 76.3 (31.8–228.3) 0.418
TG (mg/dL) * 124.8 (47.8–281.0) 104.2 (60.6–357.6) 111.6 (42.6–367.8) 110.3 (43.4–332.4) 0.545
TC (mg/dL) * 178.2 (73.3–255.9) 166.9 (101.7–256.7) 159.9 (94.1–334.1) 154.5 (70.0–310.8) 0.316

Hypertension (no/yes) 5/17 6/28 4/42 4/27 0.421
History of MI (no/yes) 22/0 26/8 27/19 18/13 0.002

Smoking (no/yes/ex-smokers) ** 16/5/1 22/10/2 19/17/10 19/8/4 —
Smoking (no/yes) 16/5 22/10 19/17 19/8 0.254

Zn (ppm) 161 (70–214) 169 (74–226) 169 (81–495) 166 (25–403) 0.670

*—assessed in 123 patients; **—three subgroups of patients due to the low number of patients in the selected
subgroup; data for three and two groups are presented separately for statistical purposes.

3.3. Difference in Zn Level between Patients with Stable CAD and Patients with ACS

Significant differences were observed between patients with ACS and stable CAD in
LDL and triglyceride (TG) levels (Table 2).

Table 2. Differences in selected parameters between patients with ACS and stable CAD.

ACS Stable CAD p-Value

N 67 66 -
Sex (♀/♂) 16/51 21/45 0.307

Age (years) 66 (37–95) 63 (51–85) 0.345
BMI (kg/m2) 27.7 (16.9–45.3) 27.6 (19.3–54.1) 0.791

t2DM (no/yes/pre-diabetes) ** 44/19/4 40/23/3 —
t2DM (no/yes) 44/19 40/23 0.449

Hyperlipidaemia (no/yes) * 35/26 33/29 0.643
HDL (mg/dL) * 46.6 (25.7–81.3) 46.0 (18.6–97.4) 0.279
LDL (mg/dL) * 101.5 (26.6–244.3) 78.6 (26.2–204.0) 0.008
TG (mg/dL) * 103.3 (42.6–367.8) 124.7 (66.6–357.6) 0.008
TC (mg/dL) * 168.3 (70.0–334.1) 159.6 (96.4–291.1) 0.142

Hypertension (no/yes) 8/59 11/55 0.436
History of MI (no/yes) 49/18 44/22 0.416

Smoking (no/yes/ex-smokers) ** 43/22/2 33/18/15 —
Smoking (no/yes) 43/22 33/18 0.871

Zn (ppm) 166.0 (39.0–285.0) 166.5 (25.0–495.0) 0.937

*—assessed in 123 patients; **—three subgroups of patients due to the low number of patients in the selected
subgroup; data for three and two groups are presented separately for statistical purposes.

A lack of significant association between Zn level and CASSS in groups of patients
without (H = 2.076 p = 0.557; Figure 1A) and with a history of MI (H = 0.000 p = 1.000;
Figure 1B) was observed.
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There were no significant differences in Zn level between patients with stable CAD and
ACS in groups of patients without (p = 0.159; Figure 2A) and with a history of MI (p = 0.084;
Figure 2B).
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Figure 2. Differences in Zn level between patients with stable CAD and ACS in group of patients
without (A) and with history of MI (B).

3.4. Association between Zn Level and Selected Parameters

There was no significant correlation between Zn and age (R = −0.005, p = 0.952;
Figure 3F) or BMI (R = −0.15, p = 0.084; Figure 3G). There were no significant differences
in Zn between males and females (p = 0.218; Figure 3A), patients with different smoking
status (H 2, (N = 133) = 2073; p = 0.355; Figure 3D), patients with and without hypertension
(p = 0.384; Figure 3B) and patients with or without hyperlipidaemia (p = 0.335; Figure 3C).
Significant association was observed between Zn level and t2DM (H 2, (N = 133) = 10,952;
p = 0.004; Figure 3E). Patients with t2DM presented significantly lower Zn values than
patients without t2DM (p = 0.006). A lack of significant correlation was observed between
Zn and TC (R = −0.070, p = 0.440), HDL (R = 0.091, p = 0.320), LDL (R = −0.020, p = 0.829)
(Figure 4). A significant correlation was noted between Zn and TG (R = −0.193, p = 0.032)
(Figure 4).
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4. Discussion

This study analysed the nutritional status of Zn among patients with angiograph-
ically confirmed CAD. Intake was assessed in hair samples using ICP-OES. There was
no association between the bioelement and the advancement of CAD and episodes of
myocardial infarction in the analysed cohort of patients. Moreover, patients with t2DM had
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significantly lower Zn content in comparison to non-diabetic individuals. In this cohort,
serum TG concentration was found to negatively correlate with Zn content in hair.

Zinc (Zn) is one of the key microelements of the human body [2]. Of all the transition
metals, it is second only to haemoglobin-bound iron in terms of prevalence in humans [25].
It is widespread in all tissues and bodily fluids [26]. Zn deficiency has been diagnosed
in 17% of the world population. This percentage increases to 35% in developing coun-
tries [27]. As Zn influences the activity of more than 300 enzymes [28], it contributes to the
stabilization of many protein structures, including more than 2000 transcription factors,
most notably Zn finger proteins [29]. In the human heart, more than 24 Zn transporting
proteins have been identified, indicating the important role of Zn in the homeostasis of the
cardiovascular system [30].

The results of previous studies indicate that Zn has a protective role in atherosclerosis,
a fundamental process in CVDs. Zn and Zn-transporting proteins are important for the
function of the vessel wall and its integrity. Zn is essential for the superoxide dismutase
function, as it is involved in the dimerization of endothelial NO synthase and nitric oxide
production. NO enables labile Zn supplies to be released from endothelial cells, which
dilate the vessels and protect endothelial cells [31]. Zn deficiency allows atherosclerotic
plaque to build through the aggravation of oxidative stress; destruction of NO, NF-kB and
the endothelium; as well as the production of pro-inflammatory cytokines [32]. An inverse
correlation was found between Zn blood concentration and the risk of CVDs [33], atheroscle-
rosis progression [34] and CVDs complications, such as acute coronary syndrome and heart
failure [35,36]. Zn also plays a key role in the immune response, as its deficiency causes a
weak cellular and humoral response [37]. By regulation of the oxidation–reduction balance
of cells [32], this micronutrient facilitates the integrity of the endothelial cell membrane [38]
and protects it from oxidation stress [39,40]. In animal models, Zn deficiency resulted
in increased levels of reactive oxygen species [41], decreased levels of glutathione [42]
and superoxide dismutase 1 [43]. Supplementation reduced serum lipid peroxidation [44]
and normalized inducible nitric oxide synthase activity [45]. In both animal and human
models, it also suppressed the expression of pro-inflammatory cytokines regulated by NF-
kB [46,47]. These effects are components of the anti-inflammatory action, which modulates
the development of atherosclerotic plaques. In summary, the experimental data indicate
that low levels of Zn correlate with endothelium dysfunction [47], high levels of oxidation
stress and vessel wall inflammation [48]—all of them being well-established risk factors for
atherosclerosis. The importance of adequate Zn intake is also supported by data suggesting
a relationship between Zn deficiency and subclinical inflammation [9,49].

In this study, we did not observe a statistically significant difference in Zn levels
in hair samples between subgroups of patients with different severity of CAD (CASSS
0–3). At present, the relationship between this bioelement and CAD has not yet been
determined, similar to the data on CAD risk in patients and their nutritional status of Zn
being equivocal. Although Islamoglu et al. suggested a direct relationship between Zn
level and CAD diagnosis [10] and El-Mahdy et al. correlated lower concentrations of this
microelement with a higher SYNTAX score [11], de Paula et al. suggested that Zn levels
have no association with CAD course [12]. On the other hand, data from epidemiological
studies show a relationship of micronutrient levels, including Zn, on the presence and
progression of atherosclerosis [50,51] and CAD [9]. The ratio of Zn excretion in urine to
serum concentration is well-correlated with CAD and its severity [52]. Liu et al. found that
levels of serum zinc-α2-glycoprotein were decreased in patients with premature CAD [14],
while Meng et al. observed that Zn levels were higher in ACS groups than in CAD
groups [53]. Furthermore, their analysis revealed that serum Zn level is an independent
risk factor for the development of CAD [13]. Gao et al. demonstrated an inverse correlation
of Zn levels with the progression of atherosclerotic calcification in CAD [54] and the
carotid intima-media thickness test as a subclinical marker of atherosclerosis [34,55]. The
aforementioned articles, presenting a significant difference in Zn levels in CAD patients
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compared to healthy controls, are not in line with our results. This discrepancy may be due
to the characteristics of the patient group whose CAD is angiographically confirmed.

In our cohort, in addition to the lack of a relationship between Zn and CAD, we did
not find significant differences in the measured concentrations in patients with ACS and
stable CAD. Just as the association of Zn levels with CAD is not well-established, the
relationship of this micronutrient with ACS is yet to be conclusively settled. The available
data show a significant decrease in Zn levels in serum and hair of patients after ACS
compared to healthy controls [11,56,57]. Lower amounts of this bioelement were also
observed in patients with ST-elevation myocardial infarction compared to those with non-
ST-elevation myocardial infarction [11]. An inverse correlation of serum Zn concentration
with the concentration of myocardial necrosis markers and clinical predictors of ACS
was found [56,58]. Furthermore, the higher the concentration of Zn, the less frequently
ACS was observed in a group of patients [58]. In addition to the suggested use of Zn
as the prognostic marker for ACS, Lal et al. focused on the cardioprotective role of this
microelement after myocardial infarction [59]. In animal models, Zn administration caused
a halving of the area of the induced infarction. In addition, a reduction in the frequency of
arrythmia was observed [60,61]. Taking into account the discrepancies in the results of a
few randomized trials [62], some cohort research articles [33] and our results showing the
lack of association of Zn in acute CAD complications, we suggest further research on this
topic. A meta-analysis of prospective cohort studies by Chu et al. suggests the possibility of
a correlation of higher Zn concentrations with lower CVDs risk observed in three of the five
included papers. The effect of this micronutrient was more prominent in patients with t2DM
who underwent angiography due to chest pain compared to the healthy population [33].
In addition, the Iowa Women’s Health Study observed an inverse correlation of dietary
supplementation of Zn with CVD mortality (CAD and stroke included) in more than 30,000
postmenopausal women observed over more than ten years [62]. This result was, however,
not confirmed by the recent metanalysis (49 studies with more than 300,000 participants)
by Schwingshackl et al. [63]. It is worth noting that both studies used a multinutrient
supplement formula with quite a small dose of Zn (≤20 mg/d), and most of the participants
were healthy.

The significantly lower hair Zn content observed in patients with t2DM may indicate
a correlation of this element with glucose metabolism. Experimental studies have shown
that Zn plays a role in the regulation of synthesis, storage and insulin excretion from β-cells
in the pancreas [64], as well as improving tissue insulin sensitivity [65,66] and regulating
the activity of gluconeogenetic enzymes [67]. In diabetic patients, both hypozincaemia and
hyperzincuria are frequent findings [68,69]. Supplementation with Zn reduces the risk of
t2DM by up to 40% [70] and improves glucose control [71].

Our data, collected from patients with CAD treated with comparable statin doses,
reveal a negative correlation between Zn content and serum TG concentration. A similar
trend is observed without statistical significance for total cholesterol and LDL. These find-
ings seem to be consistent with other studies since Zn deficiency is found to have several
effects on lipid metabolism. Firstly, it decreases the TG absorption [72]. Secondly, it causes
a decrease in levels of Zn-α2-glycoprotein, which in turn increases lipogenesis [73]. Supple-
mentation with Zn decreases total cholesterol levels and increases high-density lipoprotein
levels [74]. Compared to the healthy control group, lower levels of this micronutrient were
found in obese patients [75]. Zn supplementation also decreases insulin resistance and
inflammation marker concentrations [76].

Since almost 86% of our patients were normotensive, we were unable to prove or
disprove the existence of a correlation between the nutritional status of Zn and hypertension.
However, previous studies on this matter showed contradictory results [55,77,78]. Similarly,
we did not find any correlation between hair Zn levels and BMI or smoking; this subject
needs further in-depth research, as previous research was mainly conducted on healthy
individuals [75,79].
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There are a few notable limitations to this study. In particular, we did not take into
consideration factors interfering with Zn levels, e.g., the potential interactions of nutritional
ingredients and other microelements, which can modulate the biological effects of Zn. We
omitted the differentiation of the source of Zn, which could have an influence on metabolic
syndrome and the risk of CVDs [80]. We neglected the effect of drugs commonly used in
CVDs, such as beta-blockers, angiotensin receptor blockers, angiotensin-converting enzyme
inhibitors and diuretics. Our analysis was based on a single method of quantifying the
Zn level, namely hair concentration. This omits the fact that Zn can be in different forms
and its concentration changes are dynamic. The use of multiple measurement methods
(hair, serum, erythrocytes, urine concentration) may result in a better understanding of the
relationship between Zn and CVDs. The degree of progression of CAD was determined
on the basis of the results of coronary angiography using the CASSS; perhaps using the
SYNTAX or Gensini score would be more optimal.

We did not confirm an association of Zn nutritional status with CAD severity and
ACS in the cohort of patients with CAD. We found a statistically significant, negative,
correlation between Zn levels in hair and serum TG concentration. Furthermore, patients
with t2DM had a lower Zn hair content compared to non-diabetic individuals. Evaluation
of the impact of Zn on cardiovascular health requires more well-designed randomized
studies to specify the advantages, dangers and contraindications for different levels of Zn
dietary intake and supplementation. It is necessary to define and implement global dietary
recommendations and food fortification strategies, particularly in developing countries, to
achieve optimal Zn intake and reduce CVD risk.

5. Conclusions

In patients with angiographically confirmed CAD, there are no significant statistical
differences in Zn levels between groups with different severity of CAD (CASSS 0–3). Dif-
ferences in the concentration of the analysed element in hair samples were not statistically
significant in patients with ACS compared to those with stable CAD. Significantly lower
levels of Zn were found in the hair of patients with t2DM. A negative correlation was
identified between Zn content in the hair and serum TG concentration. The role of Zn in
the pathogenesis of CAD and its complications requires further well-designed research.
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